• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Towards Silicon Based Light Emitting Devices: Photoluminescence From Terbium Doped Silicon Matrices With Or Without Nanocrystals

Kaleli, Buket 01 June 2009 (has links) (PDF)
In this study, silicon (Si) rich silicon dioxide (SiO2) films and terbium (Tb) embedded in three different Si containing films has been produced by e-beam evaporation and magnetron sputtering techniques. Post deposition annealing was done for different temperatures and durations to study its effect on both Si nanocrystal formation and Tb luminescence. It was verified by X-ray diffraction technique (XRD) that Si nanocrystals were formed in Si rich matrices. Energy dispersive X-ray (EDS) spectroscopy analysis was carried out to determine the relative concentrations of the atoms inside the produced films. X-ray photoelectron spectroscopy (XPS) gave the evidence of different bonding structures inside the Tb-Si-O containing films. Depth profile measurements were carried out to analyze changes in the relative concentration during sputtering of the layers after annealing of the Tb containing film. Luminescence characteristics of Si nanocrystals and Tb3+ ions were studied by photoluminescence (PL) spectroscopy. It was observed that Tb3+ luminescence enhanced by an energy transfer from Si nanocrystals and trap levels in a matrix. This result supplies valuable information about the excitation paths of Tb3+ ion the way of intense luminescence.
2

Interaction of Ion Beam with Si-based Nanostructures

Xu, Xiaomo 26 February 2024 (has links)
Silicon has been the fundamental material for most semiconductor devices. As Si devices continue to scale down, there is a growing need to gain a better understanding of the characteristics of Si-based nanostructures and to develop novel fabrication methods for devices with extremely small dimensions. Ion beam implantation as a ubiquitous industrial method is a promising candidate for introducing dopants into semiconductor devices. Although the interactions between ion beams and Si nanostructures have been studied for several decades, many questions still remain unanswered, especially when the size of the target structure and the interaction volume of the incident ion beam have similar extents. Recent studies have demonstrated different potential use cases of ion beam interactions with Si nanostructures, such as Si nanocrystals (SiNCs). One of them is to use SiNCs embedded in a SiO2 layer as the Coulomb blockade for a single electron transistor (SET) device. In this work, we demonstrate the ion beam synthesis of SiNCs, as well as other ion beam interactions with Si-based nanostructures. To build the basic structure of a room-temperature SET, both conventional broad-beam implantation and a focused Ne+ beam from a helium ion microscope (HIM) were used for ion beam mixing. Subsequent annealing using rapid thermal processing (RTP) triggered phase separation and Ostwald ripening, where small nucleated Si clusters merge to form larger ones with the lowest surface free energy. Various ion implantation parameters were tested, along with different conditions during the RTP treatment. The SiNC structures were examined with energy-filtered transmission electron microscopy (EFTEM) to determine the optimum fabrication conditions in terms of ion beam fluence and thermal budget for the RTP treatment. Due to their small size and the resulting quantum confinement, SiNCs also exhibited optical activity, which was confirmed by photoluminescence spectroscopy on both broad-beam irradiated blank wafers and vertical hybrid nanopillar structures with embedded SiNCs. By scanning a laser probe over the sample and integrating the signal close to the emission peak, 1 μm-wide micropads with embedded SiNCs could be spatially resolved and imaged, demonstrating a new method of patterning and visualizing the SiNC emission pattern. To integrate SiNCs into vertical nanopillars for the fabrication of the SET, a fundamental study was conducted on the interaction between ions and vertical Si nanopillars. It was discovered that irradiating vertical Si nanopillars with ion fluence up to 2×1016 cm−2 immediately caused amorphization and plastic deformation due to the ion hammering effect and the viscous flow of Si during the irradiation. However, amorphization could be avoided by heating the substrate to above 350 °C, which promotes dynamic annealing. Several factors, including substrate temperature, ion flux, and nanostructure geometry, determine whether ion irradiation causes amorphization. Furthermore, at sufficiently high substrate temperatures, increasing ion fluence gradually reduced the diameter of the nanopillars due to forward sputtering from ions on the sidewalls. With a fluence up to 8×1016 cm−2 from broad-beam Si+, the diameter of Si nanopillars could be reduced by 50% to approximately 11 nm. Similar experiments were conducted on vertical nano-fin structures, which were thinned down to about 16 nm with Ne+ irradiation from the HIM. However, electrical measurements with scanning spreading resistance microscopy (SSRM) showed that the spreading resistance of the fins increased, even at a lower fluence of 2×1016 cm−2, which was too high for subsequent device integration. Nevertheless, these findings contributed to achieving the CMOS-compatible manufacturability of room-temperature SET devices and furthered our understanding of the fundamentals of ion interactions with Si nanostructures.
3

