• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 28
  • 13
  • 10
  • 9
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 139
  • 30
  • 28
  • 24
  • 20
  • 14
  • 14
  • 13
  • 12
  • 12
  • 12
  • 12
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Primes with a missing digit : distribution in arithmetic progressions and sieve-theoretic applications

Nath, Kunjakanan 07 1900 (has links)
Le thème de cette thèse est de comprendre la distribution des nombres premiers, qui est un sujet central de la théorie analytique des nombres. Plus précisément, nous allons prouver des théorèmes de type Bombieri-Vinogradov pour les nombres premiers avec un chiffre manquant dans leur développement b-adique pour un grand entier positif b. La preuve est basée sur la méthode du cercle, qui repose sur la structure de Fourier des entiers avec un chiffre manquant et les sommes exponentielles sur les nombres premiers dans les progressions arithmétiques. En combinant nos résultats avec le crible semi-linéaire, nous obtenons une borne supérieure et une borne inférieure avec le bon ordre de grandeur pour le nombre de nombres premiers de la forme p=1+m^2 + n^2 avec un chiffre manquant dans une grande base impaire b. / The theme of this thesis is to understand the distribution of prime numbers, which is a central topic in analytic number theory. More precisely, we prove Bombieri-Vinogradov type theorems for primes with a missing digit in their b-adic expansion for some large positive integer b. The proof is based on the circle method, which relies on the Fourier structure of the integers with a missing digit and the exponential sums over primes in arithmetic progressions. Combining our results with the semi-linear sieve, we obtain an upper bound and a lower bound of the correct order of magnitude for the number of primes of the form p=1+m^2+n^2 with a missing digit in a large odd base b.
132

Irrégularités dans la distribution des nombres premiers et des suites plus générales dans les progressions arithmétiques

