Spelling suggestions: "subject:"serum albumin."" "subject:"rerum albumin.""
171 |
Synthesis, Biological Functionalization, and Integration ofCarbon Nanotubes for Bio-Sensing TextilesOlszewski, Amy L. 03 June 2013 (has links)
No description available.
|
172 |
Mechanistic approaches towards understanding particle formation in biopharmaceutical formations. The role of sufactant type and level on protein conformational stability, as assessed by calorimetry, and on protein size stability as assessed by dynamic light scattering, micro flow imaging and HIACVaidilaite-Pretorius, Agita January 2013 (has links)
Control and analysis of protein aggregation is an increasing challenge to biopharmaceutical research and development. Therefore it is important to understand the interactions, causes and analysis of particles in order to control protein aggregation to enable successful biopharmaceutical formulations.
This work investigates the role of different non-ionic surfactants on protein conformational stability, as assessed by HSDSC, and on protein size stability as assessed by Dynamic Light Scattering (DLS), HIAC and MFI. BSA and IgG2 were used as model proteins. Thermal unfolding experiments indicated a very weak surfactant-immunoglobulin IgG2 interaction, compared to much stronger interactions for the BSA surfactant systems.
The DLS results showed that BSA and IgG2 with different surfactants and concentration produced different levels of particle size growth. The heat treatment and aging of samples in the presence of Tween 20, Tween 80, Brij 35 and Pluronic F-68 surfactants led to an increase in the populations of larger particles for BSA samples, whereas IgG2 systems did not notably aggregate under storage conditions
MFI was shown to be more sensitive than HIAC technique for measuring sub-visible particles in protein surfactant systems. Heat treatment and storage stress showed a significant effect on BSA and IgG2 protein sub-visible particle size stability.
This work has demonstrated that both proteins with different Tween 20, Tween 80, Brij 35 and Pluronic F-68 concentrations, have different level of conformational and size stability. Also aging samples and heating stress bears the potential to generate particles, but this depends on surfactant type. Poor predictive correlations between the analytical methods were determined.
|
173 |
Quantifying Protein Quality to Understand Protein HomeostasisLin, Hsien-Jung Lavender 14 July 2022 (has links)
Proteins are the center of all biochemical reactions in living organisms. Proteins need to be present at the right time, in the right place, with the correct concentration and have the right shape to carry their designated function. Protein homeostasis is when all proteins in the proteome are in functional balance, and such balance is maintained by synthesis, folding, and degradation machinery. When protein homeostasis is lost, organisms start to age and develop diseases. To truly unveil disease mechanisms and provide more efficient means for treatment and prevention, we need a holistic understanding of the mechanism of protein homeostasis. Currently, most biomarker studies focus on the quantity aspect of the proteome. The quality aspect has been neglected because of the difficulties in measuring quality in vivo with cellular context retained. This work first proposes a kinetic model of protein homeostasis, which can provide a holistic view, including both quantity and quality aspects, as well as monitor the complex protein interactions. Using mass spectrometry, the model quantifies the quality of proteome by linking the concentration of protein, mRNA, and the rate protein synthesis, folding, unfolding, misfolding, refolding, degradation of the correctly folded protein, and degradation of protein aggregation. We then applied the ideas within the kinetic model of protein homeostasis to study several proteins in human blood serum. We reviewed the current known mechanism of transthyretin mediated amyloidosis and proposed a study approach that can measure the quality difference between different transthyretin's mutation stages, as well as monitor if the transthyretin amyloidosis has been developed at the early stage. We also used mass-spectrometry to quantify the surface accessibility differences in human serum albumin (HSA) between patients with and without rheumatoid arthritis (RA). We found certain residues are less reactive in the RA group, indicating a structural change in HSA. Such structural changes, possibly caused by ligand binding, stabilized HSA and explained the heat denature curve shift we observed. In the end, we introduced a novel assay, Iodination Protein Stability Assay (IPSA). IPSA is used to quantify protein quality by measuring protein folding stability. We applied IPSA to human serum, and it is the first in situ study, to our best knowledge, that measure the protein folding stability of proteins from human serum. We confirmed that IPSA is sensitive to measuring the differences in protein folding stability between transferrin's different iron-binding states. Together, this dissertation conveys the importance of adding quality aspects to current quantity-focused research in curing diseases and improving the quality of human life.