Fabrication And Characterization Of Aluminum Oxide And Silicon/aluminum Oxide Films With Si Nanocrystals Formed By Magnetron Co-sputtering Technique

Dogan, Ilker 01 July 2008 (has links) (PDF)
DC and RF magnetron co-sputtering techniques are one of the most suitable techniques in fabrication of thin films with different compositions. In this work, Al2O3 and Si/Al2O3 thin films were fabricated by using magnetron co-sputtering technique. For Al2O3 films, the stoichiometric, optical and crystallographic analyses were performed. For Si contained Al2O3 films, the formation conditions of Si nanocrystals were investigated. To do so, these thin films were sputtered on Si (100) substrates. Post annealing was done in order to clarify the evolution of Al2O3 matrix and Si nanocrystals at different temperatures. Crystallographic properties and size of the nanocrystals were investigated by X-ray diffraction (XRD) method. The variation of the atomic concentrations and bond formations were investigated with X-ray photoelectron spectroscopy (XPS). The luminescent behaviors of Si nanocrystals and Al2O3 matrix were investigated with photoluminescence (PL) spectroscopy. Finally, the characteristic emissions from the matrix and the nanocrystals were separately identified.
4

Polymer Components for Photonic Integrated Circuits

Marinins, Aleksandrs January 2017 (has links)
Optical polymers are a subject of research and industry implementation for many decades. Optical polymers are inexpensive, easy to process and flexible enough to meet a broad range of application-specific requirements. These advantages allow a development of cost-efficient polymer photonic integrated circuits for on-chip optical communications. However, low refractive index contrast between core and cladding limits light confinement in a core and, consequently, integrated polymer device miniaturization. Also, polymers lack active functionality like light emission, amplification, modulation, etc. In this work, we improved a performance of integrated polymer waveguides and demonstrated active waveguide devices. Also, we present novel Si QD/polymer optical materials. In the integrated device part, we demonstrate optical waveguides with enhanced performance. Decreased radiation losses in air-suspended curved waveguides allow low-loss bending with radii of only 15 µm, which is far better than &gt;100 µm for typical polymer waveguides. Another study shows a positive effect of thermal treatment on acrylate waveguides. By heating higher than polymer glass transition temperature, surface roughness is reflown, minimizing scattering losses. This treatment method enhances microring resonator Q factor more than 2 times. We also fabricated and evaluated all-optical intensity modulator based on PMMA waveguides doped with Si QDs. We developed novel hybrid optical materials. Si QDs are encapsulated into PMMA and OSTE polymers. Obtained materials show stable photoluminescence with high quantum yield. We achieved the highest up to date ~65% QY for solid-state Si QD composites. Demonstrated materials are a step towards Si light sources and active devices. Integrated devices and materials presented in this work enhance the performance and expand functionality of polymer PICs. The components described here can also serve as building blocks for on-chip sensing applications, microfluidics, etc. / <p>QC 20171207</p>
5

