• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 5
  • 3
  • 1
  • Tagged with
  • 37
  • 37
  • 37
  • 14
  • 12
  • 9
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Spintronique moléculaire de la vanne de spin à la détection d'un spin unique / Molecular spintronic using single molecular magnets : fabrication and caracterization of nanotube-based transistors and fonctionnalization by single molecular magnets.

Urdampilleta, Matias 26 October 2012 (has links)
Spintronique moléculaire : de la vanne de spin à la détection d'un spin unique. Parmi les thématiques qui ont émergé ces dix dernières années, la spintronique moléculaire est intéressante de par son caractère hybride, à la croisée entre l'électronique de spin, l'électronique moléculaire et le magnétisme moléculaire. Dans ce nouveau domaine, on cherche à exploiter les propriétés magnétiques et quantiques des aimants moléculaires pour créer des dispositifs originaux, utiles en spintronique ou en information quantique. Mon projet de thèse s'inscrit dans cette perspective en voulant combiner un transistor à nanotube de carbone avec des aimants à molécule unique, en les couplant par des interactions supramoléculaires. L'objectif est d'observer le renversement magnétique d'une seule molécule par des mesures de transport électronique à travers le nanotube. En effet, le diamètre de ce dernier étant comparable aux dimensions d'un aimant moléculaire, le couplage devrait être suffisamment fort pour en permettre la détection. La réalisation d'un tel dispositif, un défi technique, et la question de savoir s'il était réellement possible de détecter et de caractériser le moment d'une seule molécule ont constitué les deux enjeux majeurs de cette thèse. Une grande partie du travail réalisé porte sur la fabrication du dispositif expérimental par des techniques de micro- et nano-fabrication, ainsi que sur l'optimisation du greffage des aimants moléculaires sur la surface du nanotube. Dans un second temps, nous nous intéressons à l'étude du système et à son comportement à très basse température (100 mK). En effet, la proximité des aimants moléculaires TbPc2 modifie de façon spectaculaire les propriétés de transport d'un nanotube. En particulier, nous présentons la réalisation d'un dispositif dont la réponse est analogue à une vanne de spin classique, où les molécules magnétiques jouent le rôle de polariseur ou d'analyseur de spin. Grâce à ce système, nous avons réussi à affiner nos connaissances sur TbPc2. Entre autres résultats, nous sommes parvenus à isoler et à caractériser le retournement du moment magnétique d'un seul ion de terbium. Enfin, la dernière partie de cette thèse est consacrée à l'étude de l'interaction hyperfine au sein du terbium. En réalisant un dispositif qui n'est couplé qu'à deux molécules, nous avons mis en évidence qu'il est possible de réaliser une lecture directe de l'état d'un spin nucléaire unique. / Nowadays, new directions in quantum spintronics aim at transposing the existing concepts and at developing alternative ones with various types of materials, from inorganic to -conjugated organic semiconductors. In this context, single molecule-magnets (SMMs) are interesting candidates to be integrated in molecular spintronics devices. Such devices lead the way for the electronic detection and coherent manipulation of SMMs spin states, exploitable in quantum computation schemes. We developed for this purpose an innovative multi-terminals device based on a carbon nanotube quantum dot, laterally coupled to few SMMs through supramolecular interaction. The conductance of the nanotube is measured at very low temperature (40 mK) and each time one of the SMM magnetic moment reverses, the conductance changes. The latters act on the conduction electron through the QD as spin polarizer and analyzer. This spin-valve effect gives access to the behavior of a single localized spin by standard electrometry We report a full magnetic characterization of a single bis-phthalocyaninato terbium complex (TbPc2). In particular, we performed a detailed study of quantum tunnelling of the magnetization of the Tb electronic moment and we present a read-out technic of the Tb nuclear spin state. These results open up strong perspectives for a coherent manipulation of a single nuclear spin in TbPc2.
22

Magnetic studies on lanthanide-based endohedral metallofullerenes

Velkos, Georgios 13 December 2021 (has links)
​My PhD thesis is an in-depth study of the magnetic properties of a series of different lanthanide-based endohedral metallofullerenes. They are sphere-like shape carbon molecules (fullerenes) with embedded magnetic lanthanide elements inside, suitable for spintronic and high dense-data storage applications. In this work, I studied two families of endohedral metallofullerenes (di-lanthanides and Dy-oxides) which showed great versatility in the magnetic behavior, depending on the type of the encapsulated cluster, and the size and shape of the carbon cage.:Magnetic studies on lanthanide dimetallofullerenes Gd2@C80(CH2Ph) and Gd2@C79N Tb2@C80(CH2Ph) and Tb2@C79N TbY@C80(CH2Ph) Ho2@C80(CH2Ph) Er2@C80(CH2Ph) Magnetic studies on Dy-oxide clusterfullerenes Dy2O@C72 Dy2O@C74 Dy2O@C82 (three isomers)
23

