• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 37
  • 10
  • 6
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 136
  • 33
  • 28
  • 24
  • 21
  • 19
  • 17
  • 15
  • 14
  • 13
  • 13
  • 12
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Posouzení možností revitalizace vodního toku Osoblaha – úsek II / Assessment of the Possibilities The Revitalization of a Watercourse Osoblaha – reach II

Vysloužilová, Lucie January 2015 (has links)
This thesis deals with examining the possibility of revitalizing the watercourse Osoblaha. It flows through the cadastral territories of municipalities Bohušov, Osoblaha and Kašnice u Bohušova. In this thesis there will be proposed a measure to increase biodiversity of the flow. The trough will be loosened in appropriate segments, oxbow lakes and ponds will be designed. Also the bank shelters for fish stock will be suggested. For slope stabilization will be used reinforcement of fresh willow fences. Impermeable shoots or disintegrating oxbow lakes will be projected in the straight sections of the flow.
132

Méthylation de l’ADN et plasticité phénotypique en réponse à des variations de disponibilité en eau chez le peuplier / DNA methylation and phenotypic plasticity towards water availability variations in poplar

Le Gac, Anne-Laure 16 June 2017 (has links)
Face à la rapidité des changements climatiques, les arbres doivent faire preuve de plasticité phénotypique. Les mécanismes épigénétiques font partie des pistes de recherche actuelles pour expliquer la plasticité phénotypique. Cette thèse visait à évaluer le rôle de la méthylation de l’ADN dans la plasticité phénotypique d’un organisme pérenne séquencé, le peuplier, en réponse à des variations de disponibilité en eau du sol. Les travaux, combinant écophysiologie et épigénomique, se sont focalisés sur le méristème apical caulinaire, centre de la morphogenèse de la tige feuillée. Trois résultats majeurs sont issus de cette thèse : i) Chaque état hydrique est associé à un méthylome et un transcriptome spécifiques, ii) Certaines régions différentiellement méthylées sont conservées dans le temps et entre contextes environnementaux, iii) Des lignées RNAi hypométhylées soumises à différents contextes hydriques présentent une réponse modifiée. Les résultats acquis lors de cette thèse appuient une contribution de la méthylation de l’ADN à la plasticité phénotypique et suggèrent un rôle des mécanismes épigénétiques dans la mémoire d’un stress chez les arbres. / Due to rapid climate changes, trees must exhibit phenotypic plasticity. Epigenetic mechanisms are part of current research to explain phenotypic plasticity. This thesis aimed to evaluate the role of DNA methylation in phenotypic plasticity of a perennial sequenced organism, poplar, in response to variations in soil water availability. The work, combining ecophysiology and epigenomics, focused on the shoot apical meristem, the center of morphogenesis of the leafy stem. Three major results emerge from this thesis: (i) Each hydric state is associated with a specific methylome and transcriptome, (ii) Some differentially methylated regions are conserved in time and between environmental contexts, (iii) Hypomethylated RNAi lines subjected to different contexts show a modified response. The results obtained during this thesis support a contribution of DNA methylation to phenotypic plasticity and suggest a role of epigenetic mechanisms in stress memory in trees.
133

Rôle de l'auxine et de sa signalisation dans la dynamique et la robustesse des patrons développementaux dans le méristème apical caulinaire / The role of auxin and its signaling pathways in the dynamics and robustness of developmental patterns at the shoot apical meristem