|
174 |
Design of New Up-conversion Systems for Anticancer TherapiesAnaya González, Cristina 19 July 2021 (has links)
[ES] El cáncer es una de las principales causas de muerte a nivel mundial. Los tratamientos anticancerígenos generalmente usados tienen diversos efectos secundarios producidos por su baja especificidad. Esta es una de las razones por las que se sigue en continua búsqueda de nuevos tratamientos.
Dentro de estas nuevas investigaciones se encuentra el extenso campo de la nanomedicina, es decir, el estudio de nuevos materiales a escala nanométrica. Esta permite reducir dichos efectos secundarios aumentando la selectividad y especificidad de los tratamientos. Dentro de los nanomateriales se encuentran las nanopartículas de upconversion que son capaces de absorber luz en el infrarrojo cercano y emitirla en la región ultravioleta-visible.
Por otro lado, desde el principio de la historia de la medicina la luz se ha empleado como forma de tratamiento teniendo un rol muy importante. Un inconveniente para dichos tratamientos suele ser la necesidad de emplear luz de la región ultravioleta-visible, pues las biomoléculas son capaces de absorber y produce daño celular.
En este contexto, la presente Tesis Doctoral se centra en el estudio de nuevas formas de tratamiento anticancerígeno combinando nanomedicina y luz. Para ello se han desarrollado nuevos fármacos fototóxicos y nuevos materiales capaces de ser activados mediante luz infrarroja cercana.
En primer lugar, se sintetizaron nuevas fluoroquinolonas para explorar sus propiedades fototóxicas para su uso en fotoquimioterapia (Capítulo 3 de la Tesis). Se estudiaron las características fotofísicas y fotoquímicas de los nuevos compuestos, además de su capacidad para producir mayor fototoxicidad en las células en comparación con las fluoroquinolonas como la lomefloxacina mediante la aplicación de luz ultravioleta.
En base a los resultados obtenidos se realizó un estudio para determinar las diferencias entre las interacciones de algunas fluoroquinolonas dihalogenadas, incluidas las comentadas anteriormente, y biomoléculas como ADN y proteínas. La reactividad de sus intermedios fotogenerados también se estudió en el Capítulo 4.
Tras conocer en profundidad la capacidad fototóxica de los nuevos fármacos, en el Capítulo 5 se llevó a cabo el diseño de un nanosistema compuesto por fluoroquinolonas y nanopartículas de conversión ascendente. Se demostró la alta capacidad fototóxica de este nuevo nanosistema. De esta manera, se generó actividad fototóxica a partir de una fluoroquinolona sin el uso de luz ultravioleta
Por otro lado, la formación de profármacos abre la puerta a la administración selectiva de fármacos contra el cáncer. Los profármacos consisten en la unión fotolábil de una molécula capaz de ser activada por la luz y el fármaco de interés. Sin embargo, un conocimiento profundo de las propiedades fotofísicas y fotoquímicas del fotodisparador y de los potenciales redox de ambos miembros de la diada puede ser crucial para obtener la fotoliberación deseada. Así, en el Capítulo 6, se destacó la relevancia de estos datos utilizando un profármaco formado por un derivado de cumarina como molécula fotoactivable y colchicina como fármaco.
Finalmente, en el Capítulo 7 se exploró la síntesis de un nuevo nanosistema que contiene un profármaco formado por un derivado de cumarina unido al fármaco contra el cáncer clorambucilo y nanopartículas biocomatibles de conversión ascendente. La adición de albúmina de suero humano como recubrimiento de las nanopartículas cumple la doble función de obtener nanopartículas biocompatibles y ser el lugar de carga del profármaco. / [CA] El càncer és una de les principals causes de mort a nivell mundial. Els tractaments anticancerígens generalment usats tenen diversos efectes secundaris produïts per la seva baixa especificitat. Aquesta és una de les raons per les que se segueix en contínua recerca de nous tractaments.
