• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • Tagged with
  • 27
  • 18
  • 15
  • 14
  • 12
  • 12
  • 10
  • 9
  • 9
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Conjectura de De Giorgi em dimensões 2 e 3

Sousa, Ivaldo Tributino de 08 March 2012 (has links)
Made available in DSpace on 2015-05-15T11:46:13Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 572294 bytes, checksum: 1c46e916c7cc2e4689880e2687dbee0b (MD5) Previous issue date: 2012-03-08 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This word is concerned with the study of bounded solutions of semilinear elliptic equations u − F0(u) = 0 in the whole space Rn, under the assumption that u is monotone in one direction, say, @u/@xn > 0 em Rn. The goal is to establish the one-dimensional character or symmetry of u, namely, that u only depends on one variable or, equivalently, that the level sets of u are hyperplanos. This type of symmetry question was raised by de Giorgi in 1978 (see [6]), who made the folowing conjecture: Conjecture Suppose that u 2 C2(Rn) is solution of the equation u + u − u3 = 0 satisfying |u(x)| 1 and @u @xn > 0 in the whole Rn. Then the level sets of u must be hyperplanes. We show a stronger version of De Giorgi s conjecture is indeed true in dimension 2 and 3 using some techniques in the linear theory developed by Berestychi, Caffarelli and Nirenberg [5] in one of their papers on qualitative properties of solutions of semilinear elliptic equations. / Este trabalho se preocupa com o estudo de soluções limitadas de equações elípticas semilineares u − F0(u) = 0 em todo espaço Rn, sob o pressuposto que u é monótona em uma direção, digamos @u/@xn > 0 em Rn. O objetivo é estabelecer o caráter unidimensional ou simetria de u, ou seja, que u depende apenas de uma variável ou equivalentemente, que os conjuntos de nível de u são hiperplanos. Este tipo de questão da simetria foi levantada por De Giorgi em 1978 (ver [6]), que fez a seguinte conjectura: Conjectura Suponha que u 2 C2(Rn) é solução da equação u + u − u3 = 0 satisfazendo |u(x)| 1 e @u @xn > 0 em todo Rn. Então os conjuntos de nível de u são hiperplanos. Mostraremos que uma versão forte da conjectura de De Giorgi é de fato verdade em dimensão 2 e 3 usando somente técnicas da teoria linear desenvolvida por Berestychi, Caffarelli e Nirenberg [5] em um dos seus artigos sobre as propriedades qualitativas de equações elípticas semilineares.
12

Problemas de valores de contorno envolvendo o operador biharmônico / Boundary value problems involving the biharmonic operator

Ferreira Junior, Vanderley Alves 25 February 2013 (has links)
Estudamos o problema de valores de contorno {\'DELTA POT. 2\' u = f em \'OMEGA\', \'BETA\' u = 0 em \'PARTIAL OMEGA\', um aberto limitado \'OMEGA\' \'ESTÁ CONTIDO\' \'R POT. N\' , sob diferentes condições de contorno. As questões de existência e positividade de soluções para este problema são abordadas com condições de contorno de Dirichlet, Navier e Steklov. Deduzimos condições de contorno naturais através do estudo de um modelo para uma placa com carga estática. Estudamos ainda propriedades do primeiro autovalor de \'DELTA POT. 2\' e o problema semilinear {\'DELTA POT. 2\' u = F (u) em \'OMEGA\' u = \'PARTIAL\'u SUP . \'PARTIAL\' v = 0 em \'PARTIUAL\' \'OMEGA\', para não-linearidades do tipo F(t) = \'l t l POT. p-1\', p \' DIFERENTE\' t, p > 0. Para tal problema estudamos existência e não-existência de soluções e positividade / We study the boundary value problem {\'DELTA POT. 2\' u = f in \'OMEGA\', \'BETA\' u = 0 in \'PARTIAL OMEGA\', in a bounded open \'OMEGA\'\'THIS CONTAINED\' \'R POT. N\' , under different boundary conditions. The questions of existence and positivity of solutions for this problem are addressed with Dirichlet, Navier and Steklov boundary conditions. We deduce natural boundary conditions through the study of a model for a plate with static load. We also study properties of the first eigenvalue of \'DELTA POT. 2\' and the semi-linear problem { \'DELTA POT. 2\' e o problema semilinear {\'DELTA POT. 2\' u = F (u) in \'OMEGA\' u = \'PARTIAL\'u SUP . \'PARTIAL\' v = 0 in \'PARTIUAL\' \'OMEGA\', for non-linearities like F(t) = \'l t l POT. p-1\', p \' DIFFERENT\' t, p > 0. For such problem we study existence and non-existence of solutions and its positivity
13