Theoretical Approaches For Modelling Molecular Magnetism

Rajamani, R 11 1900 (has links)
In this thesis we have developed electronic and spin model Hamiltonians to understand magnetism in molecule based magnets like photomagnets, high-nuclearity transition metal complexes and single molecule magnets. In chapter 1, we provide an overview of molecular magnets. Here, we present a survey on the literature available on molecule based magnets. The chapter throws light on various phenomena found in molecular magnetic systems that range in dimensions from 3D down to molecular dimension. This is followed by a brief introduction to high-nuclearity transition metal complexes and single molecule magnets (SMMs). In the last two sections of this chapter, we discuss Light Induced Excited Spin State Trapping (LIESST) and photomagnetism in some molecular systems. Chapter 2 discusses various theoretical models that have been developed for magnetism. We begin with an introduction to the spin Hamiltonian and the origin of direct and kinetic exchange in simple systems and extend it to larger systems. Then we introduce the concept of superexchange proposed by Goodenough and Kanamori, followed by introduction to anisotropic Dzyalashinskii-Moria (DM) exchange and Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions. We also discuss molecular magnetic anisotropy, long-range magnetic interactions and higher order exchange interactions. These are effective model Hamiltonians that do not provide microscopic origin of magnetism, hence electronic model Hamiltonians need to be invoked. We introduce electronic model Hamiltonians like Huckel, Hubbard and Pariser-Parr-Popple (PPP) models and then present numerical techniques like valencebond (VB) and constant MS techniques that are used to exactly solve these model Hamiltonians. We present a many-body electronic model involving the active orbitals on the transition metal ions for photomagnetism in MoCu6 cluster, in chapter 3. The model is exactly solved using a valence bond approach. The ground state solution of the model is highly degenerate and is spanned by five S=0 states, nine S=1 states, five S=2 states and one S=3 state. The orbital occupancies in all these states correspond to six Cu(II) ions and one diamagnetic Mo(IV ) ion. The optically excited chargetransfer (CT) state in each spin sector occurs at nearly the same excitation energy of 2.993 eV for physically reasonable parameter values. We find that the excitation cross sections in different spin manifolds are similar in magnitude. The lifetime of the S=3 excited states is expected to be the largest as the number of states below that energy is very sparse in this spin sector compared to other spin sectors. This shows that photomagnetism is not due to preferential excitation to the S = 3 state. The inputs from the electronic model allows us to develop a kinetic model. In this model, photomagnetism is attributed to a long lived S=3 charge transfer excited state for which there appears to be sufficient experimental evidence. Based on this postulate, we model photomagnetism by including internal conversions and intersystem crossings. The key feature of the model is the assumption of existence of two kinds of S=3 states; one of which has no direct pathway for internal conversion and the other characterized by slow kinetics for internal conversion to the lowenergy states. The trapped S=3 state can decay via a thermally activated barrier to the other S = 3 state. The experimental XMT vs. T variation for two different irradiation times are fitted using Arrhenius dependence of the rate constants in the model. Conventional superexchange rules predict ferromagnetic exchange interaction between Ni(II) and M (M = MoV ,WV , NbIV ). Recent experiments show that in some systems this superexchange is antiferromagnetic. To understand this feature, in chapter 4 we develop a microscopic model for Ni(II) - M systems and solve it exactly using a valence bond approach. We identify direct exchange coupling, splitting of the magnetic orbitals and interorbital electron repulsions, on the M site as the parameters which control the ground state spin of various clusters of the Ni(II) - M system. We present quantum phase diagrams which delineate the high-spin and low-spin ground states in the parameter space. We fit the spin gap to a spin Hamiltonian and extract the effective exchange constant within the experimentally observed range, for reasonable parameter values. We also find a region in the parameter space where an intermediate spin state is the ground state. These results indicate that the spin spectrum of the microscopic model cannot be reproduced by a simple Heisenberg exchange Hamiltonian. The electronic model for A − B systems has been employed to reproduce the experimental magnetic data of the { NiW }2 system. In chapter 5, we present a theoretical approach to calculate the molecular magnetic anisotropy parameters, DM and EM for single molecule magnets in any eigenstate of the exchange Hamiltonian, treating the anisotropy Hamiltonian as a perturbation. Neglecting inter-site dipolar interactions, we calculate molecular magnetic anisotropy in a given total spin state from the known single-ion anisotropies of the transition metal centers. The method is applied to Mn12Ac and Fe8 in their ground and first few excited eigenstates, as an illustration. We have also studied the effect of orientation of local anisotropies on the molecular anisotropy in various eigenstates of the exchange Hamiltonian. We find that, in case of Mn12Ac, the molecular anisotropy depends strongly on the orientation of the local anisotropies and the spin of the state. The DM value of Mn12Ac is almost independent of the orientation of the local anisotropy of the core Mn(IV ) ions. In the case of Fe8, the dependence of molecular anisotropy on the spin of the state in question is weaker. We have also calculated the anisotropy constants for several sets of exchange parameters and find that in Mn12Ac the anisotropy increases with spin excitation gap while in Fe8, the anisotropy is almost independent of the gap. We have modeled the magnetic property of Nb6Ni12 cluster using a spin Hamiltonian in chapter 6. From Goodenough-Kanamori rules we should expect a ferromagnetic exchange between Nb and Ni ions. However, the magnetic studies indicate that the interaction is antiferromagnetic. We give reasons for the anomaly and fit the XMT data using an antiferromagnetic Heisenberg model. The observed XMT value at 2 K however does not correspond to ferrimagnetic ground state of Stot=9 and we invoke intermolecular interaction to explain this feature.
24

