Spelling suggestions: "subject:"shigella."" "subject:"shigellae.""
121 |
Étude descriptive de la consommation et de la contamination bactérienne de gibier en zone urbaine au GabonBachand, Nicholas 11 1900 (has links)
Une exposition aux viandes comporte un risque pour la santé, et les maladies transmises par ces viandes causent un fardeau important mondialement. En Afrique centrale, le gibier est une viande communément consommée en zone urbaine. L’absence d’information sur le niveau de consommation de gibier, ainsi que sur sa contamination, limite l’évaluation des risques sanitaires associés au gibier. Une étude transversale a visé la description du niveau de consommation des viandes parmi 205 ménages de Port-Gentil (Gabon), ainsi que certains déterminants de la consommation de ces viandes. Une seconde étude transversale a quantifié la contamination musculaire de gibier vendu à Port-Gentil par Salmonella, Campylobacter et Shigella. Sur une base de trois jours, 86% des ménages ont consommé de la volaille, 84% du poisson, 44% du bœuf, 25% du porc et 24% du gibier. La consommation de gibier fut plus fréquente le dimanche et parmi les ménages à revenu élevé. Le gibier fut principalement acquis en carcasse entière sans conservation particulière, mais toujours consommé bouilli. Des trois bactéries ciblées, seule Salmonella a été isolée parmi un de 128 échantillons de gibier. Ces études fournissent des informations utiles pour mieux comprendre les facteurs de risque pour la santé associés à la consommation de viandes au Gabon. Des études sur la contamination des viandes, notamment celles des carcasses de gibier, seront nécessaires pour mieux apprécier les risques spécifiques à chaque différente bactérie pathogène. / Meat poses some risks to human health and meat-borne diseases constitute a high burden worldwide. In central Africa, bushmeat is commonly consumed in the urban setting. A lack of information on bushmeat consumption and contamination limits the evaluation of risks to human health linked to bushmeat. A cross-sectional survey was conducted among 205 households of Port-Gentil (Gabon) to quantify relative consumption levels of different meat types and to explore certain determinants of meat consumption. A separate cross-sectional study aimed to determine the prevalence of Campylobacter, Salmonella and Shigella within bushmeat sold in markets of Port-Gentil. Based on a three-day recall period, 86% of household consumed poultry compared to 84% for fish, 44% for beef, 25% for pork and 24% for bushmeat. Bushmeat consumption was more important on Sundays and within high monthly income households. Most bushmeat was acquired as whole carcasses without formal meat conservation methods, but all bushmeat was boiled prior to consumption. One Salmonella was detected among one of 128 bushmeat samples, whereas no Campylobacter or Shigella were detected. This study provides useful information to help better understand risk factors associated with the consumption of bushmeat in Gabon. Further studies on bacterial contamination of meat, including bushmeat carcasses, are required to better understand potential health risks specific to different bacterial pathogens.
|
122 |
Estudo da invasão de hepatócitos de rato por Shigella flexneri: análise da influência da hipóxia sobre a injúria celular / Study of rat hepatocytes invasion by Shigella flexneri: analysis of hypoxia influence on cellular injuryCamila Bárbara Cantalupo Lima 07 February 2012 (has links)
O presente estudo avaliou a capacidade de invasão de hepatócitos de rato por Shigella flexneri (S. flexneri) nas condições de normóxia e hipóxia. O estudo do microambiente de hipóxia tem grande importância, por estar presente em muitas doenças hepáticas, além de aumentar a translocação quando presente no lúmen intestinal. Bactérias invasivas como S. flexneri podem romper a barreira intestinal e chegar ao fígado através da circulação portal. O efeito da invasão bacteriana das células hepáticas é pouco conhecido. Neste trabalho buscamos pesquisar as alterações morfológicas e funcionais de hepatócitos de rato após infecção por S. flexneri na presença e na ausência de hipóxia. Para esta finalidade foram utilizados hepatócitos de rato cultivados pela técnica de cultura primária. Vários parâmetros foram analisados, tais como: taxa de invasão celular pela bactéria, quantificação da produção e liberação de DHL, produção de TNF-, taxa de morte celular por apoptose e a expressão do fator de transcrição HIF-1a. Os resultados mostraram que a metodologia empregada para a obtenção