Oliva Freitas Santos, Marina 17 January 2014 (has links)
Les végétaux, contrairement aux animaux, génèrent la plupart de leurs organes et tissus au cours de leur développement post-embryonnaire et ce, grâce à des tissus contenant de petits amas de cellules souches appelés méristèmes. Le méristème apical caulinaire (MAC), situé à l’extrémité de la tige, génère toute la partie aérienne de la plante. A sa périphérie, les organes latéraux (fleurs ou feuilles) sont générés selon un patron spatio-temporel précis appelé phyllotaxie. De nombreuses données accumulées ces 20 dernières années ont démontré qu’une hormone végétale, l’auxine, joue un rôle prépondérant dans le contrôle du devenir des cellules dans le MAC. Un ensemble de données expérimentales couplées à des modèles mathématiques suggère que l’auxine s’accumule successivement dans les sites d’organogenèse grâce à l’auto-organisation de ses transporteurs membranaires et instruit les cellules à se différencier en organes.Fautes d’outils appropriés, il était impossible jusqu’alors de visualiser l’auxine in vivo et d’étudier sa dynamique temporelle. Nous avons généré un nouveau senseur de la signalisation de l’auxine, appelé DII-Venus, qui permet de visualiser de manière indirecte mais spécifique les niveaux relatifs d’auxine in planta avec une excellente résolution spatio-temporelle. Cet outil a permis de mettre en évidence pour la première fois des oscillations circadiennes d’auxine au niveau du MAC. Une analyse complète de la structure de la voie de réponse transcriptionelle à l’auxine, couplée à des approches de modélisation, a permis de mettre en évidence des propriétés « tampon » de la voie transcriptionnelle qui la rendent relativement insensible aux fluctuations d’auxine, et contribuent à la robustesse du programme organogénétique. En revanche, la voie non-transriptionnelle de réponse à l’auxine, sensible à ces oscillations, génère des rythmicités de croissance au niveau du MAC qui contribuent à déterminer la temporalité de l’émergence de nouveaux organes. Ces résultats démontrent ainsi pour la première fois que la rythmicité de l’émergence de nouveaux organes au niveau du MAC n’est pas uniquement une conséquence des capacités d’auto-organisation du tissu mais est aussi contrôlée, au moins partiellement, par une horloge biologique. / Plants, contrarily to animals, are able to generate new organs and tissues throughout their lives thanks to the activity of specialized tissues containing stem cells called meristems. The shoot apical meristem (SAM), located at the shoot tip, generates all the aerial parts of the plant that arise after germination. At its periphery, organ production occurs following precise spatio-temporal patterns also known as phyllotaxis. During the past twenty years, the phytohormone auxin has been demonstrated to play a major role in this process. Indeed, both experimental and theoretical studies strongly suggest that auxin accumulates successively in sites of organogenesis thanks to its efflux carriers, and instructs cells to differentiate into organs.However, so far, very little is known about the actual temporal dynamics of auxin in tissues, because of the lack of appropriate tool to visualize auxin in vivo. We developed a new auxin signaling sensor, called DII-VENUS, that allows for monitoring auxin levels in planta with a good spatio-temporal resolution. Using this new tool, we were able to demonstrate that for the first time that the SAM is subjected to circadian oscillations of auxin levels. Our data suggest that these oscillations are not perceived by the auxin transcriptional pathway, which is predicted, according to our mathematical models, to exhibit buffering properties. However, they are perceived by the non-transcriptional putative receptor ABP1 and translated into rhythmic growth patterns at the SAM. These growth oscillations seem to regulate organ initiation in the meristem thus demonstrating for the first time the rhythmic emergence of organs at the SAM does not only result from the self-organizing properties of the tissue but is also controlled, at least partially, by a biological clock.
134

Effects of Asphondylia borrichiae, Simulated Herbivory, and Nutritional Status on Survival, Flowering, and Seed Viability in Sea Oxeye Daisy (Borrichia frutescens)

Rowan, Lisa S. 01 January 2014 (has links)
Although herbivory and other types of plant damage typically are viewed as detrimental to plant survival and performance, vigorous regrowth, greater seed set, and fitness benefits may be possible when damage to the apical meristem, or actively growing stem terminal, is involved. Such damage releases apical dominance, or the hormonal suppression of lateral buds, activates dormant lateral buds, and enables lateral shoots to grow. Since in plants with terminal flowers, each stem may bear a flower, removal of the apical meristem may result in stem bifurcation and ultimately increase the number of flowers and seeds, thereby increasing potential fitness. In the current study, possible overcompensation in response to apical meristem damage caused by simulated herbivory (clipping) and the gall midge Asphondylia borrichiae Rossi and Strong (Diptera: Cecidomyiidae) (galling) was investigated in the native coastal halophyte, sea oxeye daisy Borrichia frutescens (L.) DC. (Asteraceae), in relation to nutrient supplementation. Results suggest a strong correlation between stem count and gall count at the study site; moreover, apical dominance was relatively weak early in the growing season and stronger in short plants that were shaded by taller neighbors later in the season. Results also indicate that overcompensation or even full compensation is an unlikely response to apical meristem damage in B. frutescens. Stem count was similar across all stem treatments, but increased significantly with nutrient supplementation, which all supports weak apical dominance in sea oxeye daisy. Nearly all measures of fitness also were either slightly or significantly lower when clipped and galled compared to plants with stems intact, while seed count responded positively to nutrient supplementation.
135