Dins d'aquestes noves investigacions es troba l'extens camp de la nanomedicina, és a dir, l'estudi de nous materials a escala nanomètrica. Aquesta permet reduir aquests efectes secundaris augmentant la selectivitat i especificitat dels tractaments. Dins dels nanomaterials es troben les nanopartícules de upconversion que són capaços d'absorbir llum en l'infraroig proper i emetre-la en la regió ultraviolada-visible.
D'altra banda, des del principi de la història de la medicina la llum s'ha emprat com a forma de tractament tenint un paper molt important. Un inconvenient per aquests tractaments sol ser la necessitat d'emprar llum de la regió ultraviolada-visible, ja que les biomolècules són capaços d'absorbir-la i produïr dany cel·lular.
En aquest context, la present Tesi Doctoral es centra en l'estudi de noves formes de tractament anticancerigen combinant nanomedicina i llum. Per això s'han desenvolupat nous fàrmacs fototòxics i nous materials capaços de ser activats mitjançant llum infraroja propera.
En primer lloc, es van sintetitzar noves fluoroquinolones per explorar les seves propietats fototòxiques per al seu ús en fotoquimioteràpia (Capítol 3 de la Tesi). Es van estudiar les característiques fotofísiques i fotoquímiques dels nous compostos, a més de la seva capacitat per produir major fototoxicitat en les cèl·lules en comparació amb les fluoroquinolones com la lomefloxacina mitjançant l'aplicació de llum ultraviolada.
En base als resultats obtinguts es va realitzar un estudi per determinar les diferències entre les interaccions d'algunes fluoroquinolones dihalogenades, incloses les comentades anteriorment, i biomolècules com ADN i proteïnes. La reactivitat de les seves intermedis fotogenerats també es va estudiar en el Capítol 4.
Després de conèixer en profunditat la capacitat fototòxica dels nous fàrmacs, en el Capítol 5 es va dur a terme el disseny d'un nanosistema compost per fluoroquinolones i nanopartícules de upconversion. Es va demostrar l'alta capacitat fototòxica d'aquest nou nanosistema. D'aquesta manera, es va generar activitat fototòxica a partir d'una fluoroquinolona sense l'ús de llum ultraviolada
D'altra banda, la formació de profàrmacs obre la porta a l'administració selectiva de fàrmacs contra el càncer. Els profàrmacs consisteixen en la unió fotolábil d'una molècula capaç de ser activada per la llum i el fàrmac d'interès. No obstant això, un coneixement profund de les propietats fotofísiques i fotoquímiques del fotodisparador i dels potencials redox de tots dos membres de la diada pot ser crucial per obtenir el fotoalliberament desitjada. Així, en el Capítol 6, es va destacar la rellevància d'aquestes dades utilitzant un profàrmac format per un derivat de cumarina com a molècula fotoactivable i colquicina com a fàrmac.
Finalment, en el Capítol 7 es va explorar la síntesi d'un nou nanosistema que conté un profàrmac format per un derivat de cumarina unit a l'fàrmac contra el càncer clorambucilo i nanopartícules biocomatibles de upconversion. L'addició d'albúmina de sèrum humà com a recobriment de les nanopartícules compleix la doble funció d'obtenir nanopartícules biocompatibles i ser el lloc de càrrega del profàrmac. / [EN] Cancer is one of the leading causes of death worldwide. Generally used anticancer treatments have various side effects produced by their low specificity. This is one of the reasons why the search for new treatments continues.
Within these new investigations is the extensive field of nanomedicine, which can be explained as the study of new materials on a nanometric scale. It can be translated in the reduction of these side effects by increasing the selectivity and specificity of the treatments. Among the nanomaterials are upconversion nanoparticles that are capable of absorbing light in the near infrared and emit it in the ultraviolet-visible region.