Sistemas elípticos de tipo hamiltoniano perto da ressonância / Elliptic systems of Hamiltonian type near resonance

Rossato, Rafael Antonio 30 October 2014 (has links)
Neste trabalho consideramos sistemas elípticos de tipo hamiltoniano, envolvendo o operador Laplaciano, com uma parte linear dependendo de dois parâmetros e uma perturbação sublinear. Obtemos a existência de pelo menos duas soluções quando a parte linear está perto da ressonância (este fenômeno é chamado de quase ressonância). Mostramos também a existência de uma terceira solução, quando a quase ressonância é em relação ao primeiro autovalor do operador Laplaciano. No caso ressonante obtemos resultados análogos, adicionando mais uma perturbação sublinear. Os sistemas estão associados a funcionais fortemente indefinidos, e as soluções são obtidas através do Teorema de Ponto de Sela e aproximação de Galerkin. / In this work we consider elliptic systems of hamiltonian type, involving the Laplacian operator, a linear part depending on two parameters and a sublinear perturbation. We obtain the existence of at least two solutions when the linear part is near resonance (this phenomenon is called almost-resonance). We also show the existence of a third solution when the almost-resonance is with respect to the first eigenvalue of the Laplacian operator. In the resonant case, we obtain similar results, with an additional sublinear term. These systems are associated with strongly indefinite functionals, and the solutions are obtained by Saddle Point Theorem and Galerkin approximation.
14

Um problema semilinear elíptico em domínio fino com termos de reações concentradas na fronteira / Semilinear elliptic equations in thin domains with reaction terms concentrating on boundary

Manjate, Salvador Rafael 02 September 2015 (has links)
Analisamos o comportamento assintótico de uma família de equilíbrios de uma equação de reação-difusão com a condição de Neumann homegênea definido num domínio fino bidimensional com termos de reação concentradas em uma vizinhança oscilante da fronteira. Assumimos que o domínio e portanto a vizinhança oscilante se degeneram em um intervalo quando o parâmetro positivo tende a zero. O objetivo principal foi mostrar que essa família de soluções, converge para uma equação limite unidimensional, que captura a geometria e o comportamento assintótico dos conjuntos abertos onde o problema é estabelecido. De fato mostramos a continuidade da família de equilíbrios / In this work we analyze the behavior of a family of stead state solutions of a semilinear reaction-diffusion equation with homogeneous Neumann boundary condition, posed in a two-dimensional thin domain with reaction term concentrated in an narrow oscillating neighborhood. Indeed, we assume that the domain of definition of the solutions degenerates into an interval as a small parameter $\\epsilon$ goes to zero. Our main result is that this family of solutions converge to the solution of a one-dimensional limit equation capturing the geometry and oscillatory behaviour of the open sets where the problem is estabilished.
15

Um problema semilinear elíptico em domínio fino com termos de reações concentradas na fronteira / Semilinear elliptic equations in thin domains with reaction terms concentrating on boundary

Salvador Rafael Manjate 02 September 2015 (has links)
Analisamos o comportamento assintótico de uma família de equilíbrios de uma equação de reação-difusão com a condição de Neumann homegênea definido num domínio fino bidimensional com termos de reação concentradas em uma vizinhança oscilante da fronteira. Assumimos que o domínio e portanto a vizinhança oscilante se degeneram em um intervalo quando o parâmetro positivo tende a zero. O objetivo principal foi mostrar que essa família de soluções, converge para uma equação limite unidimensional, que captura a geometria e o comportamento assintótico dos conjuntos abertos onde o problema é estabelecido. De fato mostramos a continuidade da família de equilíbrios / In this work we analyze the behavior of a family of stead state solutions of a semilinear reaction-diffusion equation with homogeneous Neumann boundary condition, posed in a two-dimensional thin domain with reaction term concentrated in an narrow oscillating neighborhood. Indeed, we assume that the domain of definition of the solutions degenerates into an interval as a small parameter $\\epsilon$ goes to zero. Our main result is that this family of solutions converge to the solution of a one-dimensional limit equation capturing the geometry and oscillatory behaviour of the open sets where the problem is estabilished.
16

Soluções blow-up para uma classe de equações elípticas. / Blow-up solutions for a class of elliptic equations.

