• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 12
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 2
  • 2
  • 1
  • Tagged with
  • 119
  • 119
  • 91
  • 86
  • 49
  • 30
  • 28
  • 19
  • 18
  • 16
  • 13
  • 13
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Accès à des 3‐aryl‐1(2H)‐isoquinolones via une réaction d’aminocarbonylation/cyclisation pallado catalysée : utilisation dans le développement d’agent antivasculaire inhibiteur de la sérine thréonine phosphatase I / Synthesis of 3-aryl-1(2H)-isoquinolones via a palladium catalyzed aminocarbonylation/cyclization reaction for the development of serine threonine phosphatase I inhibitors as potent antivascular drugs

Dieudonné-Vatran, Antoine 01 October 2012 (has links)
Le sujet de cette thèse porte sur la synthèse d'inhibiteurs spécifique de la Sérine-Thréonine phosphatase I (PP1). Un criblage de la chimiothèque de l'institut Curie, réalisé par l'équipe du Dr. Popov a permis d'identifier une 3-aryl-1(2H)isoquinolone, qui perturbe la dynamique des microtubules et qui s’est ensuite avéré être un inhibiteur sélectif de PP1. Dans une première partie, nous avons mis au point une nouvelle méthodologie de synthèse de ces composés hétérocycliques par une réaction tandem d’aminocarbonylation-cyclisation pallado catalysée. L’étude d’une seconde voie de synthèse de ces composés a été étudié par réaction d'arylation direct d'une 1(2H)isoquinolone. Dans le but de trouver d’autres hit, ligand de cette phosphatase, nous avons tenté de développer un test de triple hybride chimique, en collaboration avec la société Hybrigenics. Ce test est basé sur l’interaction de notre inhibiteur hit avec la phosphatase PP1. Pour cela, nous avons synthétisé une sonde à partir de la molécule hit initiale. La deuxième partie a trait à un développement de chimie médicinal pour optimiser le hit initial. Des dérivés de très bonne sélectivité pour l’enzyme cible ont été préparés. / This PhD thesis deals with the synthesis of serine threonine phosphatase I (PPI) inhibitors. This project started with the screening of the Institut Curie’s Library carried out by Dr. Popov team. They identified a 3-aryl-1(2H)isoquinolone (hit molecule) which strongly disturbs the microtubules dynamics. In the first part, we designed an original methodology to prepare those heterocycles, though a tandem palladium catalyzed aminocarbonylation/cyclization reaction. Then, we studied the direct arylation reaction to obtain the desired scaffold. In collaboration with Hybrigenics, we synthesize a probe for a triple hybrid system, based on the specific interaction of the hit molecule with its target PPI. Thanks to this system, one could identify new inhibitors of the targeted phosphatase protein. Eventually, a library of isoquinolones derivatives was synthesized. During the invitro tests, some of those molecules proved to be very specific for the serine threonine phosphatase I.
42

Caractérisation de nouveaux substrats de la sérine/thréonine kinase Stk1 de Staphylococcus aureus / Characterization of new substrates of the serine/threonine kinase Stk1 of Staphylococcus aureus