do microambiente hipóxico foi satisfatória, com redução de 70% da pO2 inicial (atingindo 43.2 mmHg in vitro ou 6.5% O2). A invasão de hepatócitos de rato por S. flexneri foi menor nas células previamente expostas à hipóxia quando comparada com a invasão das células cultivadas em normóxia. A viabilidade dos hepatócitos não apresentou diferenças significativas entre os grupos experimentais, variando entre 74 e 86%. A liberação de TNF- nas situações de normóxia e hipóxia foi similar, embora as células infectadas em normóxia tenham aumentado a liberação desta citocina. Na condição de hipóxia + infecção a liberação de TNF- foi menor do que na condição de normóxia + infecção, porém ambos os grupos produziram aumento significativo da citocina em relação aos controles normóxicos e hipóxicos. Este resultado sugere que a presença da bactéria no interior das células aumenta significativamente a liberação de TNF-pelos hepatócitos. A produção de DHL também foi maior de forma significativa no grupo hipóxico em relação ao grupo normóxico, porém não apresentou alteração nos grupos infectados por S. flexneri após uma hora. As taxas de apoptose aumentaram nos grupos hipóxia e nos grupos infectados com S. flexneri de maneira similar, variando entre 24 e 31%, quando comparados aos grupos controle em normóxia. A expressão do fator de transcrição HIF ocorreu nos grupos: hipóxia, normóxia + infecção e hipóxia + infecção, evidenciando que a infecção por S. flexneri induz a expressão deste fator. Em seu conjunto, nossos resultados buscam contribuir para o maior conhecimento da interação entre S. flexneri e hepatócitos em condição de hipóxia e normóxia. Tal conhecimento poderá ser útil na construção de futuras estratégias para auxiliar no combate a esta importante bactéria invasiva, principalmente nos casos de septicemia / This study evaluated the invasiveness of rat hepatocytes by Shigella flexneri (S. flexneri) in normoxia and hypoxia conditions. The study of hypoxia microenvironment is of great importance, since hypoxia is present in many liver diseases and increases bacterial translocation when present in intestinal lumen. Invasive bacteria such as S. flexneri can disrupt the intestinal barrier and reach the liver through portal circulation. The effect of bacterial invasion in liver cells is poorly understood. In this study we investigated the morphological and functional changes of rat hepatocytes after infection with S. flexneri in the presence and absence of hypoxia. For this purpose we used primary cultures of rat hepatocytes. Several parameters were analyzed, such as: bacterial invasion cell rate, quantification of LDH production and release, TNF-a production, cell death rate by apoptosis and expression of the transcription factor HIF-1a. The results showed that the methodology used to obtain the hypoxic microenvironment was satisfactory, with 70% reduction of initial pO2 (to 43.2 mmHg in vitro or 6.5% O2). The invasion of rat hepatocytes by S. flexneri was lower in cells previously exposed to hypoxia compared with the invasion of cells grown in normoxia. The viability of hepatocytes showed no significant differences between experimental groups, ranging between 74% and 86%. The release of TNF-a in situations of normoxia and hypoxia was similar, although the infected cells in normoxia have increased the release levels of this cytokine. In hypoxia + infection condition the release of TNF-a was lower than normoxia + infection condition, but both groups produced a significant increase in cytokine release when compared to normoxic and hypoxic controls. This result suggests that the presence of bacteria inside the cells significantly increases the release of TNF-a by hepatocytes. DHL production was also significantly greater in the hypoxic group compared to the normoxic group, but had no change in the groups infected with S. flexneri after an hour. The apoptosis rates increased in hypoxia and infected groups in a similar way, varying between 24% and 31% when compared with control group in normoxia. The expression of HIF- 1a transcription factor occurred in hypoxia, normoxia + infection and hypoxia + infection groups, indicating that infection with S. flexneri induces the expression of this factor. Overall, our results sought to contribute to a greater understanding of the interaction between S. flexneri and hepatocytes under hypoxia and normoxia conditions. Such knowledge may be useful in building future strategies to assist in combating these major invasive bacteria
|
123 |