Fiorilli, Daniel 08 1900 (has links)
Le sujet principal de cette thèse est la distribution des nombres premiers dans les progressions arithmétiques, c'est-à-dire des nombres premiers de la forme $qn+a$, avec $a$ et $q$ des entiers fixés et $n=1,2,3,\dots$ La thèse porte aussi sur la comparaison de différentes suites arithmétiques par rapport à leur comportement dans les progressions arithmétiques. Elle est divisée en quatre chapitres et contient trois articles. Le premier chapitre est une invitation à la théorie analytique des nombres, suivie d'une revue des outils qui seront utilisés plus tard. Cette introduction comporte aussi certains résultats de recherche, que nous avons cru bon d'inclure au fil du texte. Le deuxième chapitre contient l'article \emph{Inequities in the Shanks-Rényi prime number race: an asymptotic formula for the densities}, qui est le fruit de recherche conjointe avec le professeur Greg Martin. Le but de cet article est d'étudier un phénomène appelé le <<Biais de Chebyshev>>, qui s'observe dans les <<courses de nombres premiers>>. Chebyshev a observé qu'il semble y avoir plus de premiers de la forme $4n+3$ que de la forme $4n+1$. De manière plus générale, Rubinstein et Sarnak ont montré l'existence d'une quantité $\delta(q;a,b)$, qui désigne la probabilité d'avoir plus de premiers de la forme $qn+a$ que de la forme $qn+b$. Dans cet article nous prouvons une formule asymptotique pour $\delta(q;a,b)$ qui peut être d'un ordre de précision arbitraire (en terme de puissance négative de $q$). Nous présentons aussi des résultats numériques qui supportent nos formules. Le troisième chapitre contient l'article \emph{Residue classes containing an unexpected number of primes}. Le but est de fixer un entier $a\neq 0$ et ensuite d'étudier la répartition des premiers de la forme $qn+a$, en moyenne sur $q$. Nous montrons que l'entier $a$ fixé au départ a une grande influence sur cette répartition, et qu'il existe en fait certaines progressions arithmétiques contenant moins de premiers que d'autres. Ce phénomène est plutôt surprenant, compte tenu du théorème des premiers dans les progressions arithmétiques qui stipule que les premiers sont équidistribués dans les classes d'équivalence $\bmod q$. Le quatrième chapitre contient l'article \emph{The influence of the first term of an arithmetic progression}. Dans cet article on s'intéresse à des irrégularités similaires à celles observées au troisième chapitre, mais pour des suites arithmétiques plus générales. En effet, nous étudions des suites telles que les entiers s'exprimant comme la somme de deux carrés, les valeurs d'une forme quadratique binaire, les $k$-tuplets de premiers et les entiers sans petit facteur premier. Nous démontrons que dans chacun de ces exemples, ainsi que dans une grande classe de suites arithmétiques, il existe des irrégularités dans les progressions arithmétiques $a\bmod q$, avec $a$ fixé et en moyenne sur $q$. / The main subject of this thesis is the distribution of primes in arithmetic progressions, that is of primes of the form $qn+a$, with $a$ and $q$ fixed, and $n=1,2,3,\dots$ The thesis also compares different arithmetic sequences, according to their behaviour over arithmetic progressions. It is divided in four chapters and contains three articles. The first chapter is an invitation to the subject of analytic number theory, which is followed by a review of the various number-theoretic tools to be used in the following chapters. This introduction also contains some research results, which we found adequate to include. The second chapter consists of the article \emph{Inequities in the Shanks-Rényi prime number race: an asymptotic formula for the densities}, which is joint work with Professor Greg Martin. The goal of this article is to study <<Chebyshev's Bias>>, a phenomenon appearing in <<prime number races>>. Chebyshev was the first to observe that there tends to be more primes of the form $4n+3$ than of the form $4n+1$. More generally, Rubinstein and Sarnak showed the existence of the quantity $\delta(q;a,b)$, which stands for the probability of having more primes of the form $qn+a$ than of the form $qn+b$. In this paper, we establish an asymptotic series for $\delta(q;a,b)$ which is precise to an arbitrary order of precision (in terms of negative powers of $q$). %(it can be instantiated with an error term smaller than any negative power of $q$). We also provide many numerical results supporting our formulas. The third chapter consists of the article \emph{Residue classes containing an unexpected number of primes}. We fix an integer $a \neq 0$ and study the distribution of the primes of the form $qn+a$, on average over $q$. We show that the choice of $a$ has a significant influence on this distribution, and that some arithmetic progressions contain, on average over q, fewer primes than typical arithmetic progressions. This phenomenon is quite surprising since in light of the prime number theorem for arithmetic progressions, the primes are equidistributed in the residue classes $\bmod q$. The fourth chapter consists of the article \emph{The influence of the first term of an arithmetic progression}. In this article we are interested in studying more general arithmetic sequences and finding irregularities similar to those observed in chapter three. Examples of such sequences are the integers which can be written as the sum of two squares, values of binary quadratic forms, prime $k$-tuples and integers free of small prime factors. We show that a broad class of arithmetic sequences exhibits such irregularities over the arithmetic progressions $a\bmod q$, with $a$ fixed and on average over $q$.
133

Sur la distribution des valeurs de la fonction zêta de Riemann et des fonctions L au bord de la bande critque

Lamzouri, Youness January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
134

Les plus grands facteurs premiers d’entiers consécutifs / The largest prime factors of consecutive integers