Cluzel, Marie-Ève 25 September 2012 (has links)
La phosphorylation de protéines correspond à l’addition covalente d’un groupement phosphate (PO4 3-) par une protéine kinase sur un substrat. Cette réaction est réversible : la déphosphorylation est catalysée par des protéines phosphatases. Chez S. aureus, la sérine/thréonine kinase Stk1 phosphoryle des acides aminés sérines et thréonines et a été montrée impliquée dans la régulation de la virulence du pathogène : nous avons approfondi les connaissances sur ce mécanisme en identifiant trois nouveaux substrats et en étudiant les effets de la phosphorylation sur leur activité : - l’enzyme LuxS, responsable de la synthèse de l’AI-2 impliqué dans la communication intra bactérienne, voit son activité enzymatique drastiquement diminuée en étant phosphorylée par Stk1 sur un site thréonine unique (T14) ; - le régulateur CcpA, dont la fixation sur l’ADN module l’expression de nombreux gènes de virulence, est phosphorylée par Stk1 sur deux sites (T18 et T33) et cette phosphorylation diminue l’affinité de la protéine régulatrice CcpA pour l’ADN de ses gènes cibles ; - l’élément réponse du système à deux composants SaeR est phosphorylé sur deux sites thréonines (T87 et T192) de la région impliquée dans l’affinité de SaeR pour l’ADN. Les rôles de la kinase Stk1 sont donc multiples et liés à la régulation de la virulence de S. aureus. Les autres voies mettant en jeu la phosphorylation de protéines bactériennes, comme les systèmes à deux composants ou le système CcpA/HPr, sont couplées à cette phosphorylation par la sérine/thréonine kinase : ces résultats soulignent à la fois la diversité et la complexité de la régulation des mécanismes responsables de la virulence de S. aureus / Protein phosphorylation consists in the catalyzed addition of a phosphate group on a substrate. This reversible reaction is ensured by both kinase and phosphatase proteins. S. aureus is a human prokaryote pathogen and a part of its virulence is known to be regulated by the serine/threonine kinase Stk1, which phosphorylates serine or threonine residues of its substrates. We investigated the mechanisms of this virulence regulation and newly identified three substrates of Stk1: the quorumsensing LuxS protein, the catabolite carbon protein CcpA and the two components system response element SaeR. LuxS is phosphorylated on a unique threonine residue in position 14 and phosphorylation dramatically influences its enzymatic activity on AI-2 production. CcpA phosphorylation on two threonine residues in the DNA-binding region of the protein (T18 and T33) decreases the affinity of the protein for its targeted DNA sequences. Besides, Stk1 also phosphorylates the response element SaeR on two threonine residues (T87 and T192) in the DNAbinding region. Therefore Stk1 kinase plays numerous roles in S. aureus virulence regulation and the complexity of this regulation pattern increases when considering that three of the phosphorylation pathways in prokaryotes are crossed over: the two components system phosphorylation, the HPr/HPrK system and the serine/threonine kinase proteins phosphorylation. These results highlight the need to focus on Stk1 as a key element in the complexity of virulence regulation in S. aureus
43

Estudo das vias de sinalização celular que impactam na atividade da enzima glutaminase / Understanding the cell signalization pathways that impact on glutaminase activity