On the other hand, since the beginning of the history of medicine, light has been used as a form of treatment, having a very important role. A drawback for such treatments is sometimes the need to use light from the ultraviolet-visible region since biomolecules are capable of absorbing and causing cell damage.
In this context, this Doctoral Thesis focuses on the study of new forms of anticancer treatment combining nanomedicine and light. For this, new phototoxic drugs and new materials capable of being activated by near infrared light have been developed.
First, new fluoroquinolones were synthesized to explore their phototoxic properties for using in photochemotherapy (Chapter 3 of the Thesis). The photophysical and photochemical characteristics of the new compounds were studied, in addition to their ability to produce greater phototoxicity in cells than fluoroquinolones such as lomefloxacin by applying ultraviolet light.
Based on the results obtained, a study was carried out to determine the differences between the interactions of some dihalogenated fluoroquinolones including the above commented, and biomolecules such as DNA and proteins. The reactivity of their photo-generated intermediates was also studied in Chapter 4.
After a deep knowledge of the phototoxic capacity of the new drugs, design of a nanosystem composed of fluoroquinolones and upconversion nanoparticles was carried out in Chapter 5. The high phototoxic capacity of this new nanosystem was demonstrated. In this way phototoxic activity was generated from a fluoroquinolone without the use of ultraviolet light.
On the other hand, the formation of prodrugs opens a door to the selective administration of anticancer drugs. Prodrugs consist of the photolabile binding of a molecule capable of being activated by light and the drug of interest. However, a knowledge of the photophysical and photochemical properties of the phototrigger as well as the redox potentials of both members of the dyad can be crucial to obtain the desired photorelease. Thus, in Chapter 6, the relevance of these data was highlighted using a prodrug formed by a coumarin derivative as a photoactivatable molecule and colchicine as a drug.
Finally, in Chapter 7 the synthesis of a new nanosystem containing a prodrug formed by a derivative of coumarin linked to the anticancer drug chlorambucil, and upconversion biocompatible nanoparticles was explored. The addition of human serum albumin as a coating for the nanoparticles fulfills the dual function of obtaining biocompatible nanoparticles and being the loading site for the prodrug. / Anaya González, C. (2021). Design of New Up-conversion Systems for Anticancer Therapies [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/172665
|
175 |
Surface characterization and functional properties of carbon-based materialsNelson, Geoffrey Winston January 2012 (has links)
Carbon-based materials are poised to be an important class of 21st century materials, for bio-medical, bio-electronic, and bio-sensing applications. Diamond and polymers are two examples of carbon-based materials of high interest to the bio-materials community. Diamond, in its conductive form, can be used as an electrochemical bio-sensor, whilst its nanoparticle form is considered a non-inflammatory platform to deliver drugs or to grow neuronal cells. Polymers, especially when chemically modified, have been used extensively in biological environments, from anti-microbial use to drug delivery. The large-scale use of either material for biological use is limited by two factors: ease of chemical modification and the paucity of knowledge of their surface chemistry in aqueous media. This thesis addresses aspects of both these issues. The first study reported is an in situ study of the adsorption dynamics of an exemplar globular protein (bovine serum albumin, BSA) on nanodiamond using the relatively novel quartz crystal microbalance with dissipation (QCM-D) technique. For the first time, QCM-D enabled the detailed study of protein dynamics (i.e. kinetics, viscoelastic properties, overlayer structure, etc.) onto nanodiamond thin films having various surface chemistry and roughness. The dynamics of protein adsorption is found to be sensitive to surface chemistry at all stages of adsorption, but it is only sensitive to surface roughness during initial adsorption phases. Our understanding of the nanodiamond-biology interface is enhanced by this study, and it suggests that QCM-D is useful for the study of the surface chemistry of nanoparticle forms of inorganic materials. A second study concerns a novel surface functionalization scheme, based on carbene and azo-coupling chemistry, which has been recently introduced as a practical, facile method for modifying the surfaces of polymers. Using modern surface characterization techniques, it is demonstrated that a chemical linker can be attached to polystyrene surfaces using carbene-based chemistry, and that further chemical functionality can be added to this chemical linker via an azo-coupling reaction. In situ studies of protein dynamics at these interfaces were conducted using QCM-D, thus enabling a link between specific protein behaviour and the polymer surface chemical termination chemistry to be made. A third area of study of investigates the use of diamond electrodes as a bio-sensor for dopamine under physiological conditions. For these conditions, ascorbic acid interferes with the dopamine oxidation signal, in ways that render the two signals irresolvable. Various modifications are used in attempts to reduce this interference, including: small and large cathodic treatments, grafting of electro-active polymers, addition of carbon nanotubes, and hydrogen plasma treatment. Those modifications leading to the hydrogen-termination of diamond are shown to work the best. Notably, hydrogen plasma treatment effects the complete electrochemical separation of dopamine and ascorbic acid at a diamond electrode. This is the first time this has been accomplished without adding non-diamond materials to the diamond electrode surface.