Diferença de patogenicidade entre Escherichia coli enteroinvasora e Shigella flexneri em modelo experimental de infecção intestinal / Pathogenicity difference between Escherichia colienteroinvasive and Shigella flexneri in an experimental model of intestinal infectionAna Carolina Ramos Moreno 22 August 2008 (has links)
Neste trabalho, esclarecemos tópicos da patogenicidade de EIEC que sustentam a sua menor virulência quando comparada à S. flexneri, e mostramos a importância das células dendríticas (CD) nesse processo. Estudou-se o comportamento de EIEC e S. flexneri quando em contato com células Caco-2, avaliando-se uma cinética de expressão dos genes envolvidos na invasão e disseminação bacteriana. Em geral, todos os genes foram menos expressos em EIEC, fato corroborado pelo fenótipo de disseminação bacteriana, onde EIEC foi menos eficiente do que Shigella. Também foi avaliada a modulação da resposta inflamatória de células dendríticas intestinais murinas pela produção de citocinas, expressão de moléculas co-estimulatórias e apresentação de antígenos, após desafio das células com as bactérias. Os resultados sugerem que EIEC induz a uma resposta protetora ao hospedeiro, enquanto que Shigella estaria \"driblando\" o sistema imune, além de provavelmente super-estimular o sistema imune adaptativo, fato que poderia levar a um agravamento da doença. As ações integradas das células Caco-2, células dendríticas e estímulos bacterianos foram estudadas em co-cultura celular. Observou-se que EIEC e suas proteínas secretadas induzem a migração das CDs ao compartimento apical da co-cultura; nada foi observado quando o desafio se deu com Shigella. Também foram avaliadas as concentrações de citocinas inflamatórias no microambiente infeccioso formado. A citocina TNF-α, bem como CCL20 e MCP-1 foram mais proeminentes após estímulo com EIEC, fato que poderia explicar parcialmente a migração das CDs ao lado apical da co-cultura após estímulo com EIEC e suas proteínas secretadas. Nossas evidências experimentais indicam que a doença desencadeada por EIEC é mais restrita a um determinado local da infecção, ou seja, não é capaz de se disseminar a ponto de estender a lesão tecidual de forma mais drástica, como Shigella. Esse fenômeno pode estar associado à menor expressão de seus dos fatores de virulência e à resposta imune inata induzida no sítio de infecção, o que levaria, fatalmente, à resolução da doença. / In this study, we clarify topics of pathogenicity from EIEC that support its lower level of virulence when it is compared to S. flexneri, and we have shown the importance of dendritic cells (DC) in this process. We studied the conduct of EIEC and S. flexneri when they were in contact with Caco-2 cells and we analyzed the kinetics of the genes expression that was involved in the spread and invasion of the bacteria. In general, all genes were expressed less in EIEC, as demonstrated by the phenotype of the bacterial spread, where EIEC was less efficient than Shigella. We also analyzed the modulation of the inflammatory response by the murine intestinal dendritic cells by the production of cytokine, expression of co-stimulators molecules and antigens presentation, after the interaction of the cells with the bacteria. The results showed that EIEC induces a response that protects the host while Shigella manipulate the host intestinal innate and adaptive immune system and it probably over-stimulates the adaptive immune system which could let the disease worse. The integrated actions of Caco-2 cells, dendritic cells and bacterial stimulus, were studied in a co-culture cell. We observed that EIEC and its secreted proteins induce the migration of the DCs to the apical compartment of the co-culture; nothing was observed related to Shigella. We also evaluated the concentrations of the inflammatory cytokines at the infective micro environment that was formed. The cytokine TNF-α, as CCL20 and MCP-1 were more prominent after been stimulated with EIEC, a fact that could partially explain the migration of DCs to the apical side of the co-culture after the stimulus with EIEC and its secreted proteins. Our experimental evidence shows that the disease triggered by the EIEC is more restricted at a definite infection place, which means that it is not capable of disseminating beyond a certain point to extend the tissue\'s injury and let it worsen, as Shigella do. This phenomenon can be associated with the lower level of expression of its virulence factors and to the immune response induced in the infection site, what could finally lead to the eradication of the disease.