Si Nanocrystals In Sic Matrix And Infrared Spectroscopy Of In A Dielecric Matrix

Gencer Imer, Arife 01 May 2010 (has links) (PDF)
This study focuses on various aspects of nanocrystals embedded in a dielectric matrix. In the first part of this work, a new approach with the use of Fourier Transform Infrared spectroscopy (FTIR) in the nanocrystal analysis was developed and presented. Si and Ge nanocrystals embedded in SiO2 matrix were mainly studied. This new approach is based on the analysis of structural variations of SiO2 matrix during the formation of semiconductor nanocrystlas. It is shown that the chemical and structural variations of the host matrix are directly related to the precipitation of nanocrystals in it. This correlation provides valuable information about the presences of nanocrystals in the matrix. In the second part of this work, fabrication of SiC films with and without Si nanocrystals inclusions was studied. With this aim, stoichiometric SiC and Si rich SiC thin films were fabricated by using magnetron co-sputtering and Plasma Enhanced Chemical Vapor Deposition (PECVD) techniques. For SiC films, the structural and optical analyses were performed. For Si rich SiC films, the formation conditions of Si nanocrystals were investigated. Post annealing studies were carried out to track the evolution of the SiC matrix and formation of Si nanocrystals at different temperatures. Chemical and structural properties of the SiC host matrix were investigated with FTIR spectroscopy. Optimum conditions for the fabrication of stoichiometric SiC layers were determined. The crystallography of the nanocrystals was investigated by X-Ray Diffraction (XRD). The variation of the atomic concentrations and bond formations were investigated with X-Ray Photoelectron Spectroscopy (XPS). Raman spectroscopy and Transmission Electron Microscopy (TEM) were used to verify the formation of Si nanocrystals. We have shown that both single and multilayer Si nanocrystals can be fabricated in the amorphous SiC matrix for applications such as light emitting diodes and solar cells.
6

Low Energy Ion Beam Synthesis of Si Nanocrystals for Nonvolatile Memories - Modeling and Process Simulations / Niederenergie-Ionenstrahlsynthese von Si Nanokristallen für nichtflüchtige Speicher - Modellierung und Prozesssimulationen

Müller, Torsten 16 November 2005 (has links) (PDF)
Metal-Oxide-Silicon Field-Effect-Transistors with a layer of electrically isolated Si nanocrystals (NCs) embedded in the gate oxide are known to improve conventional floating gate flash memories. Data retention, program and erase speeds as well as the memory operation voltages can be substantially improved due to the discrete charge storage in the isolated Si NCs. Using ion beam synthesis, Si NCs can be fabricated along with standard CMOS processing. The optimization of the location and size of ion beam synthesized Si NCs requires a deeper understanding of the mechanisms involved, which determine (i) the built-up of Si supersaturation by high-fluence ion implantation and (ii) NC formation by phase separation. For that aim, process simulations have been conducted that address both aspects on a fundamental level and, on the other hand, are able to avoid tedious experiments. The built-up of a Si supersaturation by high-fluence ion implantation were studied using dynamic binary collision calculations with TRIDYN and have lead to a prediction of Si excess depth profiles in thin gate oxides of a remarkable quality. These simulations include in a natural manner high fluence implantation effects as target erosion by sputtering, target swelling and ion beam mixing. The second stage of ion beam synthesis is modeled with the help of a tailored kinetic Monte Carlo code that combines a detailed kinetic description of phase separation on atomic level with the required degree of abstraction that is necessary to span the timescales involved. Large ensembles of Si NCs were simulated reaching the late stages of NC formation and dissolution at simulation sizes that allowed a direct comparison with experimental studies, e.g. with electron energy loss resolved TEM investigations. These comparisons reveal a nice degree of agreement, e.g. in terms of predicted and observed precipitate morphologies for different ion fluences. However, they also point clearly onto impact of additional external influences as, e.g., the oxidation of implanted Si by absorbed humidity, which was identified with the help of these process simulations. Moreover, these simulations are utilized as a general tool to identify optimum processing regimes for a tailored Si NC formation for NC memories. It is shown that key properties for NC memories as the tunneling distance from the transistor channel to the Si NCs, the NC morphology, size and density can be adjusted accurately despite of the involved degree of self-organization. Furthermore, possible lateral electron tunneling between neighboring Si NCs is evaluated on the basis of the performed kinetic Monte Carlo simulations.
7