Ascenção, Carolline Fernanda Rodrigues, 1989- 24 August 2018 (has links)
Orientadores: Sandra Martha Gomes Dias, Marília Meira Dias / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-24T09:41:29Z (GMT). No. of bitstreams: 1 Ascencao_CarollineFernandaRodrigues_M.pdf: 4713312 bytes, checksum: b65183d96535d66661af745a562f2d58 (MD5) Previous issue date: 2014 / Resumo: A proliferação celular comanda os processos de embriogênese e de crescimento do organismo, sendo essencial para a correta função de vários tecidos adultos. Apesar de ser importante para a homeostase do organismo, a sua desregulação compõe a força motriz do desenvolvimento tumoral. Somente nos últimos vinte anos começou a ser evidenciada a relação entre as vias de tradução de sinais estimuladas por fatores de crescimento e a reorganização da atividade metabólica, a qual precisa priorizar a biossíntese e o aumento da biomassa, processos essenciais para a divisão celular. Em células tumorais, o consumo de glutamina é aumentando concomitante ao aumento da atividade de glutaminase. Três isoenzimas de glutaminase são expressas na maioria dos tecidos (liver-type glutaminase, kidney-type glutaminase e glutaminase C), todavia pouco se sabe sobre a necessidade específica de cada uma delas para o metabolismo tumoral. Vários artigos recentes têm definido o papel da glutaminólise, ou metabolismo da glutamina e seus subprodutos, na ativação da mTOR. Neste sentido é uma hipótese válida imaginar que mTOR possa contra-regular glutaminase. Desta maneira, resolvemos investigar se mTOR atua na regulação da atividade de glutaminase. Para tanto, realizamos knockdown estável de PTEN em células MDA-MB 231 e verificamos que não o mesmo afetou os níveis protéicos de GAC e KGA, assim como não houve mudança na localização subcelular das isoformas. Cinética enzimática da fração mitocondrial desta linhagem revelou que o knockdown de PTEN levou à uma diminuição do KM da enzima sem alteração de Vmax. De acordo, o tratamento com rapamicina, inibidor da mTOR, elevou o KM para os níveis detectados nas células controles. A atividade de glutaminase de lisado total de MDA-MB 231, NIH 3T3, IMR90 e BJ5TA foi afetada pelo tratamento com rapamicina conforme julgado por ensaios de dose e tempo resposta. Mais, ensaios de privação de glicose, glutamina e de fatores de crescimento levaram à inibição de mTOR e concomitante redução da atividade de glutaminase. Somado a isso, o knockdown estável de TSC2 em MDA-MB 231 e BJ5TA, assim como o knockout de TSC2 em MEF, promoveu superestimulação de mTOR e foi capaz de aumentar a atividade de glutaminase. Dosagem de atividade de glutaminase de células MDA-MB 231 com knockdown de GAC, KGA ou GAC/KGA tratadas com rapamicina indicaram que mTOR possa agir em ambas as isoformas. Curioso foi que apenas células shGAC e shGAC/KGA apresentaram redução da fosforilação de S6K em Thr389 indicando que GAC ou o metabolismo de glutamina via esta isoforma, possa contra-regular mTOR. Em adição, na comparação entre PC3 e DU145, verificamos que DU145 apresentou maior expressão de GAC, maior consumo de glutamina, maior dependência de glutamina em seu crescimento, maior sensibilidade ao inibidor de glutaminase, BPTES, e por fim, se mostrou mais responsiva à metformina, ativador indireto de AMPK. A ativação de AMPK por metformina, um conhecido sensor de estresse energético, mostrou diminuir a atividade de glutaminase em célula de tumor de próstata, DU145, indicando uma potencial ação de AMPK na atividade de glutaminase / Abstract: Cell proliferation is crucial for embryogenesis and organism growth, being also essential for the proper function of several adult tissues. Although important for the homeostasis of the organism, its deregulation composes the driving force of tumor development. In the past twenty years the relationship between the processes of signal translation stimulated by growth factors and the reorganization of metabolic activity has become more evident. Growing cells need to prioritize the biosynthesis and biomass increase, processes essential for cell division. In tumor cells, the glutamine consumption is increased concurrently with the increasing in the glutaminase activity. Three glutaminase isoenzymes are expressed in most tissues (liver- type glutaminase, kidney -type glutaminase and glutaminase C), but not much is known about the necessity of each isoform for the tumor metabolism. Several recent papers have defined the role of glutaminolysis or glutamine metabolism in mTOR activation. So it is a valid hypothesis to speculate that mTOR can counter-regulate glutaminase. Thus, we decided to investigate whether mTOR can control glutaminase activity. To this end, we have made MDA - MB 231 cells stably knocked down for PTEN and verified no alteration in KGA and GAC protein levels, as well as there was no change on their subcellular location. Enzyme kinetics of the MDA-MB 231 mitochondrial fraction revealed that PTEN knockdown led to a decrease in the KM of the enzyme without changing Vmax. Accordingly, the treatment with rapamycin (mTOR inhibitor), led to an increase in KM back to the level detected in control cells. The glutaminase activity of MDA - MB 231, NIH 3T3, IMR90 and BJ5TA total cellular lysates was also affected by rapamycin treatment in a dose- and time-response fashion. Moreover, glucose, glutamine and growth factors deprivation promoted mTOR inhibition and concomitant reduction on glutaminase activity. Glutaminase activity of MDA-MB 231 cells knocked down for GAC, KGA or GAC/KGA and treated with rapamycin indicated that mTOR can regulate both isoforms. Curiously, it was only on GAC or GAC/KGA knocked down cells that we observed a decrease in S6K Thr 389 phosphorylation, which could indicate that GAC or the GAC dependent-glutamine metabolism is a specific mTOR counter-regulator. Accordling, stable TSC2 knockdown in MDA-MB 231 and BJ5TA, as well as TCS2 knockout in MEF cells, promoted overstimulation of mTOR and increasing on glutaminase activity. Moreover, a comparison between PC3 and DU145 revealed that DU145 has higher GAC expression, greater consumption of glutamine, is more dependent on glutamine for its growth, more sensitive to the inhibitor of glutaminase, BPTES, and more responsive to metformin, an indirect AMPK activator. The activation of AMPK by metformin, a known energy stress sensor, led to a decreased glutaminase activity in the prostate tumor cell line DU145 indicating a potential role of AMPK on glutaminase activity / Mestrado / Genetica Animal e Evolução / Mestra em Genética e Biologia Molecular
44

Macrophage regulatory genes Nramp1 and MK2 : implication in inflammation and cutaneous wound healing

Thuraisingam, Thusanth. January 2007 (has links)
No description available.
45

The characterization of PrpZ and PrkY, two eukaryotic-type proteins of Salmonella enterica serovar Typhi /