|
176 |
Avaliação da atividade anti-glicação de proteína por 4-nerolidilcatecol isolado de Pothormorphe umbellata (L.) Miq. / Evaluation of the protein anti-glycation activity of 4-nerolydilcatechol isolated from Pothomorphe umbellata (L.) Miq.Nakamura, Mary Sanae 07 November 2007 (has links)
A glicação é uma reação não enzimática que ocorre entre proteínas e açúcares redutores e, é responsável pela formação de adultos e de ligações cruzadas entre proteínas, como por exemplo: a pentosidina, produto final de glicação avançada que se acumula em vários tecidos ao longo do tempo. A glicação é deletéria para o organismo e está associada a modificações estruturais em proteínas e alterações de suas funções específicas, tais como: atividade enzimática, capacidade de ligação e tempo de vida de proteínas, além de ser responsável pela produção de espécies reativas de oxigênio (EROS). O mecanismo de formação da pentosidina envolve reações oxidativas e, uma das estratégias para minimizá-Ia é o aumento da atividade antioxidante nos tecidos. A pariparoba (Pothomorphe umbellata (L.) Miq) demonstrou atividade antioxidante in vitro e in vivo quando aplicada sobre a pele. Essa atividade foi atribuída ao 4-nerolidilcatecol (4-NC), que se mostrou 10 vezes mais potente que o α-tocoferol. Os extratos de pariparoba também inibiram a lipoperoxidação espontânea da pele em camundongos sem pelo. Neste trabalho empregou-se o modelo de glicação de albumina de soro bovino (BSA) frente à D-ribose, com avaliação da fluorescência produzida pela pentosidina formada na reação. Avaliou-se igualmente a atividade do 4-NC em diferentes concentrações sobre a reação de glicação da BSA em presença de D-ribose após 24 horas, empregando-se a aminoguanidina como controle positivo. Nas condições experimentais o 4-NC não foi capaz de inibir a reação de glicação, ao contrário da aminoguanidina. Foi também utilizado modelo para avaliação da propriedade contrátil de fibroblastos em matriz tridimensional de gel de colágeno, glicado e não glicado com D-ribose. O 4-NC na concentração de 100 µM permitiu a manutenção da propriedade contrátil de fibroblastos em gel colágeno glicado. Estudos de glicação em maiores períodos de tempo devem ser realizados visando a confirmar a possível atividade anti-glicação deste composto. / Glycation is a non enzymatic reaction which occurs between proteins and reductor sugars, responsible for the formation of adducts and crosslinkers between proteins, such as, pentosidine, an advanced glycation end-product (AGE) which accumulates in many tissues during aging. AGEs accumulation is deleterious to the body and is associated with structural modifications in proteins and imbalance in their specific functions, such as: enzymatic activity, binding capacity, protein turnover and also responsible for the production of reactive oxygen species (ROS). The mechanism of pentosidine formation involves oxidative reactions. One of the strategies to reduce pentosidine formation is by increasing antioxidant activity in tissues. Pariparoba (Pothomorphe umbellata (L.) Miq. has showed antioxidant activity in vitro and in vivo when applied on the skin. This activity was attributed to 4-nerolydilcatechol (4-NC), which is 10 times more potent than α-tocopherol. Extracts of Pariparoba also inhibited the spontaneous lipid peroxidation in the skin of hairless mice. In this work, the bovine serum albumin (BSA) model for glycation with D-ribose, evaluated by pentosidine fluorescence spectroscopy was employed. The activity of 4¬NC was evaluated in different concentrations in this model after 24 hours. Aminoguanidine was used as positive control. In this experimental condition, 4-NC was not capable to inhibit the BSA glycation. We also evaluated the contractile properties of fibroblasts on tridimensional matriz of collagen gel glycated or not with D-ribose. 4-NC (100 µM) was able to keep the contractile capacity of fibroblasts in glycated collagen. Studies of glycation in longer periods of time should be made in order to further evaluate the possible anti-glycation activity of this compound.