|
124 |
Computer-aided design and engineering of sucrose-utilizing transglucosylases for oligosaccharide synthesis / Design computationnel et ingénierie de transglycosylases pour la synthèse d'oligosaccharidesVerges, Alizee 08 April 2015 (has links)
La synthèse d’oligosides complexes reste difficilement réalisable par voie chimique. Le recours aux catalyseurs enzymatiques permettrait de pallier aux contraintes de la chimie mais les enzymes naturelles ne présentent pas toujours les propriétés adéquates et nécessitent d’être optimisées par ingénierie moléculaire. Le couplage de la chimie et de biocatalyseurs conçus « sur mesure », peut offrir une alternative prometteuse pour explorer de nouvelles voies de synthèse des sucres, notamment pour la mise au point de glycovaccins. L’objectif de cette thèse a ainsi visé à mettre en œuvre des stratégies d’ingénierie semi-rationnelles de l’amylosaccharase de Neisseria polysaccharea (ASNp), une α-transglucosylase utilisant le saccharose comme substrat, afin de concevoir de nouvelles spécificités de substrats et d’étendre le potentiel de cette enzyme à catalyser de nouvelles réactions, permettant ainsi d’aller bien au-delà de ce que la Nature peut offrir. Dans une première étude, une approche assistée par ordinateur a été suivie afin de remodeler le site actif de l’enzyme (sous-sites +1, +2 et +3) pour la reconnaissance et la glucosylation en α-1,4 d’un accepteur disaccharidique non-naturel (l’allyl 2-deoxy-2-N-trichloroacetyl-β-D-glucopyranosyl-(1→2)-α-L-rhamnopyranose). Le produit attendu, un trisaccharide, est un précurseur dans la synthèse chimio-enzymatique des oligosaccharides mimant les unités répétitives des lipopolysaccharides de Shigella flexneri, dont l’utilisation ultime est le développement de vaccins contre la Shigellose. Une approche computationnelle faisant appel à des outils dédiés au design automatisé de protéines et à une analyse des séquences a conduit au design d’une librairie d’environ 2.7x104 séquences, qui a ensuite été construite expérimentalement puis criblée. Au final, 55 variants actifs sur saccharose (le substrat donneur) ont été identifiés, et un mutant, appelé F3, a révélé sa capacité à glucosyler en α-1,4 le disaccharide cible. De manière étonnante, ce mutant possède 7 mutations au sein de son site actif, nécessaires au déploiement de sa nouvelle spécificité tout en maintenant son aptitude à utiliser le saccharose comme donneur d'unité glucosyle. Dans une deuxième étude, trois variants ont été identifiés lors du criblage de la librairie semi-rationnelle sur saccharose comme présentant de nouvelles spécificités de produits. Ces mutants ont été caractérisés plus en détails, ainsi que leurs produits, sur un plan biochimique et structural. Ces mutants, appelés 37G4, 39A8 et 47A10, contiennent entre 7 et 11 mutations dans leur site actif. Il a été montré qu’ils étaient capables de reconnaitre le saccharose et le maltose (un produit de la réaction avec le saccharose) comme donneur et accepteur pour synthétiser en quantités variables de l’erlose (α-D-Glucopyranosyl-(1→4)-α-D-Glucopyranosyl-(1→2)-β-D-Fructose) et du panose (α-D-Glucopyranosyl-(1→6)-α-D-Glucopyranosyl-(1→4)-α-D-glucose), des molécules non produites par l’enzyme sauvage. Des taux de production relativement élevés ont été obtenus pour ces molécules, dont les propriétés acariogènes et le pouvoir sucrant pourraient présenter un intérêt applicatif pour l’industrie alimentaire. Dans une dernière partie, un autre mutant, appelé 30H3, a été isolé lors du criblage primaire de la librairie de par son activité élevée sur saccharose (une amélioration d’un facteur 6.5 comparé à l’enzyme sauvage). Après caractérisation, le mutant s’est avéré synthétiser un profil unique de produits en comparaison de l’enzyme sauvage ASNp. Il s’est ainsi montré très efficace pour la synthèse de maltooligosaccharides solubles, de taille de chaînes contrôlée allant d’un DP 3 à 21, et de faible polydispersité. Aucun