Wang, Zhiwei 23 March 2018 (has links)
Dans cette thèse, on s'intéresse aux plus grands facteur premiers d'entiers consécutifs. Désignons par $P^+(n)$ (resp. $P^-(n)$) le plus grand (resp. plus petit) facteur premier d'un entier générique $n\geq 1$ avec la convention que $P^+(1)=1$ (resp. $P^-(1)=\infty$). Dans le premier chapitre, nous étudions les plus grands facteurs premiers d'entiers consécutifs dans les petits intervalles. Nous démontrons qu'il existe une proportion positive d'entiers $n$ tels que $P^+(n)<P^+(n+1)$ pour $n\in\, ]x,\, x+y]$ avec $y=x^{\theta}, \tfrac{7}{12}<\theta\leq 1$. Nous obtenons un résultat similaire pour la condition $P^+(n)>P^+(n+1)$. Dans le deuxième chapitre, nous nous intéressons à la fonction $P_y^+(n)$, où $P_y^+(n)=\max\{p|n:\, p\leq y\}$ et $2\leq y\leq x.$ Nous montrons qu'il existe une proportion positive d'entiers $n$ tels que $P_y^+(n)<P_y^+(n+1)$. En particulier, la proportion d'entiers $n$ avec $P^+(n)<P^+(n+1)$ est plus grande que $0,1356$ en prenant $y=x.$ Les outils principaux sont le crible et un système de poids bien adapté. Dans le troisième chapitre, nous démontrons que les deux configurations $P^+(n-1)>P^+(n)<P^+(n+1)$ et $P^+(n-1)<P^+(n)>P^+(n+1)$ ont lieu pour une proportion positive d'entiers $n$, en utilisant le système de poids bien adapté que l'on a introduit dans le Chapitre 2. De façon similaire, on peut obtenir un résultat plus général pour $k$ entiers consécutifs, $k\in \mathbb{Z}, k\geq3$. Dans le quatrième chapitre, on étudie les plus grands facteurs premiers d'entiers consécutifs voisins d'un entier criblé. Sous la conjecture d'Elliott-Halberstam, nous montrons d'abord que la proportion de la configuration $P^+(p-1)<P^+(p+1)$ est plus grande que $0,1779$. Puis, nous démontrons qu'il existe une proportion positive d'entiers $n$ tels que $P^+(n)<P^+(n+2), P^-(n)>x^{\beta}$ avec $0<\beta<\frac{1}{3}$ / In this thesis, we study the largest prime factors of consecutive integers. Denote by $P^+(n)$ (resp. $P^-(n)$) the largest (resp. the smallest) prime factors of the integer $n\geq 1$ with the convention $P^+(1)=1$ (resp. $P^-(1)=\infty$). In the first chapter, we consider the largest prime factors of consecutive integers in short intervals. We prove that there exists a positive proportion of integers $n$ for $n\in\, (x,\, x+y]$ with $y=x^{\theta}, \tfrac{7}{12}<\theta\leq 1$ such that $P^+(n)<P^+(n+1)$. A similar result holds for the condition $P^+(n)>P^+(n+1)$. In the second chapter, we consider the function $P_y^+(n)$, where $P_y^+(n)=\max\{p|n:\, p\leq y\}$ and $2\leq y\leq x$. We prove that there exists a positive proportion of integers $n$ such that $P_y^+(n)<P_y^+(n+1)$. In particular, the proportion of the pattern $P^+(n)<P^+(n+1)$ is larger than $0.1356$ by taking $y=x.$ The main tools are sieve methods and a well adapted system of weights. In the third chapter, we prove that the two patterns $P^+(n-1)>P^+(n)<P^+(n+1)$ and $P^+(n-1)<P^+(n)>P^+(n+1)$ occur for a positive proportion of integers $n$ respectively, by the well adapted system of weights that we have developed in the second chapter. With the same method, we derive a more general result for $k$ consecutive integers, $k\in \mathbb{Z}, k\geq 3$. In the fourth chapter, we study the largest prime factors of consecutive integers with one of which without small prime factor. Firstly we show that under the Elliott-Halberstam conjecture, the proportion of the pattern $P^+(p-1)<P^+(p+1)$ is larger than $0.1779$. Then, we prove that there exists a positive proportion of integers $n$ such that $P^+(n)<P^+(n+2), P^-(n)>x^{\beta}$ with $0<\beta<\frac{1}{3}$
135

Irrégularités dans la distribution des nombres premiers et des suites plus générales dans les progressions arithmétiques