Characterization of Proliferative Arrest (PA) Process in Arabidopsis thaliana and Pisum sativum

Burillo Richart, Eduardo 17 July 2025 (has links)
[ES] Las plantas monocárpicas se definen como aquellas que florecen, producen semillas y mueren después de un solo ciclo reproductivo. Muchos cultivos de importancia agroeconómica siguen estrategia reproductiva. En estas plantas, después de producir un cierto número de semillas, el meristemo apical del tallo (SAM) cesa su actividad, siendo esta la antesala de su senescencia y muerte. Este fenómeno, estudiado en diferentes especies de plantas monocárpicas, se conoce como Parada Proliferativa (PA). Se encuentra influenciado por múltiples factores, que incluyen la influencia del desarrollo de frutos y semillas, así como las condiciones ambientales de luz, humedad, etc. Todos estos factores son finalmente integrados a nivel genético en la planta. En este contexto, en Aabidopsis thaliana se ha descrito una ruta dependiente de la edad encargada de la modulación del PA, la ruta FUL-AP2. Se ha demostrado que el miR172 y FRUITFUL (FUL) incrementan su expresión con la edad de la planta y regulan negativamente APETALA2 (AP2), que es responsable de mantener la actividad meristemática a través de la acción de WUSCHEL (WUS). En este sentido, se ha sugerido que otros miembros de la subfamilia euAP2, TOE1, TOE2, TOE3, SMZ y SNZ, conocidos colectivamente como AP2-like genes, también juegan un papel crucial en la modulación de la PA. No obstante, estos han sido definidos principalmente como reguladores de la transición floral, y su implicación en la modulación del PA no está bien establecida. Por otro lado, Pisum sativum ha sido, históricamente, una especie ampliamente estudiada a nivel fisiológico en lo que concierne a PA. Sin embargo, hoy aún existen numerosas cuestiones, ambigüedades y discrepancias acerca de la regulación del PA en esta especie. En esta tesis doctoral, pretendemos profundizar en la caracterización de diversos aspectos del PA tanto en Arabidopsis thaliana como en Pisum sativum, con intención de determinar el grado de conservación que existe en este proceso entre estas dos especies monocárpicas. En el Capítulo 1, hemos examinado el papel de todos los miembros de la subfamilia euAP2 en la modulación de la PA en Arabidopsis thaliana, así como su potencial para estrategias biotecnológicas dirigidas a la modulación de la PA. Nuestros resultados sugieren que, a excepción de SMZ, todos juegan un papel crítico en este proceso, siendo inductores de la actividad meristemática. Además, AP2 y SNZ han demostrado tener el potencial para ser usados en estrategias biotecnológicas dirigidas a aumentar la producción de frutos en plantas monocárpicas. En el capítulo 2 se han revisitado los estudios fisiológicos que históricamente han tenido como objetivo determinar el papel de los frutos en desarrollo en la inducción del PA en Pisum sativum. Nuestros resultados sugieren que el desarrollo de semillas determina el momento del PA: cuando se ha producido una determinada biomasa de semillas, la SAM entra en un estado latente. Además, a nivel transcriptómico, Arabidopsis thaliana y Pisum sativum exhiben un comportamiento similar en cuanto a la influencia de las semillas en la actividad meristemática y el PA. Finalmente, en el Capítulo 3, hemos generado herramientas para caracterizar los genes de la subfamilia euAP2 en la modulación de PA en Pisum sativum. Además, sentamos las bases para el estudio de nuevos moduladores de la ruta genética, como Flowering Locus T (FT), postulándolo así como posible florígeno y anti-florígeno de las plantas. / [CA] Les plantes monocàrpiques es definixen com aquelles que florixen, produïxen llavors i moren després d'un sol cicle reproductiu. Molts cultius d'importància agroeconómica seguixen estratègia reproductiva. En estes plantes, després de produir un cert nombre de llavors, el meristemo apical de la tija (SAM) cessa la seua activitat, sent esta l'avantsala de la seua senescència i mort. Este fenomen, estudiat en diferents espècies de plantes monocàrpiques, es coneix com a Parada Proliferativa (PA). Es troba influenciat per múltiples factors, que inclouen la influència del desenvolupament de fruits i llavors, així com les condicions ambientals de llum, humitat, etc. Tots estos factors són finalment integrats a nivell genètic en la planta. En este context, en Aabidopsis thaliana s'ha descrit una ruta dependent de l'edat encarregada de la modulació del PA, la ruta FUL-AP2. S'ha demostrat que el miR172 i FRUITFUL (FUL) incrementen la seua expressió amb l'edat de la planta i regulen negativament APETALA2 (AP2), que és responsable de mantindre l'activitat meristemàtica a través de l'acció de WUSCHEL (WUS). En este sentit, s'ha suggerit que altres membres de la subfamília euAP2, TOE1, TOE2, TOE3, SMZ i SNZ, coneguts col·lectivament com AP2-like gens, també juguen un paper crucial en la modulació de la PA. No obstant això, estos han sigut definits principalment com a reguladors de la transició floral, i la seua implicació en la modulació del PA no està ben establida. D'altra banda, Pisum sativum ha sigut, històricament, una espècie àmpliament estudiada a nivell fisiològic en el que concernix PA. No obstant això, hui encara existixen nombroses qüestions, ambigüitats i