polymère insoluble n’a été identifié. La structure 3D du mutant résolue par cristallographie des rayons X a révélé un agrandissement de la poche catalytique en raison de la présence de 9 mutations introduites dans la première sphère.... / Chemical synthesis of complex oligosaccharides still remains critical. Enzymes have emerged as powerful tools to circumvent chemical boundaries of glycochemistry. However, natural enzymes do not necessarily display the required properties and need to be optimized by molecular engineering. Combined use of chemistry and tailored biocatalysts may thus be attractive for exploring novel synthetic routes, especially for glyco-based vaccines development. The objective of this thesis was thus to apply semi-rational engineering strategies to Neisseria polysaccharea amylosucrase (NpAS), a sucrose-utilizing α-transglucosylase, in order to conceive novel substrate specificities and extend the potential of this enzyme to catalyze novel reactions, going beyond what nature has to offer. In a first study, a computer aided-approach was followed to reshape the active site of the enzyme (subsites +1, +2 and +3) for the recognition and α-1,4 glucosylation of a non-natural disaccharide acceptor molecule (allyl 2-deoxy-2-N-trichloroacetyl-β-D-glucopyranosyl-(1→2)-α-L-rhamnopyranose). The trisaccharide product is a building block for the chemo-enzymatic synthesis of oligosaccharides mimicking the repetitive units of the Shigella flexneri lipopolysaccharides, and ultimately, for the production of a vaccine against Shigellosis disease. Using computational tools dedicated to the automated protein design, combined with sequence analysis, a library of about 2.7x104 sequences was designed and experimentally constructed and screened. Altogether, 55 mutants were identified to be active on sucrose (the donor substrate), and one, called mutant F3, was subsequently found able to catalyze the α-1,4 glucosylation of the target disaccharide. Impressively, this mutant contained seven mutations in the first shell of the active site leading to a drastic reshaping of the catalytic pocket without significantly perturbing the original specificity for sucrose donor substrate. In a second study, three variants were identified from the screening of the semi-rational library on sole sucrose as displaying totally novel product specificities. They were further characterized, as well as their products, at both biochemical and structural level. These mutants, called 37G4, 39A8 and 47A10, contained between 7 and 11 mutations into their active site. They were found able to use sucrose and maltose (a reaction product from sucrose) as both donor and acceptor substrates to produce in varying amounts erlose (α-D-Glucopyranosyl-(1→4)-α-D-Glucopyranosyl-(1→2)-β-D-Fructose) and panose (α-D-Glucopyranosyl-(1→6)-α-D-Glucopyranosyl-(1→4)-α-D-glucose) trisaccharides, which are not produced at all by parental wild-type enzyme. Relatively high yields were obtained for the production of these molecules, which are known to have acariogenic and sweetening properties and could be of interest for food applications. In a last part, another mutant 30H3 was isolated due to its high activity on sucrose (6.5-fold improvement compared to wild-type activity) from primary screening of the library. When characterized, the mutant revealed a singular product profile compared to that of wild-type NpAS. It appeared highly efficient for the synthesis of soluble maltooligosaccharides of controlled size chains, from DP 3 to 21, and with a low polydispersity. No formation of insoluble polymer was found. The X-ray structure of the mutant was determined and revealed the opening of the catalytic pocket due to the presence of 9 mutations in the first sphere. Molecular dynamics simulations suggested a role of mutations onto flexibility of domain B’ that might interfere with oligosaccharide binding and explain product specificity of the mutant.
