• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 87
  • 20
  • 7
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 142
  • 92
  • 92
  • 81
  • 80
  • 79
  • 79
  • 78
  • 77
  • 44
  • 44
  • 36
  • 36
  • 34
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

HUMAN-INDUCED VERTICAL VIBRATION ON PEDESTRIAN STRUCTURES: NUMERICAL AND EXPERIMENTAL ASSESSMENT

Daniel Gomez Pizano (6865232) 02 August 2019 (has links)
In recent years civil engineering structures such as floors, footbridges, and staircases, have reported unacceptable vibration when they are dynamically excited by pedestrians. When such structures have a particular combination of high structural flexibility and low inherent damping, there is potential for excessive vibration. Pedestrian-structure interaction (PSI) is especially noticeable when the lowest structural natural frequencies are close to the dominant pedestrian pace frequency or its harmonics. Although most of these structures are designed according to existing standards and guidelines, there are still many uncertainties in the human actions that may lead to unexpected structural behavior, increasing the vibration responses and exceeding serviceability limit states. How a pedestrian excites a structure and how that structure affects a pedestrian's gait is not fully understood. Therefore, a realistic analysis of PSI must be performed to properly incorporate these effects toward more rational structural designs. This study aims to identify, within this class of the walking-induced load problem, the vibration mechanisms, the mathematical models, and methods, to address excessive vibration in pedestrian structures. After conducting an in-depth evaluation of current guidelines and provisions for analysis and design of pedestrian structures, models to enable more realistic design under such uncertainties have been developed. The results establish a body of knowledge regarding human loads and structural responses, yielding the potential for more rational approaches to improve the analysis and design of pedestrian structures.
12

Footfall excitation of higher modes of vibration in low-frequency building floors

Al-Anbaki, Atheer Faisal Hameed January 2018 (has links)
This thesis investigates the footfall excitation of higher modes of vibration in low-frequency floor structures. This is motivated by the increased number of floors reportedly failing to meet the required occupants comfort level although being designed in accordance with the current state-of-the-art design guidelines. In particular modern, lightweight, and slender floor structures. The contribution to knowledge of this thesis can be summarised as: quantifying the signal energy of measured walking forces within and above the natural frequency cut-off proposed by the current state-of-the-art design guidelines; quantifying the contribution of higher modes of vibration to the overall response of low-frequency floors to human walking; propose measures to judge the response nature of low-frequency floors, these are the relevant change of the point stiffness and the shape of frequency response functions; proposing a frequency-domain approach that enables designers to include higher modes of vibration in the design against human-induced vibration. It was found that the signal energy of walking forces is distributed well beyond the natural frequency cut-off proposed by the current state-of-the-art design guidelines. Also, the contribution of localised, higher, modes of vibration to the overall response of ultra-lightweight floors was significant. Moreover, it was found that higher modes affect the response of floors of various construction types in one way or another. Hence, it was recommended to consider their contribution in the design of floors against human-induced vibration. Also, it was found that the higher the relative change of the point stiffness the more higher modes contribute to the overall response of floors. Finally, the frequency-domain analysis was found less expensive than time-domain analysis and could result in similarly useful information.
13