Αυτο-οργανούμενα υμένια πορώδους Al2O3 σε υπόστρωμα Si και εφαρμογές

Γιαννέτα, Βιολέττα 07 July 2010 (has links)
Στην παρούσα διδακτορική διατριβή μελετάται η ανάπτυξη λεπτών υμενίων πορωδών ανοδικών οξειδίων του αλουμινίου (αναφέρονται και ως πορώδης ανοδική αλουμίνα) σε υπόστρωμα πυριτίου. Επιπλέον, εξετάζεται η ανάπτυξη εφαρμογών που αφορούν τη χρήση της πορώδους αλουμίνας ως μάσκα και ως μήτρα για την δημιουργία νανονημάτων ή κβαντικών τελειών (νανονησίδων) στο Si. Το πρώτο κεφάλαιο πραγματεύεται τη θεωρία και τους μηχανισμούς που διέπουν την ανάπτυξη πορωδών υμενίων, που προέρχονται από ανοδική οξείδωση (ανοδίωση) τόσο φύλλων αλουμινίου, όσο και υμενίων αλουμινίου σε υπόστρωμα πυριτίου. Επιπροσθέτως, παρατίθεται ο ρόλος που διαδραματίζουν οι ηλεκτροχημικές συνθήκες ανοδίωσης, όπως το pH, η θερμοκρασία και η εφαρμοζόμενη τάση, στα τελικά δομικά χαρακτηριστικά των πορωδών υμενίων. Στο δεύτερο κεφάλαιο παρουσιάζονται τα τεχνολογικά βήματα διεργασιών που αφορούν την προετοιμασία των δειγμάτων τα οποία πρόκειται να ανοδιωθούν, και δίνονται λεπτομέρειες για την πειραματική διάταξη η οποία χρησιμοποιείται κατά την ανοδίωση. Στο τρίτο κεφάλαιο μελετώνται εκτενώς, τρεις παράγοντες που έχουν σημαντική επίδραση στα τελικά δομικά χαρακτηριστικά των πορωδών υμενίων. Κατά τους δύο πρώτους, εξετάζεται η επίδραση του πάχους του προς ανοδίωση υμενίου αλουμινίου πάνω στο Si, καθώς και ο περιορισμός του σε επιφάνειες μερικών τετραγωνικών μικρομέτρων πάνω στο Si, στο μέγεθος και την πυκνότητα των πόρων. Ο τρίτος παράγοντας αφορά το ρόλο της ανοδίωσης του υμενίου του αλουμινίου σε δύο και τρία στάδια σε συνδυασμό με τη χημική εγχάραξή του μετά από κάθε στάδιο ανοδίωσης, στην ανάπτυξη εξαγωνικής συμμετρίας στην κατανομή των πόρων. Το τέταρτο κεφάλαιο, πραγματεύεται την ανάπτυξη εφαρμογών που συνδέονται με τη χρήση της πορώδους αλουμίνας ως μάσκα και ως μήτρα για τη δημιουργία νανοδομών επάνω στο πυρίτιο. Ως εκ τούτου παρουσιάζεται η δημιουργία νανονησίδων Cr, Ti, νανοστηλών Si, και νανονημάτων Au, πάνω στο Si, εφαρμογές στις οποίες τα πορώδη ανοδικά υμένια χρησιμοποιήθηκαν ως ενδιάμεσο στάδιο. Στο πέμπτο κεφάλαιο παρατίθεται η ανάπτυξη διαμέσου της πορώδους αλουμίνας, εξαγωνικά διατεταγμένων νανονησίδων SiO2 στο Si. Επίσης, παρουσιάζεται ο ηλεκτρικός χαρακτηρισμός διατάξεων οι οποίες αποτελούνται από την εν λόγω δομή. Σε ένα επιπλέον βήμα, οι νανονησίδες SiO2 χρησιμοποιούνται για την ανάπτυξη νανοκρυσταλλιτών Si στο εσωτερικό τους μέσω της τεχνικής της ιοντικής σύνθεσης. Τα σημαντικότερα αποτελέσματα και συμπεράσματα που προέκυψαν από την εκπόνηση της παρούσας διδακτορικής διατριβής συνοψίζονται στα εξής: • Βελτίωση της εξαγωνικής συμμετρίας στην κατανομή των πόρων, μέσω ανοδίωσης σε δύο ή τρία στάδια σε συνδυασμό με χημική εγχάραξη του προς ανοδίωση αλουμινίου έπειτα από κάθε στάδιο ανοδίωσης. • Αύξηση της πυκνότητας των πόρων των ανοδικών υμενίων κατά μία τάξη μεγέθους, με περιορισμό του προς ανοδίωση αλουμινίου σε προεπιλεγμένες περιοχές στο Si, επιφάνειας μερικών τετραγωνικών μικρομέτρων. • Ανάπτυξη διατεταγμένων νανοδομών Ti και Cr σε υπόστρωμα Si χρησιμοποιώντας λεπτά υμένια πορώδους αλουμίνας πάνω σε Si. Ιδιαίτερα οι δομές Cr, μπορούν να χρησιμοποιηθούν ως μεταλλική νανοδομημένη μάσκα για την εγχάραξη με ενεργά ιόντα του υποστρώματος Si και τη δημιουργία νανοστηλών Si πάνω σε αυτό. Η δημιουργία νανοστηλών Si, βρίσκει πληθώρα εφαρμογών στη Νανοηλεκτρονική, σε αισθητήρες, Nανοφωτονική, μνήμες κ.τ.λ. • Οι πυκνότητες διεπιφανειακών καταστάσεων που προέκυψαν από τον ηλεκτρικό χαρακτηρισμό της διεπιφάνειας υμενίων πορώδους αλουμίνας με το πυρίτιο, και της διεπιφάνειας πορώδους αλουμίνας – νανονησίδων SiO2 με το πυρίτιο. Οι τιμές που υπολογίστηκαν είναι ενθαρρυντικές, αν ληφθεί υπόψη ο ηλεκτροχημικός τρόπος παρασκευής των εν λόγω σύνθετων υμενίων πάνω στο πυρίτιο. • Ανάπτυξη μεμονωμένων νανοκρυσταλλιτών Si ενσωματωμένων σε νανονησίδες SiO2. Για το σκοπό αυτό συνδυάστηκαν δύο διαφορετικές τεχνολογίες, εκείνη της ιοντικής σύνθεσης και εκείνη της ανάπτυξης νανονησίδων SiO2 διαμέσου λεπτών υμενίων πορώδους αλουμίνας απευθείας σε υπόστρωμα Si. Τέτοιες δομές νανοκρυσταλλιτών έχουν εφαρμογές σε διατάξεις μη πτητικών μνημών, όπου η κατανεμημένη αποθήκευση