|
125 |
Characterization of Microorganisms of Interest to Homeland Security and Public Health Utilizing Liquid Chromatography/Mass SpectrometryEverley, Robert A. 01 January 2008 (has links)
Liquid chromatography/quadrupole time of flight mass spectrometry (LC/QTOF MS) utilizing electrospray ionization was employed to monitor protein expression in Escherichia coli and Shigella organisms. Automated charge state deconvolution, spectral subtraction and spectral mirroring were used to reveal subtle differences in the LC/MS data. Reproducible intact protein biomarkers were discovered based on their unique mass, retention time and relative intensity. These markers were implemented to differentiate closely related strain types, (e.g. two distinct isolates of E. coli O157:H7) and to correctly identify unknown pathogens. Notable, was the distinction of multiple serotypes of enterohaemorrhagic E. coli which cannot be distinguished by clinical manifestation alone. Additionally, speciation of Shigella was achieved, a task for which no commercial real-time polymerase chain reaction (PCR) primers exist. This method was subsequently applied to two pathogenic Clostridium species: C. difficile and C. perfringens. Due to the increased difficulty during lysis, two new lysis protocols were developed, and each extracted a distinct set of proteins (by both mass and retention time). Extracts from both lysis procedures were utilized to discover biomarkers useful for identification and characterization at the species and strain levels. These biomarkers were successfully implemented to identify unknowns during a blind study and would enhance serological and genetic approaches by serving as new targets for detection. Two sets of the C. perfringens isolates that were deemed 100% similar by the gold standard for strain differentiation, pulsed-field gel electrophoresis (PFGE), were distinguished using LC/MS, demonstrating the high specificity of this approach. The final part of this work demonstrated the application of ultra performance liquid chromatography (UPLC) to this project to improve the throughput of the method. Given that numerous small molecule applications of UPLC have been published, efforts were made to examine the potential of UPLC to enhance the separation of intact proteins. Beginning with typically employed conditions, column temperature and organic solvent were optimized followed by an HPLC vs. UPLC comparison. When applied to a mixture of ten protein standards, the optimized UPLC method yielded improved chromatographic resolution, enhanced sensitivity, and a three-fold increase in throughput. Application of this method to cell lysate analysis demonstrated no compromise in chromatographic or mass spectral data quality; a reduction in run time from 75 minutes to 25 minutes was achieved.
|
126 |
The SRL pathogenicity island of Shigella flexneri 2a YSH6000Luck, Shelley Narelle January 2003 (has links)
Abstract not available
|
127 |
Aromatic Beta-Glucoside Utilization In Shigella Sonnei : Comparison With The Escherichia Coli ParadigmDesai, Stuti 02 1900 (has links)
The aromatic beta-glucosides of plant origin, salicin and arbutin, serve as carbon sources for the sustenance of bacteria when ‘preferred’ sugars are absent in the environment. In the family Enterobacteriaceae, there are varied patterns for utilization of these beta-glucosides, wherein, in some members the ability to utilize salicin or arbutin is cryptic while in others it is completely absent. Escherichia coli harbors silent or cryptic genetic systems for the utilization of arbutin and salicin, which are activated by spontaneous mutation(s). Of these systems, the bgl operon of E.coli has been used as a paradigm for silent genes and extensive studies have been carried out to understand its silencing and activating mechanisms. Mutational activation of the wild type bgl operon in E.coli leads to the acquisition of the ability to utilize both arbutin and salicin.
Preliminary studies have shown that aromatic beta-glucoside utilization in Shigella sonnei, which is evolutionarily related to E.coli, shows a two-step activation process wherein the wild type strain first becomes Arb+, which subsequently mutates to Sal+. The genetic systems responsible for beta-glucoside utilization, including the bgl operon, are conserved in
S.sonnei to a large extent. A major difference is that the bglB gene encoding the phosphor-β-glucosidase B is insertionally inactivated in S.sonnei. As a result, activation of the bgl operon in the first stage leads to expression of the permease, BglF, which along with the phosphor-β-glucosidase A expressed from an unlinked constitutive gene, bglA, confers an Arb+phenotype. Salicin is not a substrate for the enzyme BglA and therefore a second mutational event is required for the acquisition of the Sal+ phenotype. Interestingly, the insertion within bglB is retained in AK102, the Sal+ second step mutant of S.sonnei. Therefore, the locus involved in conferring salicin utilization ability is unknown. However, S.sonnei is not amenable to routine genetic echniques and an E.coli bglB model was generated by creating an insertion in the bglB gene to identify the locus involved in conferring the Sal+ phenotype. Like S.sonnei, this E.coli strain, SD-1.3, also showed a two-step activation process for the utilization of salicin.