Shear cracks in concrete structures subjected to in-plane stresses

Malm, Richard January 2006 (has links)
<p>After only two years of service, extensive cracking was found in the webs of two light-rail commuter line bridges in Stockholm, the Gröndal and Alvik bridges. Due to this incident it was found necessary to study the means available for analysing shear cracking in concrete structures subjected to in-plane stresses. The aim of this PhD project is to study shear cracking with these two bridges as reference. In this thesis, the first part aims to study the possibility of using finite element analysis as a tool for predicting shear cracking for plane state stresses. The second part is concerning how the shear cracks are treated in the concrete design standards.</p><p>Shear cracking in reinforced beams has been studied with non-linear finite element analyses. In these analyses the shear cracking behaviour was compared to experiments conducted to analyse the shear failure behaviour. Finite element analyses were performed with two different FE programs Abaqus and Atena. The material model used in Atena is a smeared crack model based on damage and fracture theory with either fixed or rotated crack direction. The material model used in Abaqus is based on plasticity and damage theory. The fixed crack model in Atena and the model in Abaqus gave good results for all studied beams. For the two studied deep beams with flanges the results from the rotated crack model were almost the same as obtained with the fixed crack model. The rotated crack model in Atena gave though for some beams a rather poor estimation of the behaviour.</p><p>The calculation of crack widths of shear cracks has been studied for the long-term load case in the serviceability state for the Gröndal and Alvik bridges, with the means available in the design standards. The methods based on the crack direction corresponding to the principal stress and do not include the effect of aggregate interlocking seems to be too conservative. Two of the studied methods included the effect of aggregate interlocking, it was made either by introducing stresses in the crack plane or implicitly by changing the direction of the crack so that it no longer coincide with the direction of principal stress. For calculations based on probable load conditions, these methods gave estimations of the crack widths that were close to the ones observed at the bridges. Continuous measurements of cracks at the Gröndal and the Alvik bridges have also been included. Monitoring revealed that the strengthening work with post-tensioned tendons has, so far, been successful. It also revealed that the crack width variations after strengthening are mainly temperature dependent where the daily temperature variation creates movements ten times greater than those from a passing light-rail vehicle. Monitoring a crack between the top flange and the webs on the Gröndal Bridge showed that the top flange was moving in a longitudinal direction relative to the web until the strengthening was completed. The crack widths in the sections strengthened solely by carbon fibre laminates seem to increase due to long-term effects.</p>
14

Strut-and-tie model design examples for bridge

Williams, Christopher Scott 16 February 2012 (has links)
Strut-and-tie modeling (STM) is a versatile, lower-bound (i.e. conservative) design method for reinforced concrete structural components. Uncertainty expressed by engineers related to the implementation of existing STM code specifications as well as a growing inventory of distressed in-service bent caps exhibiting diagonal cracking was the impetus for the Texas Department of Transportation (TxDOT) to fund research project 0-5253, D-Region Strength and Serviceability Design, and the current implementation project (5-5253-01). As part of these projects, simple, accurate STM specifications were developed. This thesis acts as a guidebook for application of the proposed specifications and is intended to clarify any remaining uncertainties associated with strut-and-tie modeling. A series of five detailed design examples feature the application of the STM specifications. A brief overview of each design example is provided below. The examples are prefaced with a review of the theoretical background and fundamental design process of STM (Chapter 2). • Example 1: Five-Column Bent Cap of a Skewed Bridge - This design example serves as an introduction to the application of STM. Challenges are introduced by the bridge’s skew and complicated loading pattern. A clear procedure for defining relatively complex nodal geometries is presented. • Example 2: Cantilever Bent Cap - A strut-and-tie model is developed to represent the flow of forces around a frame corner subjected to closing loads. The design and detailing of a curved-bar node at the outside of the frame corner is described. • Example 3a: Inverted-T Straddle Bent Cap (Moment Frame) - An inverted-T straddle bent cap is modeled as a component within a moment frame. Bottom-chord (ledge) loading of the inverted-T necessitates the use of local STMs to model the flow of forces through the bent cap’s cross section. • Example 3b: Inverted-T Straddle Bent Cap (Simply Supported) - The inverted-T bent cap of Example 3a is designed as a member that is simply supported at the columns. • Example 4: Drilled-Shaft Footing - Three-dimensional STMs are developed to properly model the flow of forces through a deep drilled-shaft footing. Two unique load cases are considered to familiarize the designer with the development of such models. / text
15