SILVA, Geizane Lima da. 24 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-24T16:01:03Z No. of bitstreams: 1 GEIZANE LIMA DA SILVA - DISSERTAÇÃO PPGMAT 2010..pdf: 596736 bytes, checksum: d02e34d40e7147e46c734ba297c181bf (MD5) / Made available in DSpace on 2018-07-24T16:01:03Z (GMT). No. of bitstreams: 1 GEIZANE LIMA DA SILVA - DISSERTAÇÃO PPGMAT 2010..pdf: 596736 bytes, checksum: d02e34d40e7147e46c734ba297c181bf (MD5) Previous issue date: 2010-03 / Capes / Neste trabalho estudamos a existência de soluções positivas do tipo blow-up para uma classe de equações elípticas semilineares. Usamos argumentos desenvolvidos por Cîrstea & Radulescu [6], Lair & Wood [20] e as técnicas empregadas são o Método de Sub e Supersolução, Teoremas de Ponto Fixo e em alguns resultados exploramos a simetria radial e algumas estimativas para equações elípticas. / In this work we studied the existence of blow-up positive solutions for the class of semilinear elliptic equations. We used arguments developed by Cîrstea & Radulescu [6], and by Lair & Shaker [20] and the techniques used are the method of Sub and Supersolution, Fixed point theorems and some results explored radial symmetry and some estimates for elliptic equations.
17

Um Teorema de Ponto Fixo e Aplicações a Equações Elípticas Semilineares

Marques, Dayvid Geverson Lopes 27 April 2012 (has links)
Made available in DSpace on 2015-05-15T11:46:04Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 467058 bytes, checksum: ebe1089b4399fe71150fc70fa81ea4ed (MD5) Previous issue date: 2012-04-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work, we study a fixed point theorem for increasing operators in ordered normed spaces and we apply it in order to obtain results of existence of weak solution for semilinear elliptic equations of type 8<: ---u = f(x; u) + h; in u = 0; on @ ; where - RN is a smooth domain, f : -R --! R satisfies some convenient conditions and h 2 H--1(. / Neste trabalho, estudamos um teorema de ponto fixo para operadores crescentes em espaços vetoriais ordenados e o aplicamos para obter resultados de existência de solução fraca para problemas elípticos semilineares do tipo 8<: ---u = f(x; u) + h; em u = 0; sobre @ em que - RN é um domínio suave, f : - R ! R satisfaz algumas condições convenientes e h 2 H- -1(:).
18

Sobre Soluções Positivas para uma Classe de Equações Elípticas Semilineares

Pontes, Enieze Cardoso de 25 February 2014 (has links)
Made available in DSpace on 2015-05-15T11:46:20Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 842217 bytes, checksum: 4549b711fa61f709fe2ff3b8c94c4bef (MD5) Previous issue date: 2014-02-25 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work, we study the existence of positive solutions for a class of semilinear elliptic equations in a smooth bounded domain, with Dirichlet boundary condition and non-linear terms changing sign as well as with small perturbations. In order to obtain the positive solution, in the first case we use a version of the Mountain Pass Theorem in Ordered Banach spaces. In the second case, the main term is under assumptions that guarantee the application of the usual Mountain Pass Theorem and the perturbation term does not require any hypothesis. / Neste trabalho, estudamos existência de solução positiva para uma classe de equações elípticas semilineares em um domínio limitado suave, com condição de fronteira de Dirichlet, tanto com termos nao-lineares mudando de sinal, quanto com termos com pequenas perturbações. A fim de obtermos solução positiva, no primeiro caso, usamos uma versão do Teorema do Passo da Montanha para Espacos de Banach Ordenados. No segundo caso, o termo principal esta sob condições que garantem a aplicação do Teorema do Passo da Montanha usual e o termo de perturbação não requer nenhuma hipótese.
19