discrepàncies sobre la regulació del PA en esta espècie. En esta tesi doctoral, pretenem aprofundir en la caracterització de diversos aspectes del PA tant en Arabidopsis thaliana com en Pisum sativum, amb intenció de determinar el grau de conservació que existix en este procés entre estes dos espècies monocàrpiques. En el Capítol 1, hem examinat el paper de tots els membres de la subfamília euAP2 en la modulació de la PA en Arabidopsis thaliana, així com el seu potencial per a estratègies biotecnològiques dirigides a la modulació de la PA. Els nostres resultats suggerixen que, a excepció de SMZ, tots juguen un paper crític en este procés, sent inductors de l'activitat meristemàtica. A més, AP2 i SNZ han demostrat tindre el potencial per a ser usats en estratègies biotecnològiques dirigides a augmentar la producció de fruits en plantes monocàrpiques. En el capítol 2 s'han revisitat els estudis fisiològics que històricament han tingut com a objectiu determinar el paper dels fruits en desenvolupament en la inducció del PA en Pisum sativum. Els nostres resultats suggerixen que el desenvolupament de llavors determina el moment del PA: quan s'ha produït una determinada biomassa de llavors, la SAM entra en un estat latent. A més, a nivell transcriptómico, Arabidopsis thaliana i Pisum sativum exhibixen un comportament similar quant a la influència de les llavors en l'activitat meristemàtica i el PA. Finalment, en el Capítol 3, hem generat ferramentes per a caracteritzar els gens de la subfamília euAP2 en la modulació de PA en Pisum sativum. A més, establim les bases per a l'estudi de nous moduladors de la ruta genètica, com Flowering Locus T (FT), postulant-lo així com possible florígeno i anti-florígeno de les plantes. / [EN] Monocarpic plants are defined as those that bloom, produce seeds, and die after a single reproductive cycle. Many economically important crops belong to this reproductive strategy. In these plants, after producing a certain number of seeds, the shoot apical meristem (SAM) ceases its activity, heralding the onset of senescence and plant death. This phenomenon, studied in various monocarpic plant species, is known as Proliferative Arrest (PA), and is found to be influenced by multiple factors, involving the influence of developing fruits and seeds, as well as environmental conditions like temperature, light, and humidity. All these factors are ultimately integrated at the genetic level within the plant. In this context, an age-dependent pathway that controls SAM activity and modulates PA, known as the FUL-AP2 pathway, has been described in Arabidopsis thaliana. It has been demonstrated that the microRNA miR172 and FRUITFUL (FUL) increase with the plant's age and negatively regulate APETALA2 (AP2), which is responsible for maintaining meristematic activity through the action of WUSCHEL (WUS). In this sense, it has been suggested that other members of the euAP2 subfamily, TARGET OF EAT1 (TOE1), TOE2, TOE3, SCHLAFMÜTZE (SMZ), and SCHNARCHZAPFEN (SNZ), collectively known as AP2-like genes, also play a crucial role in modulating PA. However, they have mainly been defined as regulators of the floral transition, and their involvement in PA modulation is not well established. On the other hand, historically, Pisum sativum has been a species widely studied in relation to PA. However, this research often treated PA and senescence as the same process, and uncertainties and ambiguities persist, with discrepancies among different research groups that have treated this topic. In this doctoral thesis, we aimed to delve into the characterization of various aspects of PA in both Arabidopsis thaliana and Pisum sativum and determine the degree of conservation of this process in these two monocarpic species: In Chapter 1, we examined the role of all euAP2 subfamily members in modulating PA in Arabidopsis thaliana and explored their potential for biotechnological strategies aimed at PA modulation. Our findings suggest that, except for SMZ, all members of the euAP2 subfamily play a critical role in this process as inducers of meristematic activity. Furthermore, AP2 and SNZ have shown the potential to be considered prime candidates for use in biotechnological strategies to increase fruit production in monocarpic plants. Chapter 2 revisited the physiological studies that have historically aimed to determine the role of developing fruits in inducing PA in Pisum sativum. Our results suggest that developing seeds determine the timing of PA: when a certain seed biomass has been produced, the SAM enters a dormant state. Additionally, at the transcriptomic level, Arabidopsis thaliana and Pisum sativum exhibit similar behaviour regarding the influence of seeds on meristematic activity, suggesting that PA could be a conserved process among monocarpic plants. In Chapter 3, we generated tools for characterizing euAP2 subfamily genes in PA modulation in Pisum sativum. Furthermore, we laid the groundwork for the study of new modulators of the genetic pathway, such as Flowering Locus T (FT), suggesting its potential role of florigen and anti-florigen of the plant. / Burillo Richart, E. (2024). Characterization of Proliferative Arrest (PA) Process in Arabidopsis thaliana and Pisum sativum [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/207109
136