Design of reinforced concrete inverted-T beams for strength and serviceability

Larson, Nancy Anne, 1986- 23 September 2013 (has links)
Significant diagonal cracking in reinforced concrete inverted-T straddle bent caps has been reported throughout the State of Texas. Many of the distressed structures were recently constructed and all have been in service for less than two decades. The unique nature of the problem prompted a more detailed look into the design and behavior of such structural components. Strut-and-tie modeling is currently recommended for design of deep (rectangular) beams, but its application to more complex structures has not been fully explored. Due to concerns with current design provisions the application of strut-and-tie modeling to inverted-T beams was investigated along with serviceability-related considerations in this dissertation. An experimental study was conducted in which thirty-three reinforced concrete inverted-T beam tests were conducted. The effects of the following variables were evaluated: ledge depth and length, quantity of web reinforcement, number of point loads, member depth, and shear span-to-depth ratio. A strut-and-tie design method proposed by Birrcher et. al (2009), initially calibrated for compression-chord loaded deep beams, was investigated. It was concluded that the strut-and-tie method was a simple and accurate design method, and it was recommended for use in inverted-T beam design. A vi recommendation was also made for the amount of minimum web reinforcement needed for strength and serviceability considerations. A simple service-load check was proposed for the purpose of limiting diagonal cracking under service loads. Finally, a chart was created to aid in the evaluation of distressed, diagonally-cracked inverted-T bent caps in the field. / text
16

RAS enhancements for RDMA communications

Cardona, Omar 21 February 2011 (has links)
Ethernet as the communication medium in the enterprise data center has outlived all competing mediums and resisted the test of time with regards to speed and costs. The future is also poised for growth with 40 and 100Gps speeds just over horizon. The current state of the technology is being enhanced and extended with lossless features to allow for fabric convergence of Storage and Inter Process Communication (IPC) Networks. It is under this medium that an increase in the adoption of Remote Direct Memory Access (RDMA) over Ethernet using offloaded TCP/IP (iWARP) and Infiniband over Ethernet (RoCE) communication stacks to RDMA capable NIC adapter s (RNIC) is observed. RDMA enables direct application to application communication over the network resulting in numerous and significant benefits such as reduced CPU utilization, lower latency communications, increased energy efficiency, and reduced overall system requirements. However, with said benefits also comes increased software complexity in how RDMA interface users communicate. The RDMA communication semantics, which originate from the HPC domain, are heavily biased towards Low-Latency and High-Bandwidth communications rather than Reliability, Availability, and Serviceability (RAS). As adoption increases, and enterprise data centers begins to leverage RDMA over Ethernet, enhancements to the OS stack software architecture and design of the components involved is required to address these deficiencies. Operating system interfaces, device drivers, adapter hardware design, and embedded firmware features must be viewed from a high-availability and maintainability point of view. RAS enhancements for RDMA communications proposes the software architectural tradeoffs for enhancing the iWARP and RoCE RDMA implementations for communications in the enterprise data center, with new and traditional RAS features for existing communications stacks and devices. The architecture leverages software enhancements in traceability, availability, maintainability, serviceability, fault-isolation and resource management; such that in the advent of errors, the probability that the forensics data points to identify root cause are immediately and automatically available is increased. / text
17

En brukbarhetsanalys av avancerad fastighetsautomation under förvaltningsskedet / An analysis of the serviceability of advanced Building Automation during the management stage