Fiorilli, Daniel 08 1900 (has links)
Le sujet principal de cette thèse est la distribution des nombres premiers dans les progressions arithmétiques, c'est-à-dire des nombres premiers de la forme $qn+a$, avec $a$ et $q$ des entiers fixés et $n=1,2,3,\dots$ La thèse porte aussi sur la comparaison de différentes suites arithmétiques par rapport à leur comportement dans les progressions arithmétiques. Elle est divisée en quatre chapitres et contient trois articles. Le premier chapitre est une invitation à la théorie analytique des nombres, suivie d'une revue des outils qui seront utilisés plus tard. Cette introduction comporte aussi certains résultats de recherche, que nous avons cru bon d'inclure au fil du texte. Le deuxième chapitre contient l'article \emph{Inequities in the Shanks-Rényi prime number race: an asymptotic formula for the densities}, qui est le fruit de recherche conjointe avec le professeur Greg Martin. Le but de cet article est d'étudier un phénomène appelé le <<Biais de Chebyshev>>, qui s'observe dans les <<courses de nombres premiers>>. Chebyshev a observé qu'il semble y avoir plus de premiers de la forme $4n+3$ que de la forme $4n+1$. De manière plus générale, Rubinstein et Sarnak ont montré l'existence d'une quantité $\delta(q;a,b)$, qui désigne la probabilité d'avoir plus de premiers de la forme $qn+a$ que de la forme $qn+b$. Dans cet article nous prouvons une formule asymptotique pour $\delta(q;a,b)$ qui peut être d'un ordre de précision arbitraire (en terme de puissance négative de $q$). Nous présentons aussi des résultats numériques qui supportent nos formules. Le troisième chapitre contient l'article \emph{Residue classes containing an unexpected number of primes}. Le but est de fixer un entier $a\neq 0$ et ensuite d'étudier la répartition des premiers de la forme $qn+a$, en moyenne sur $q$. Nous montrons que l'entier $a$ fixé au départ a une grande influence sur cette répartition, et qu'il existe en fait certaines progressions arithmétiques contenant moins de premiers que d'autres. Ce phénomène est plutôt surprenant, compte tenu du théorème des premiers dans les progressions arithmétiques qui stipule que les premiers sont équidistribués dans les classes d'équivalence $\bmod q$. Le quatrième chapitre contient l'article \emph{The influence of the first term of an arithmetic progression}. Dans cet article on s'intéresse à des irrégularités similaires à celles observées au troisième chapitre, mais pour des suites arithmétiques plus générales. En effet, nous étudions des suites telles que les entiers s'exprimant comme la somme de deux carrés, les valeurs d'une forme quadratique binaire, les $k$-tuplets de premiers et les entiers sans petit facteur premier. Nous démontrons que dans chacun de ces exemples, ainsi que dans une grande classe de suites arithmétiques, il existe des irrégularités dans les progressions arithmétiques $a\bmod q$, avec $a$ fixé et en moyenne sur $q$. / The main subject of this thesis is the distribution of primes in arithmetic progressions, that is of primes of the form $qn+a$, with $a$ and $q$ fixed, and $n=1,2,3,\dots$ The thesis also compares different arithmetic sequences, according to their behaviour over arithmetic progressions. It is divided in four chapters and contains three articles. The first chapter is an invitation to the subject of analytic number theory, which is followed by a review of the various number-theoretic tools to be used in the following chapters. This introduction also contains some research results, which we found adequate to include. The second chapter consists of the article \emph{Inequities in the Shanks-Rényi prime number race: an asymptotic formula for the densities}, which is joint work with Professor Greg Martin. The goal of this article is to study <<Chebyshev's Bias>>, a phenomenon appearing in <<prime number races>>. Chebyshev was the first to observe that there tends to be more primes of the form $4n+3$ than of the form $4n+1$. More generally, Rubinstein and Sarnak showed the existence of the quantity $\delta(q;a,b)$, which stands for the probability of having more primes of the form $qn+a$ than of the form $qn+b$. In this paper, we establish an asymptotic series for $\delta(q;a,b)$ which is precise to an arbitrary order of precision (in terms of negative powers of $q$). %(it can be instantiated with an error term smaller than any negative power of $q$). We also provide many numerical results supporting our formulas. The third chapter consists of the article \emph{Residue classes containing an unexpected number of primes}. We fix an integer $a \neq 0$ and study the distribution of the primes of the form $qn+a$, on average over $q$. We show that the choice of $a$ has a significant influence on this distribution, and that some arithmetic progressions contain, on average over q, fewer primes than typical arithmetic progressions. This phenomenon is quite surprising since in light of the prime number theorem for arithmetic progressions, the primes are equidistributed in the residue classes $\bmod q$. The fourth chapter consists of the article \emph{The influence of the first term of an arithmetic progression}. In this article we are interested in studying more general arithmetic sequences and finding irregularities similar to those observed in chapter three. Examples of such sequences are the integers which can be written as the sum of two squares, values of binary quadratic forms, prime $k$-tuples and integers free of small prime factors. We show that a broad class of arithmetic sequences exhibits such irregularities over the arithmetic progressions $a\bmod q$, with $a$ fixed and on average over $q$.
136