ORGAN-SPECIFIC EPIGENOMIC AND TRANSCRIPTOMIC CHANGES IN RESPONSE TO NITRATE IN TOMATO

Russell S Julian (8810357) 21 June 2022 (has links)
Nitrogen (N), an essential plant macronutrient, is among the most limiting factors of crop yield. To sustain modern agriculture, N is often amended in soil in the form of chemical N fertilizer, a major anthropogenic contributor to nutrient pollution that affects climate, biodiversity and human health. To achieve agricultural sustainability, a comprehensive understanding of the regulation of N response in plants is required, in order to engineer crops with higher N use efficiency. Recently, epigenetic mechanisms, such as histone modifications, have gained increasing importance as a new layer of regulation of biological processes. However, our understanding of how epigenetic processes regulate N uptake and assimilation is still in its infancy. To fill this knowledge gap, we first performed a meta-analysis that combined functional genomics and network inference approaches to identify a set of N-responsive epigenetic regulators and predict their effects in regulating epigenome and transcriptome during plant N response. Our analysis suggested that histone modifications could serve as a regulatory mechanism underlying the global transcriptomic reprogramming during plant N response. To test this hypothesis, I applied chromatin immunoprecipitation-sequencing (ChIP-Seq) to monitor the genome-wide changes of four histone marks (H3K27ac, H3K4me3, H3K36me3 and H3K27me3) in response to N supply in tomato plants, followed by RNA-Seq to profile the transcriptomic changes. To investigate the organ specificity of histone modifications, I assayed shoots and roots separately. My results suggest that up to two-thirds of differentially expressed genes (DEGs) are modified in at least one of the four histone marks, supporting an integral role of histone modification in regulating N response. I observed a synergistic modification of active histone marks (H3K27ac, H3K4me3 and H3K36me3) at gene loci functionally relevant to N uptake and assimilation. Surprisingly, I uncovered a non-canonical role of H3K27me3, which is conventionally associated with repressed genes, in modulating active gene expression. Interestingly, such regulatory role of H3K27me3 is specifically associated with highly expressed genes or low expressed genes, depending on the organ context. Overall, I revealed the multi-faceted role of histone marks in mediating the plant N response, which will guide breeding and engineering of better crops with higher N use efficiency

Page generated in 0.0344 seconds