Esselin, Frida, Selimovic, Seherzada January 2015 (has links)
Avancerad fastighetsautomation intog marknaden under 2000-talets första år. Visionen var att skapa smarta byggnader där fastighetsövervakning, klimatstyrning och belysning sammankopplades mot en central huvuddator för att eliminera manuell styrning. Syftet med examensarbetet är att undersöka funktionalitet och reell brukbarhet hos ett av de första installationsobjekten, PostNords huvudkontor. Rapporten presenterar fastighetens övergripande funktioner samt analyserar hur systemstyrningen kan optimeras för bättre lönsamhet respektive komfort. Exemplifieringen påvisar generella risker och potential med avancerade styrsystem i förvaltningsskedet. Arbetet har begränsat sig till fastighetens kontorsytor som stället högst krav på inomhusklimat och användarvänlighet. För att nå uppsatt mål har litteraturstudier, intervjuer, egna observationer samt en genomgång av fastighetsdokumentation genomförts. Resultatet visar att den höga teknikgraden gjort förvaltarna beroende av inhyrd spetskompetens. Det avancerade språket har försvårat kommunikationen mellan parterna vilket begränsat möjligheten att optimera systemet. Förbättring av inomhusklimat och energiprestanda kan först ske när man förstår en helhet. Förvaltarna borde tillsätta en samlad kartläggning av hela systemet istället för att experimentera med ytterligare ny teknik. / Advanced building automation reached the market in the early 2000s. The vision was to create smart buildings where property surveillance, climate control and lightning where to be linked through a main computer to eliminate manual control. The purpose with this thesis is to investigate the functionality and real serviceability of one of the first objects of installation, the PostNord headquarters. This thesis presents the overall features of the real estate and also analyses how the control system can be optimized for higher profitability and comfort. The exemplification shows general risks and potential with advanced control systems in real estate management. This work is limited to the real estates office spaces that demand the highest standards of indoor environment and convenience. To reach set goal, studies of literature, interviews, observations and reviews of property documentation have been executed. The result shows that a high level of technical complexity has made the property managers dependent on hiring expert consultants. The advanced use of language has made the communication between the parts difficult, which has limited the opportunity to optimize the system. Improvement of indoor climate and energy efficiency can only be reached when the entire case is grasped. The real estate managers should start a complete mapping of the system instead of experimenting with additional technology.
18

Rational Procedure for Damage Based Serviceability Design of Steel Buildings Under Wind Loads and a Simple Linear Response History Procedure for Building Codes

Aswegan, Kevin Paul 30 August 2013 (has links)
This thesis is divided into two topics: the development of a procedure for wind serviceability design of steel buildings and the development of a simple linear response history analysis for building codes. In the United States the building codes are generally silent on the issue of serviceability. This has led to a wide variation in design practices related to service level wind loads. Chapter 2 of this thesis contains a literature review which discusses pertinent aspects of wind drift serviceability, including selecting the mean recurrence interval (MRI), mathematical modeling of the structure, and establishment of rational deformation limits. Chapter 3 contains a journal article submitted to Engineering Journal which describes the recommended procedure for damage based wind serviceability design of steel structures. The procedure uses a broad range of MRIs, bases damage measurement on shear strains, includes all sources of deformation in the model, and bases deformation limits on fragility curves. Chapter 4 of this thesis contains a literature review which examines issues related to performing linear response history analysis. Chapter 5 contains a conference paper submitted to the Tenth U.S. National Conference on Earthquake Engineering which serves as a position paper promoting the inclusion of a linear response history analysis procedure in future editions of the NEHRP Recommended Seismic Provisions and ASCE 7. The procedure address the following issues: selection and scaling of ground motions, the use of spectral matched ground motions, design for dependent actions, and the scaling of responses with the response modification coefficient (R) and the deflection amplification factor (Cd). / Master of Science
19

Resilience Quantification Approaches of Low Impact Development (LID) Practices Using Analytical and Continuous Simulation Models / Resilience Quantification of Low Impact Development (LID) Practices