|
177 |
Improved techniques for CE and MALDI-MS including microfluidic hyphenations foranalysis of biomoleculesJacksén, Johan January 2011 (has links)
In this thesis, improved techniques for biomolecule analysis using capillary electrophoresis (CE) and matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) and hyphenations between those have been presented.A pre-concentration method which is possible to apply in both techniques, has also been investigated. In this work the off-line MS mode has been used either in the form of fractionation (Paper I) or by incorporating the MALDI target in the CE separation system (Paper II).In Paper I, a protocol for CE-MALDI analysis of cyanogen bromide digested bacteriorhodopsin (BR) peptides as model integral membrane protein peptides were established. Also, an improved protocol for partially automated manufacturing of a concentration MALDI-target plate is presented. The design of the targets was suitable for the fractions from the CE. A novel technique for the integration of CE to MALDI-MS using a closed-open-closed system is presented in Paper II, where the open part is a micro canal functioning as a MALDI target window. A protein separation was obtained and detected with MALDI-MS analysis in the micro canal. A method has been developed for detection of monosaccharides originating from hydrolysis of a single wood fiber performed in a micro channel, with an incorporated electromigration pre-concentration step preceding CE analysis in Paper III. The pre-concentration showed to be highly complex due to the fact that several parameters are included that affecting each other. In Paper IV a protocol using enzymatic digestion, MALDI-TOF-MS and CE with laser induced fluorescence (LIF) detection for the investigation of the degree of substitution of fluorescein isothiocyanate (FITC) to bovine serum albumin (BSA), as a contact allergen model system for protein-hapten binding in the skin, is presented. The intention of a further CE-MALDI hyphenation has been considered during the work. In Paper V 2,6-dihydroxyacetophenone (DHAP) was investigated, showing promising MALDI-MS matrix properties for hydrophobic proteins and peptides. 2,5-dihydroxybenzoic acid (DHB) was undoubtedly the better matrix for the hydrophilic proteins, but its performance for the larger and hydrophobic peptides was not optimal. Consequently, DHAP can be used as a compliment matrix for improved analysis of hydrophobic analytes. / QC 20101214
|
178 |
Über die Bedeutung der Zugabe von humanem Serum-Albumin zu exogenen GLP-1-Infusionen am Beispiel der Antagonisierbarkeit des GLP-1 [7-36-Amid]-Einflusses auf die erste Phase der Insulin-Sekretion nach intravenöser Glukosegabe durch den GLP-1-Rezeptor-Antagonisten Exendin [9-39] bei gesunden Menschen / About the importance of the addition of human serum albumin to exogenous GLP-1 infusion on the example of Antagonized the GLP-1 [7-36 amide] influence on the first phase insulin secretion after intravenous administration of glucose by the GLP-1 receptor antagonist Exendin [9-39] in healthy humansKöthe, Lars Dietrich 11 October 2011 (has links)
No description available.