Gros, Pierre-Paul. January 2009 (has links)
No description available.
46

Protein Phosphorylation in Archaea

Thurston, Barbara 10 March 1997 (has links)
Protein phosphorylation constitutes an important mechanism for cellular regulation in both Eucarya and Bacteria. All living organisms evolved from a common progenitor; this implies that protein phosphorylation as a means of regulation also exists in Archaea. Previously, in the sulfur-dependent archaeon Sulfolobus solfataricus a gene was cloned encoding a protein-serine/threonine phosphatase that was similar to eucaryal protein-serine/threonine phosphatases type 1, 2A, and 2B. To identify protein phosphatases in other archaeons, oligonucleotides encoding conserved regions of eucaryal protein-serine/threonine phosphatases were used in the polymerase chain reaction to amplify genomic DNA from the methanogenic archaeon Methanosarcina thermophila. From the PCR reaction a fragment of DNA was isolated that encoded a portion of a protein phosphatase. Using this DNA fragment as a probe, the entire phosphatase gene was isolated. The amino acid sequence of the phosphatase encoded by this gene displayed greater than 30% identity with eucaryal protein-serine/threonine phosphatase type 1. The gene encoding the Methanosarcina phosphatase was expressed in Escherichia coli. The expressed protein exhibited protein serine phosphatase activity that was sensitive to inhibitors of eucaryal phosphatases such as okadaic acid, microcystin, calyculin, and tautomycin. In order to identify potential endogenous substrates of archaeal protein-serine/threonine phosphatases and kinases, a study was initiated to characterize the most prominent phosphoproteins in S. solfataricus. Cell extracts were incubated with [γ-³²P] ATP, MgCl₂, and MnCl₂, and the proteins in the extracts were separated by SDS-PAGE. Autoradiography of the gels revealed four prominent phosphoproteins with apparent molecular masses of 35, 46, and 50 kDa. N-terminal sequence analysis and enzymatic assays of the 35 kDa phosphoprotein identified this phosphoprotein as the a-subunit of succinyl-CoA synthetase. N-terminal sequence analysis and enzymatic assays revealed that the 50 kDa phosphoprotein was a hexosephosphate mutase. Neither the 50 kDa nor the 35 kDa phosphoprotein appeared to be the target of protein kinases or phosphatases. Therefore, while protein-serine phosphatases exist in Archaea, the targets of these phosphatases have yet to be determined. / Ph. D.
47

Nuclear transport and regulation of the tumor suppressor LKB1

Dorfman, Julia. January 2008 (has links)
Thesis (Ph. D.)--University of Virginia, 2008. / Title from title page. Includes bibliographical references. Also available online through Digital Dissertations.
48

Pim1 kinase regulates c-Kit gene translation

An, Ningfei, Cen, Bo, Cai, Houjian, Song, Jin H., Kraft, Andrew, Kang, Yubin 30 December 2016 (has links)
Background: Receptor tyrosine kinase, c-Kit (CD117) plays a pivotal role in the maintenance and expansion of hematopoietic stem/progenitor cells (HSPCs). Additionally, over-expression and/or mutational activation of c-Kit have been implicated in numerous malignant diseases including acute myeloid leukemia. However, the translational regulation of c-Kit expression remains largely unknown. Methods and results: We demonstrated that loss of Pim1 led to specific down-regulation of c-Kit expression in HSPCs of Pim1(-/-)mice and Pim1(-/-)2(-/-)3(-/-) triple knockout (TKO) mice, and resulted in attenuated ERK and STAT3 signaling in response to stimulation with stem cell factor. Transduction of c-Kit restored the defects in colony forming capacity seen in HSPCs from Pim1 (-/-) and TKO mice. Pharmacologic inhibition and genetic modification studies using human megakaryoblastic leukemia cells confirmed the regulation of c-Kit expression by Pim1 kinase: i.e., Pim1-specific shRNA knockdown down-regulated the expression of c-Kit whereas overexpression of Pim1 up-regulated the expression of c-Kit. Mechanistically, inhibition or knockout of Pim1 kinase did not affect the transcription of c-Kit gene. Pim1 kinase enhanced c-Kit S-35 methionine labeling and increased the incorporation of c-Kit mRNAs into the polysomes and monosomes, demonstrating that Pim1 kinase regulates c-Kit expression at the translational level. Conclusions: Our study provides the first evidence that Pim1 regulates c-Kit gene translation and has important implications in hematopoietic stem cell transplantation and cancer treatment.
49

Functions of the Cdc14-Family Phosphatase Clp1p in the Cell Cycle Regulation of <em>Schizosaccharomyces pombe</em>: A Dissertation