φορτίου στους νανοκρυσταλλίτες ευνοεί τη χρήση λεπτότερων οξειδίων πύλης και τη δυνατότητα σμίκρυνσης του πάχους των οξειδίων αυτών χωρίς να μειώνεται ο χρόνος αποθήκευσης φορτίου. / In the present thesis, the growth of porous anodic alumina films on Si substrate was studied extensively. Potential applications of porous anodic alumina films formed directly on Si, regarding the use of porous membranes as mask or template for various nanostructures growth directly on Si, are discussed. Chapter one deals with the theory and mechanisms governing porous anodic alumina film growth, either on porous anodic films formed by anodization of aluminum foils, or on porous anodic films developed on Si substrates. Additionally, the effect of different factors (pH, temperature, applied voltage) on the final structural characteristics is presented. In chapter two, the preliminary processing steps regarding sample preparation before the anodization procedure are quoted. Moreover, details about the experimental set-up and the electrochemical conditions used during the sample anodization in the current work are given. In chapter three, the influence of three different factors, in the final structural characteristics, is investigated. Primarily, the impact of the initial aluminum thickness deposited on Si substrate, and secondly the confinement of the aluminum film in areas of a few μm2, in the pore size and pore density are studied. Finally, the influence of the third factor is associated with a three-step instead of a two-step anodization, in combination with an in-between step of aluminum chemical etching, on the ordering and the uniformity of the pores. The deposition of Ti and Cr nanodots arrays on Si, using the porous alumina membrane as a masking layer, is investigated in chapter four. Furthermore, the Ti nanodots are used for the electrodeposition of Au nanodots and nanowires inside the porous alumina films. Additionally, the Cr dots are used as metallic nanostructured mask for the Si etching by reactive ion etching process, that leads to the formation of Si nanopillars on Si substrate. In chapter five the growth of hexagonally ordered SiO2 dots on Si through porous anodic alumina membranes, in various acidic electrolytes, is studied. Moreover, the electrical characterization of the interface of porous alumina film/Si and porous alumina film with SiO2 dots in pore bottoms/ Si is presented. Finally, in the present thesis the technology of fabrication of Si nanocrystals embedded in SiO2 dots arrays through porous alumina membranes on Si substrate is developed for the first time. This was achieved by the combination of ion beam synthesis with the already existing technology of porous anodic alumina growth on Si substrates. The nanocrystals are electrically isolated from the substrate. This technique is promising as an application in non-volatile memory devices. The main achievements accomplished through this study are summarized as follows: • The optimization of pores ordering by developing the porous alumina membrane in two or three processing steps in combination with the chemical etching of Al film, lying above the porous membrane, following each anodization cycle. • The increase of porous density by the confinement of porous alumina film in areas of a few μm2 on Si. • The development of Ti, Cr and nanodots arrays, directly on Si, through porous alumina membranes. The use of Cr nanodots as nanostructured masking layer for the formation of Si nanopillars, formed by etching of Si substrate with RIE, on Si. • The density of interface stages results from the electrical characterization of porous alumina with or without SiO2 dots at each pore bottom, with the Si substrate. The results are encouraging, keeping in mind that the pore membranes and SiO2 dots were electrochemically grown directly on Si substrate. • The development of distinct Si nanocrystalls, embedded in SiO2 dots, combining for the first time two different technologies, that is the fabrication of porous anodic alumina films directly on Si substrate, as well as the ion beam synthesis technique. The proposed technique is promising for the fabrication of non-volatile memory devices.
8