|
179 |
[en] A COMPUTATIONAL APPROACH TO THE STRUCTURE AND DYNAMICS OF HUMAN SERUM ALBUMIN: EFFECTS OF THE HEME / [pt] UMA ABORDAGEM COMPUTACIONAL DA ESTRUTURA E DINÂMICA DA ALBUMINA SÉRICA HUMANA: EFEITOS DO HEMETEOBALDO RICARDO CUYA GUIZADO 18 July 2018 (has links)
[pt] As doenças trasmitidas pelo sangue, assim como a necessidade de bancos de sangue para um pronto auxílio em casos de acidentes tem estimulado esforços para desenvolver substitutos do sangue. A albumina serica humana (HSA do ingles Human Serum Albumin) é a proteína mais abundante no plasma sanguíneo. A molécula heme é a transportadora de oxigênio no sangue. Portanto, um estudo detalhado da interação HSA/heme seria útil em pesquisas que visam tornar o complexo HSA-heme em um substituto do sangue. Nesta tese, foram usadas técnicas de dinâmica molecular e ferramentas estatísticas para estudar o sistema HSA-heme em solvente explícito. Tanto o ligante quanto a proteína foram também estudados separadamente em meio aquoso. Dentre outros resultados, nosso estudo revelou a organização da água circundante, os efeitos da ligação do heme na HSA, os mecanismos moleculares da ligação
do heme, os movimentos coletivos da proteína livre e ligada, assim como também os aminoácidos que atuam como dobradiças moleculares na mudança conformacional que sofre a proteína ao ligar o heme. / [en] Diseases transmitted through the blood, as well as the need for blood banks to help in case of accidents, stimulated efforts to develop blood substitutes. The human serum albumin (HSA) is the most abundant protein in blood plasma. The heme molecule is the carrier of oxygen in the blood. Therefore, a detailed study of the interaction HSA/heme could give useful insights in the research aimed to convert the HSA-heme complex into a blood substitute. In this thesis, molecular dynamics techniques and statistical tools were applied to study the HSA-heme system in explicit solvent. Both ligand and protein were also studied separately in aqueous medium. Among other results, our study reveals the organization of the surrounding water, the effects of the heme upon its binding to HSA, the molecular mechanisms for heme binding, the collective motions of the protein with and without the heme, as well as the amino acids that act as molecular hinges in the conformational change between the free and bound forms of the protein.
|
180 |
Study on Self-Assembly of Fullerenes and BiopolymersMohanta, Vaishakhi January 2015 (has links) (PDF)
The understanding of self-assembly processes is important for fabrication of well-defined structures with new functionalities for applications in the area of biomedical sciences, material sciences and electronics. In this thesis, two types of self-assembly processes are described: (1) self-assembly of fullerene derivatives in water and (2) self-assembly on surfaces using layer-by-layer (LbL) approach. The various interactions and parameters involved in the self-assembly are detailed in the introductory chapter 1. The various internal parameters like molecular geometry, intramolecular and intermolecular forces that guides the self-assembly process of amphiphiles in water are discussed. The experimental procedures used in the present thesis for the fabrication of nanostructures via self-assembly approach are also described. In the later part of the chapter, the LbL technique for fabrication of thin films and microcapsules is reviewed where various interactions involved in the growth of LbL assembly are discussed. The effect of ionic strength and pH on the growth and property of LbL assemblies is elaborated. A brief discussion of the materials used in the thesis ‒ fullerene, bovine serum albumin (BSA) and nanocrystalline cellulose (NCC) is also provided
The self-assembly behaviour of amphiphilic fullerene derivatives are described in chapter 2. Fullerene is anisotropically substituted with five polar hydroxyl groups using organo-copper reagent. The derivative can interact in water via the van der Waals and hydrophobic interactions of the fullerene moiety as well as the intermolecular hydrogen bonding among the hydroxyl groups and also with water. The penta-hydroxy fullerene derivative self-assembles in water as vesicular structures. The size of these vesicles can be varied by modifying the kinetics of self-assembly which was done by changing the rate of addition of non-solvent (water) to the solution of the fullerene derivative. In the second derivative, the hydroxyl groups are substituted with less polar methoxy groups. The penta-methoxy fullerene derivative cannot participate in inter-molecular hydrogen bonding formation unlike the penta-hydroxy derivative but there is possibility of hydrogen bond formation with water where oxygens on methoxy group can act as hydrogen bond acceptor. The penta-methoxy fullerene does not show any vesicle formation in water. The computational simulation studies were carried out on the two fullerene derivatives to understand the self-assembly behaviour of these two derivatives. Furthermore, the vesicle structures formed by the penta-hydroxy fullerene derivative are
used for entrapment of hydrophobic polymer, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and also hydrophilic dye, Rhodamine B. In both the cases, fluorescence quenching is observed due to electron transfer reaction with fullerene and hence these fullerene vesicles can be used to study the effect of confinement on electron transfer reactions and other chemical dynamics.