Islam, Arpita January 2022 (has links)
Implementing optimal Low Impact Development (LID) practices has grown in popularity as a means of mitigating the adverse effects of urbanization and climate change. As such incorporating aspects of resilience for optimal LID design has become paramount. This study focuses on identifying the current LID optimization strategies and associated research gaps as well as assessing whether a quantitative approach to measure LID resilience exists. To do so, a systematic and bibliometric literature review on LIDs optimization and resilience is first conducted, based on which resilience, climate change, and uncertainty are recognised as hotspot keywords. The review also showed that no LID resilience quantification technique was available. Based on the latter outcome and to facilitate LID’s optimal design in future, this research proposes a new resilience quantification approach of LID by developing set of equations using Analytical Probabilistic Approach (APA) and continuous simulation approach using SWMM. The equations consider LID’s functionality and assess resilience using three indices: robustness, rapidity and serviceability. A new overall resilience index (the product of robustness and serviceability) and reliability index (the product of volumetric, occurrence, and temporal reliability) are proposed using different area ratios between contributing catchment and LID area to assure a resilient and safe LID system. LID costing tool of the Sustainable Technologies Evaluation Program (STEP) is subsequently utilized to estimate the capital cost of LID. Finally, a user-oriented design guideline is proposed for a cost-effective, resilient, and reliable LID system. Although this study adopts bioretention (BR) as a demonstration of the approach utility, the developed approach is applicable to any form of LID practices. / Thesis / Master of Applied Science (MASc) / There is a critical need to develop and implement optimal low-impact development (LID) practices in the field of stormwater management to mitigate the adverse effects of urbanization and climate change. This thesis is focused on developing quantitative resilient measurement approach of LID designs. A comprehensive literature review is first carried out, focusing on identifying various optimization methodologies, relevant gaps, and resilience assessment techniques. Subsequently, a novel resilience evaluation approach is developed, using bioretention (BR). By constructing a new reliability index, the entire BR system's reliability can also be assessed. Finally, a cost-effective, resilient and reliable design guideline for BR system is proposed. Although bioretention (BR) is used as an example in this study, the developed approach opens the gate to quantify the resilience of all types of LID practices.
20

Shear cracks in concrete structures subjected to in-plane stresses

Malm, Richard January 2006 (has links)
After only two years of service, extensive cracking was found in the webs of two light-rail commuter line bridges in Stockholm, the Gröndal and Alvik bridges. Due to this incident it was found necessary to study the means available for analysing shear cracking in concrete structures subjected to in-plane stresses. The aim of this PhD project is to study shear cracking with these two bridges as reference. In this thesis, the first part aims to study the possibility of using finite element analysis as a tool for predicting shear cracking for plane state stresses. The second part is concerning how the shear cracks are treated in the concrete design standards. Shear cracking in reinforced beams has been studied with non-linear finite element analyses. In these analyses the shear cracking behaviour was compared to experiments conducted to analyse the shear failure behaviour. Finite element analyses were performed with two different FE programs Abaqus and Atena. The material model used in Atena is a smeared crack model based on damage and fracture theory with either fixed or rotated crack direction. The material model used in Abaqus is based on plasticity and damage theory. The fixed crack model in Atena and the model in Abaqus gave good results for all studied beams. For the two studied deep beams with flanges the results from the rotated crack model were almost the same as obtained with the fixed crack model. The rotated crack model in Atena gave though for some beams a rather poor estimation of the behaviour. The calculation of crack widths of shear cracks has been studied for the long-term load case in the serviceability state for the Gröndal and Alvik bridges, with the means available in the design standards. The methods based on the crack direction corresponding to the principal stress and do not include the effect of aggregate interlocking seems to be too conservative. Two of the studied methods included the effect of aggregate interlocking, it was made either by introducing stresses in the crack plane or implicitly by changing the direction of the crack so that it no longer coincide with the direction of principal stress. For calculations based on probable load conditions, these methods gave estimations of the crack widths that were close to the ones observed at the bridges. Continuous measurements of cracks at the Gröndal and the Alvik bridges have also been included. Monitoring revealed that the strengthening work with post-tensioned tendons has, so far, been successful. It also revealed that the crack width variations after strengthening are mainly temperature dependent where the daily temperature variation creates movements ten times greater than those from a passing light-rail vehicle. Monitoring a crack between the top flange and the webs on the Gröndal Bridge showed that the top flange was moving in a longitudinal direction relative to the web until the strengthening was completed. The crack widths in the sections strengthened solely by carbon fibre laminates seem to increase due to long-term effects. / QC 20101119

Page generated in 0.0695 seconds