Utilization of salicin in the Sal+ second step mutant of SD-1.3 could require activation of other silent genetic systems such as the asc operon and the chb operon or mutation in loci such as bglB or bglA. Linkage analysis by P1 transduction showed that activation of the asc operon is required for conferring a Sal+ phenotype in the second step mutant. The asc operon comprises of two genes, ascF encoding a PTS permease and ascB encoding a phosphor-β-glucosidaseB.The
Precise mechanism of activation of the asc operon is not known but, it has been speculated that AscG, encoded by an upstream gene, acts as a repressor. Results presented in this thesis show that BglF is responsible for the transport of salicin and AscB provides the phosphor-β-glucosidase B in the Sal+ second step mutant of the E.coli strain SD-1.3. Analysis of the expression of the ascFB operon by measuring the transcripts as well as the activity of phosphor-β-glucosidase B showed that it is enhanced in the Sal+ second step mutant of SD-1.3 in the presence of the inducer. The expression of the ascFB operon is also increased constitutively when ascG is replaced by an antibiotic cassette in the parent strain SD-1.3 and the Arb+ first step mutant, indicating that AscG acts as a repressor for the asc operon. Moreover, inactivation of ascG in the parent leads to utilization of salicin in a single step by the activation of the bgl operon to provide the transport function, indicating that the inactivation of ascG is sufficient to activate the expression of ascB. Similarly, loss of AscG–mediated repression of the asc operon confers salicin utilization ability to the Arb+ first step mutant of SD-1.3. Interestingly, measurement of phosphor-β-glucosidase B activity in a Sal+ second step mutant derivative deleted for ascG showed a constitutive increase in the expression of the ascFB operon. Thus, AscG mediates the induction of the asc operon in response to salicin.
In order to study the mechanism of activation of the asc operon, the ascB gene was cloned from the Arb+ first step mutant and the Sal+ second step mutant of SD-1.3 in a low copy number vector. Both these constructs were able to confer a Sal+ phenotype to the Arb+ first step mutant indicating absence of any genetic change in ascB in the Sal+ second step mutant. This was also confirmed by sequencing of ascB gene from the strains that showed no changes in the nucleotide sequence. Absence of any insertions within ascG showed that activation of the ascoperon is not achieved through disruption of ascG in the Sal+ second step mutants analyzed. AscG belongs to the GalR family of repressors in which some members require a mutation to enable the binding of sugar to mediate induction. Nucleotide sequence analysis showed that there was no change in the ascG gene in the Sal+ mutants analyzed. However, when the upstream regulatory region of the ascFB operon was analyzed a mutation was found in the -10 sequence of the putative promoter of the ascFB genes. This change leads to a stronger promoter as it brings the -10 sequence closer to the consensus sequence. Therefore, salicin utilization is achieved in the Sal+ second step mutant analyzed by an increase in expression of the asc operon by a promoter-up mutation. The negative effect of binding of AscG on expression of the ascFB operon is relieved in presence of the inducer, salicin.
The possible role of the asc operon in salicin utilization in S.sonnei was tested by replacing the ascB gene by anantibiotic cassette in AK102, the Sal+ second step mutant of S. sonnei. This did not lead to loss of salicin utilization. By gene targeting approach it was also found that none of the phosphor-β-glucosidases known in E.coli are involved in degradation of salicin in AK102. A search of the S. sonnei genome database indicated the presence of two putative phosphor-β-glucosidases encoded by glvG and SSO1595. Replacement of glvG gene by anantibiotic cassette in AK102 did not lead to loss of salicin utilization. However, a similar replacement of SSO1595 in AK102 resulted in a Sal+ phenotype indicating that SSO1595 provides the phosphor-β-glucosidase in the Sal+ second step mutant of S. sonnei. A homolog of this enzyme is not present in E.coliorinany of the other members of the Shigella genus. Transcription alanalysis as well as measurement of phosphor-β-glucosidase B activity showed that expression of SSO1595 is enhanced constitutively in AK102.
To study the mechanism of mutational activation for achieving salicin utilization in S. sonnei, SSO1595 was cloned from AK101, theArb+ first step mutant and AK102, the Sal+ second step mutant in a low copy numbe rvector. Both these constructs were able to confer a Sal+ phenotype to AK101 indicating an absence of genetic change in SSO1595 in AK102. This was also confirmed by sequencing of SSO1595 gene from the strains. Analysis of the upstream regulatory region of SSO1595 in AK102 indicated a deletion of around 1.0kbp sequence. This was also confirmed by nucleotide sequencing of the region. By primer extension analysis it was found that a new transcriptional start site is generated upstream to the deletion in the Sal+ second stepmutant of S.sonnei. Acquisition of the Sal+ phenotype in AK102 is therefore the resultof the SSO1595 gene being brought under a new promoter as a result of a DNA rearrangement.