Trautmann, Susanne 20 May 2005 (has links)
In order to generate healthy daughter cells, nuclear division and cytokinesis need to be coordinated. Premature division of the cytoplasm in the absence of chromosome segregation or nuclear proliferation without cytokinesis might lead to aneuploidy and cancer. The cyclin dependent kinases, CDKs, are a main regulator of the cell cycle. Timely increase and decrease in their activity is required for cell cycle progression. To enter mitosis, mitotic CDK activity needs to rise. CDK activity stays elevated until chromosome segregation is completed and exit from mitosis requires decrease in CDK activity. Observations in several experimental systems suggest that coordination of cytokinesis with the nuclear cycle is regulated through CDK activity. Prolonged high CDK activity, as it occurs when chromosome segregation is delayed, was found to oppose cytokinesis. Prevention of cytokinesis through high CDK activity may therefore provide a mechanism to prevent precocious cell division in the absence of chromosome segregation. To prevent polyploidy when cell division is delayed, progression through the next nuclear cycle should be inhibited until cytokinesis is completed, presumably by the inhibition of CDK activity. In the fission yeast Schizosaccharomyces pombe, a signaling cascade called Septation Initiation Network (SIN) is required for the coordination of cytokinesis with the nuclear cycle. The SIN is essential for cytokinesis, triggering the execution of cell division through constriction of the actomyosin ring. The activation of the SIN signaling cascade, and thus cytokinesis, is opposed by high CDK activity, preventing precocious cytokinesis. S. pombe delay entry into the next nuclear division in response to delayed cytokinesis due to defects in the contractile ring until cytokinesis is completed thereby preventing the accumulation of multinucleate, non viable cells. This safeguard against multinucleate cells is termed the cytokinesis checkpoint. The cytokinesis checkpoint keeps CDK activity low, preventing nuclear cycle progression. The SIN is required for the cytokinesis checkpoint and therefore is a key coordinator between nuclear cycle and cytokinesis. How the SIN functions in the cytokinesis checkpoint was not known. Cdc14-family phosphatases are highly conserved from yeast to humans, but were only characterized in Saccharomyces cerevisiae at the time this thesis was initiated. Cdc14 had been identified as the effector of a signaling cascade homologous to the SIN, called the mitotic exit network (MEN), which is required for exit from mitosis. This thesis describes the identification of the S. pombe Cdc14-like phosphatase Clp1p as a component of the cytokinesis checkpoint. Clp1p opposes CDK activity, and Clp1p and the SIN activate each other in a positive feedback loop. This maintains an active cytokinesis checkpoint and delays mitotic entry. We further found that Clp1p regulates chromosome segregation. Concluding, this thesis describes discoveries adding to the characterization of the cytokinesis checkpoint and the function of Clp1p. While others found that Cdc14-family phosphatases, including Clp1p, have similar catalytic functions, we show that their biological function may be quite different between organisms, possibly due to different biological challenges.
50

Cellular and molecular characterization of inflammation in the injured spinal cord

Ghasemlou, Nader. January 2008 (has links)
Spinal cord injury (SCI) results in a well-orchestrated inflammatory response which causes secondary tissue damage. Activated macrophages contribute to this cytotoxic response, which includes damage to neurons, glia and myelin, and tissue loss that worsens functional outcomes after SCI. However, activated macrophages in the spinal cord under other conditions are not cytotoxic, such as after intraspinal injection of lysophosphatidylcholine (LPC), a potent demyelinating agent. Recovery from SCI may be optimized by reducing the detrimental effects of macrophages while promoting their beneficial ones. Therefore, I compared spinal cord tissue, as well as purified macrophages, from mice after SCI (cytotoxic response) and intraspinal LPC injection (non-cytotoxic response). As a first step to carry out this work, I characterized the injury parameters for SCI contusion injury (i.e. injury force and spinal cord displacement) in mice using the Infinite Horizons impactor (Chapter 2). This lesioning model was used in other work for the thesis. The role T cells may play in mediating macrophage activation after LPC microinjection and SCI was also assessed using Nude mice (Chapter 3). Next, Affymetrix GeneChip analysis was carried out on spinal cord tissue obtained at the peak of the macrophage response after SCI and intraspinal LPC injection to identify potential candidate genes that may control the divergent inflammatory responses (Chapter 4). Several potential genes were identified. I next characterized the expression and role of one of these genes, MAPK activated protein kinase 2 (MK2), and showed that it mediates secondary tissue damage after SCI via several mechanisms (Chapter 5). The differences in gene expression profiles of macrophages purified from the spinal cord after SCI and LPC-injection were also assessed (Chapter 6). This microarray analysis of macrophages led to the identification of 10 novel candidate genes, two of which were validated at the protein level. Finally, I also examined the expression and role of secretory leukocyte protease inhibitor (SLPI) in SCI (Chapter 7). Using a combination of knockout/overexpressing transgenic mice and recombinant SLPI, I found that SLPI mediates protective anti-inflammatory effects after SCI. In conclusion, work done for this thesis has led to the identification of several novel molecules that influence the inflammatory response after injury and thus have led to the identification of potentially novel targets for the development of pharmacological approaches to treat acute SCI.

Page generated in 0.0587 seconds