Low Energy Ion Beam Synthesis of Si Nanocrystals for Nonvolatile Memories - Modeling and Process Simulations

Müller, Torsten 19 October 2005 (has links)
Metal-Oxide-Silicon Field-Effect-Transistors with a layer of electrically isolated Si nanocrystals (NCs) embedded in the gate oxide are known to improve conventional floating gate flash memories. Data retention, program and erase speeds as well as the memory operation voltages can be substantially improved due to the discrete charge storage in the isolated Si NCs. Using ion beam synthesis, Si NCs can be fabricated along with standard CMOS processing. The optimization of the location and size of ion beam synthesized Si NCs requires a deeper understanding of the mechanisms involved, which determine (i) the built-up of Si supersaturation by high-fluence ion implantation and (ii) NC formation by phase separation. For that aim, process simulations have been conducted that address both aspects on a fundamental level and, on the other hand, are able to avoid tedious experiments. The built-up of a Si supersaturation by high-fluence ion implantation were studied using dynamic binary collision calculations with TRIDYN and have lead to a prediction of Si excess depth profiles in thin gate oxides of a remarkable quality. These simulations include in a natural manner high fluence implantation effects as target erosion by sputtering, target swelling and ion beam mixing. The second stage of ion beam synthesis is modeled with the help of a tailored kinetic Monte Carlo code that combines a detailed kinetic description of phase separation on atomic level with the required degree of abstraction that is necessary to span the timescales involved. Large ensembles of Si NCs were simulated reaching the late stages of NC formation and dissolution at simulation sizes that allowed a direct comparison with experimental studies, e.g. with electron energy loss resolved TEM investigations. These comparisons reveal a nice degree of agreement, e.g. in terms of predicted and observed precipitate morphologies for different ion fluences. However, they also point clearly onto impact of additional external influences as, e.g., the oxidation of implanted Si by absorbed humidity, which was identified with the help of these process simulations. Moreover, these simulations are utilized as a general tool to identify optimum processing regimes for a tailored Si NC formation for NC memories. It is shown that key properties for NC memories as the tunneling distance from the transistor channel to the Si NCs, the NC morphology, size and density can be adjusted accurately despite of the involved degree of self-organization. Furthermore, possible lateral electron tunneling between neighboring Si NCs is evaluated on the basis of the performed kinetic Monte Carlo simulations.

Page generated in 0.0611 seconds