Overall, this study suggests that a high degree of similarity at the genomic level between organisms does not always ensure similarity in genetic mechanisms as two distinct pathways are responsible for conferring utilization of salicinin S. sonnei and E.coli.
|
128 |
Structural studies of the inner membrane ring of the bacterial type III secretion systemMcDowell, Melanie A. January 2012 (has links)
Shigella flexneri attacks cells of the intestinal tract, causing over 1 million deaths annually from bacterial dysentery. A type III secretion system (T3SS) initiates the host-pathogen interaction and transports virulence factors directly into host cells via a needle complex (NC) comprising an extracellular needle and membrane-spanning basal body. Rings formed by the single-pass membrane proteins MxiG and MxiJ are arranged concentrically within the inner membrane ring (IMR) of the NC. The Neterminal domain of MxiG (MxiG-N) is the predominant IMR cytoplasmic structure, however it was structurally and functionally uncharacterised. Determination of the solution structure of MxiG-N in this study revealed it to be a forkhead associated (FHA) domain, although subsequent analyses of conserved residues suggested it does not have the canonical role in cell-signalling via phospho-threonine recognition. Subsequent positioning of the structure in the electron microscopy (EM) density for the S. flexneri NC supported models with 24-fold symmetry in the IMR. Both MxiG and MxiJ also have significant periplasmic domains, which were purified to homogeneity in this study, facilitating preliminary characterisation of their structures and intermolecular interactions. In addition, the entire IMR within the context of intact basal bodies was isolated and visualised in vitro by EM. The essential function of MxiG-N could be to localise the putative cytoplasmic ring (Cering) at the base of the T3SS. Although absolutely required for secretion, the Csring component, Spa33, was structurally uncharacterised. The crystal structure of the Cvterminal domain of Spa33 (Spa33-C) was determined in this study, showing an intertwined dimer that aligned with homologous structures and exhibited a novel interaction with the N-terminus of the ATPase regulator, MxiN. Subsequently, Spa33-C was identified as an altemative translation product of spa33 that formed a 2: 1 complex with Spa33 in vitro. This complex oligomerised further, demonstrating for the first time that Spa33 has the propensity to form the ordered, high molecular weight assemblies that would be required for C-ring formation in S. flexneri.
|
129 |
A study of the chemical components of extracts from kirkia wilmsii and an investigation into their propertiesChigayo, K. 24 February 2015 (has links)
MSc (Chemistry) / Department of Chemistry
|
130 |
Community Perceptions of Bloody Diarrhoea in an Urban Slum in South Asia: Implications for Introduction of a Shigella VaccineArvelo, W., Blum, Lauren, Nahar, Nilufar, Seidlein, L. Von, Nahar, L., Pack, Robert P., Brooks, W. Abdullah, Pach, Alfred, Breiman, Robert, Luby, S. P., Ram, Pavani 01 April 2011 (has links)
Understanding local perceptions of disease causation could help public health officials improve strategies to prevent bloody diarrhoea. A cross-sectional survey was conducted in Dhaka, Bangladesh to elicit community beliefs about the causes of and prevention strategies for bloody diarrhoea. Between March and June 2003, we interviewed 541 randomly selected respondents. Overall, 507 (93%) respondents perceived that a vaccine could prevent bloody diarrhoea. If a vaccine provided lifetime protection, 445 (83%) respondents stated that they would opt to get the vaccine and would pay a median of $0·05 (range U.S.$0·01-0·15) for it, equivalent to <1% of their median weekly income. There was almost universal perception that an effective vaccine to prevent bloody diarrhoea was highly beneficial and acceptable. While respondents valued a vaccine for prevention of bloody diarrhoea, they were only willing to pay minimally for it. Therefore, achieving a high rate of Shigella vaccine coverage may require subsidy of vaccine purchase.
|
Page generated in 0.0421 seconds