The layer-by-layer self-assembly approach for the fabrication of biopolymeric thin films and microcapsules is discussed in the chapters 3 to 6. The biocompatible nanoparticles and nanofibers were used as the components of the assembly.
In chapter 3, we have described fabrication of thin film of bovine serum albumin (BSA) nanoparticles via LbL approach using biopolymer chitosan as the complementary polymer. The driving force for the assembly growth of the assembly was the electrostatic and complementary hydrogen bond formation between the two components. The idea of incorporating nanoparticles in the thin film was that the nanoparticles can act as reservoirs for functional materials. The films were loaded with anticancer drug doxorubicin and show pH dependent release of the drug.
The various interactions involved in the LbL assembly of BSA nanoparticles and polymers were investigated towards understanding the growth mechanism of the assembly in chapter 4. The understanding of the interactions involved in the assembly formation is important in order to modify the conditions of the assembly for enhancing the growth. It is inferred from the study reported in this chapter that not only the interaction of nanoparticles with polymers but also the inter-particle interactions are important factors in determining the growth of LbL assembly of nanoparticles/polymers. The growth of the assembly is enhanced on minimizing the inter-particle repulsions, which was achieved in case of BSA nanoparticles by modifying the pH of the assembly.
We also utilized the LbL self-assembly approach for the delivery of lipophilic drugs. The lipophilic drugs are difficult to administer in the body due to their poor water solubility and hence show poor pharmacokinetic profile. The methods for incorporating hydrophobic drugs in LbL assembled thin films and microcapsules are described in chapters 5 and 6.
In chapter 5, hydrophobic molecules binding property of albumin has been exploited for solubilisation of a water-insoluble molecule, pyrene (model drug) and hydrophobic drug, curcumin, by preparation of non-covalent conjugates with BSA. The interaction with BSA provided negative zeta potential to the previously uncharged molecules and hence they can be incorporated in the LbL assembled thin films and microcapsules using electrostatic as well as hydrogen bonding interaction with biopolymer, chitosan. The fabrication of protein encapsulated stable microcapsules with hydrophobic molecules incorporated in the shell of the microcapsules has also been demonstrated. The microcapsules were further capable of loading hydrophilic molecules like Rhodamine B. Thus, this approach can be employed for fabrication of multi-agent carrier for hydrophobic and hydrophilic drugs as well as therapeutic macromolecules.
In chapter 6, we have incorporated nanocrystalline cellulose (NCC) LbL assembled thin films and microcapsules. The assembly formed was porous in nature due to the nano-fibrous morphology of NCC. The nanoassemblies can act as potential drug delivery carrier, which has been demonstrated by loading anticancer drug doxorubicin, and a lipophilic drug, curcumin. Doxorubicin hydrochloride, the salt form of the drug, doxorubicin, has good water solubility and hence can be postloaded in the assembly by diffusion from its aqueous solution. In the case of curcumin, which has limited solubility in water, a stable aqueous dispersion of the drug was prepared via noncovalent interaction with NCC prior to incorporation in the LbL assembly. The interaction of various other lipophilic drugs with NCC was analysed computationally.
|
Page generated in 0.0635 seconds