Existência de soluções não-negativas para uma classe de problemas semilineares elípticos indefinidos / Existence of nonnegative solutions for a class of indefinite semilinear elliptic problems

Costa, Gustavo Silvestre do Amaral 17 March 2017 (has links)
Submitted by Erika Demachki (erikademachki@gmail.com) on 2017-03-27T17:45:29Z No. of bitstreams: 2 Dissertação - Gustavo Silvestre do Amaral Costa - 2017.pdf: 671324 bytes, checksum: fdf29c0b102f3ee24a198d5616ecd4b4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-03-28T11:31:51Z (GMT) No. of bitstreams: 2 Dissertação - Gustavo Silvestre do Amaral Costa - 2017.pdf: 671324 bytes, checksum: fdf29c0b102f3ee24a198d5616ecd4b4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-03-28T11:31:51Z (GMT). No. of bitstreams: 2 Dissertação - Gustavo Silvestre do Amaral Costa - 2017.pdf: 671324 bytes, checksum: fdf29c0b102f3ee24a198d5616ecd4b4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-03-17 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we will discuss the existence of nonnegative solutions for a class of indefinite semilinear elliptic problems: (Pμ)   − u = λ1u+μg(x,u)+W(x)f(u), em u = 0 , sobre ∂ , where is a bounded smooth domain in RN, N ≥ 3, μ is a nonnegative parameter, λ1 is the first eigenvalue of the operator − under Dirichlet boundary conditions, W ∈ C(¯ ,R) is a weight function, f ∈ C(R,R), and g : ¯ ×R→R is a Carathéodory locally bounded function, i.e, for every s0 > 0, there is M := M(s0) > 0 such that |g(x,s)| ≤M for 0 ≤ |s| ≤ s0 and for almost every x ∈ ¯ . / Neste trabalho discutiremos a existência de soluções não negativas para os seguintes problemas semilineares elípticos indefinidos: (Pμ)   − u = λ1u+μg(x,u)+W(x)f(u), em u = 0 , sobre ∂ . onde é um domínio limitado suave de RN, N ≥ 3, λ1 é o primeiro autovalor de − , μ > 0, W ∈ C(¯ ,R) e f ∈ C(R,R), g : ×R→R é uma função Carathéodory localmente limitada, isto é, para todo s0 > 0 existe M(s0) > 0, tal que |g(x,s)| ≤ M(s0), para todo s ∈ [−s0,s0] e q.t.p em ¯ .
20

Sistemas elípticos de tipo hamiltoniano perto da ressonância / Elliptic systems of Hamiltonian type near resonance

Rafael Antonio Rossato 30 October 2014 (has links)
Neste trabalho consideramos sistemas elípticos de tipo hamiltoniano, envolvendo o operador Laplaciano, com uma parte linear dependendo de dois parâmetros e uma perturbação sublinear. Obtemos a existência de pelo menos duas soluções quando a parte linear está perto da ressonância (este fenômeno é chamado de quase ressonância). Mostramos também a existência de uma terceira solução, quando a quase ressonância é em relação ao primeiro autovalor do operador Laplaciano. No caso ressonante obtemos resultados análogos, adicionando mais uma perturbação sublinear. Os sistemas estão associados a funcionais fortemente indefinidos, e as soluções são obtidas através do Teorema de Ponto de Sela e aproximação de Galerkin. / In this work we consider elliptic systems of hamiltonian type, involving the Laplacian operator, a linear part depending on two parameters and a sublinear perturbation. We obtain the existence of at least two solutions when the linear part is near resonance (this phenomenon is called almost-resonance). We also show the existence of a third solution when the almost-resonance is with respect to the first eigenvalue of the Laplacian operator. In the resonant case, we obtain similar results, with an additional sublinear term. These systems are associated with strongly indefinite functionals, and the solutions are obtained by Saddle Point Theorem and Galerkin approximation.

Page generated in 0.0621 seconds