Sur la distribution des valeurs de la fonction zêta de Riemann et des fonctions L au bord de la bande critque

Lamzouri, Youness January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
137

On the distribution of the values of arithmetical functions / Sur la répartition des valeurs des fonctions arithmétiques

Hassani, Mehdi 08 December 2010 (has links)
La thèse concerne différents aspects de la répartition des fonctions arithmétiques.1. Deshouillers, Iwaniec et Luca se sont récemment intéressés à la répartition modulo 1 de suites qui sont des valeurs moyennes de fonctions multiplicatives, par exemple phi(n)/n où phi est la fonction d'Euler. Nous étendons leur travail à la densité modulo 1 de suites qui sont des valeurs moyennes sur des suites polynômiales, typiquement n^2+1.2. On sait depuis les travaux de Katai, il y a une quarantaine d'années que la fonction de répartition des valeurs de phi(p-1)/(p-1) (où p parcourt les nombres premiers) est continue, purement singulière, strictement croissante entre 0 et 1/2. On précise cette étude en montrant que cette fonction de répartition a une dérivée infinie à gauche de tout point phi(2n)/(2n). / Abstract
138

Recyklované kamenivo do pozemních komunikací / Recycled aggregate to pavement constructions of roads

Antošová, Klára January 2015 (has links)
The diploma thesis deals with using of recycled aggregate of concrete for base layers of pavement. The work is divided into practical and theoretical part. The theoretical part deals with basic concepts of construction and demolition waste, production, development and management of this waste in the Czech Republic. It also focuses on the principle of recycling and the use of recycled concrete in the Czech Republic and abroad. The practical part of the thesis deals with laboratory testing and assessment of recycled aggregates in bound, unbound and grouted courses layers of the base layers of roads.
139

Prime number races

Haddad, Tony 08 1900 (has links)
Sous l’hypothèse de Riemann généralisée et l’hypothèse d’indépendance linéaire, Rubinstein et Sarnak ont prouvé que les valeurs de x > 1 pour lesquelles nous avons plus de nombres premiers de la forme 4n + 3 que de nombres premiers de la forme 4n + 1 en dessous de x ont une densité logarithmique d’environ 99,59%. En général, l’étude de la différence #{p < x : p dans A} − #{p < x : p dans B} pour deux sous-ensembles de nombres premiers A et B s’appelle la course entre les nombres premiers de A et de B. Dans ce mémoire, nous cherchons ultimement à analyser d’un point de vue numérique et statistique la course entre les nombres premiers p tels que 2p + 1 est aussi premier (aussi appelés nombres premiers de Sophie Germain) et les nombres premiers p tels que 2p − 1 est aussi premier. Pour ce faire, nous présentons au préalable l’analyse de Rubinstein et Sarnak pour pouvoir repérer d’où vient le biais dans la course entre les nombres premiers 1 (mod 4) et les nombres premiers 3 (mod 4) et émettons une conjecture sur la distribution des nombres premiers de Sophie Germain. / Under the Generalized Riemann Hypothesis and the Linear Independence Hypothesis, Rubinstein and Sarnak proved that the values of x which have more prime numbers less than or equal to x of the form 4n + 3 than primes of the form 4n + 1 have a logarithmic density of approximately 99.59%. In general, the study of the difference #{p < x : p in A} − #{p < x : p in B} for two subsets of the primes A and B is called the prime number race between A and B. In this thesis, we will analyze the prime number race between the primes p such that 2p + 1 is also prime (these primes are called the Sophie Germain primes) and the primes p such that 2p − 1 is also prime. To understand this, we first present Rubinstein and Sarnak’s analysis to understand where the bias between primes that are 1 (mod 4) and the ones that are 3 (mod 4) comes from and give a conjecture on the distribution of Sophie Germain primes.

Page generated in 0.0418 seconds