Chimie de coordination de radicaux nitronyl-nitroxyde pontants pour l’élaboration de matériaux magnétiques moléculaires : synthèse, structures cristallines, propriétés magnétiques et spectroscopie électronique / Coordination chemistry of bridging nitronyl-nitroxide radicals towards conception of molecule-based magnetic materials : synthesis, crystal structures, magnetic properties and electronic spectroscopy

Lannes, Anthony 23 September 2014 (has links)
Au cours des dernières décennies, l'électronique s'est développée de manière à répondre au besoin grandissant de stocker et traiter toujours plus d'information, et elle a évolué de manière incessante vers une miniaturisation extrême. Dans ce contexte, les molécules-aimants, qui sont des entités moléculaires magnétiques, présentent une bistabilité magnétique permettant de stocker l'information dans des unités de la taille d'une molécule. Le principal frein aux applications tient aux basses températures auxquelles ces molécules présentent de telles propriétés (< 15K). Il est donc important de comprendre les mécanismes mis en jeu au sein de ces entités afin d'augmenter les températures de fonctionnement. Un moyen prometteur est de ponter deux ions de lanthanides par un ligand radicalaire. Cette approche a conduit à la conception de la molécule-aimant ayant à ce jour la plus haute température de blocage (14 K). Ce travail de thèse est dédié à la conception et à la caractérisation des structures, ainsi qu'à l'étude des propriétés magnétiques et des relations magnéto-structurales par spectroscopie électronique de molécules aimants et d'aimants à base moléculaires. Ces systèmes sont élaborés à partir d'ions de lanthanides(III) ou de manganèse(II) et de radicaux libres organiques de types nitronyl-nitroxyde. Une attention particulière sera dirigée vers la réalisation de complexes dinucléaires de lanthanides pontés par un ligand radicalaire, et sur l'étude de la brique monomérique. Nous avons exploré la possibilité d'utiliser le radical NITBzImH comme ligand radicalaire pontant des briques moléculaires de type [Ln(β- dicétone)3] et [Ln(NO3)3]. Nous nous sommes intéressés au comportement magnétique inhabituel d'un polymère de coordination de manganèse(II) pontés par les radicaux NITIm, parent de NITBzImH, puis nous avons commencé à nous intéresser à l'effet produit en remplaçant les manganèses(II) par des lanthanides(III) / For the past decades, electronics have been developed in order to meet the increasing need of information storage, always evolving to the constant upgrade of their components: better, faster, smaller. Twenty-five years ago, the recently created field of molecular magnetism allowed designing entities responding to the aforementioned requirements: Single- Molecule-Magnets (SMMs). On the one hand, those are compounds showing magnetic bistability affording to stock information and on the other hand, they are the smallest entities available to design any information support. In spite of those remarkable qualities, they require very low temperature (< 15 K) to display their properties. Thus, it is of primary importance to understand underlying mechanisms in order to increase this temperature range. One promising route is to connect lanthanide dimer by a radical bridge. This method has led to the discovery of a SMM, whose blocking temperature is the highest known to date (14 K). This thesis work has been dedicated to the conception of SMMs and molecular-based magnets, as well as the characterization of their structures and magnetic properties, and their magneto-structural relationships by electronic spectroscopy. Those systems were mostly based on lanthanide(III) or manganese(II) ion and nitronyl-nitroxide organic free radicals. A special focus was made to the synthesis of dinuclear lanthanide complexes bridged by an organic free radical, and to the study of their mononuclear complex. We have studied the potential of NITBzImH radical as a bridge for [Ln(β-diketonate)3] and [Ln(NO3)3] molecular bricks. We also took interest to the unusual magnetic behavior of a manganese(II) coordination polymer, where each metal center is bridged by a NITIm radical, closely related to NITBzImH radical. Finally, we started to explore the changes induced by switching manganese(II) to lanthanide(III)
25

Lanthanide-based SMMs : from molecular properties to surface grafting exploiting multi-level ab initio techniques / Molécules aimants à base de lanthanides : des propriétes moléculaires au greffage en surface, en utilisant des méthodes ab initio multi-niveaux

Fernandez Garcia, Guglielmo 20 December 2017 (has links)
Cette thèse de doctorat a été réalisée en cotutelle entre les Universités de Rennes 1 en France et de Florence en Italie. L’objectif de ce travail est tout d’abord de rationaliser les propriétés inter- et intramoléculaires de molécules-aimants (Single Molecule Magnet – SMM) à base d’ions lanthanides (“partie moléculaire”) et puis leur évolution une fois absorbé sur surface (''partie sur surface''). Ces deux aspects ont été examinés dans un cadre théorique et computationnel, en utilisant différentes techniques multi-niveaux, de periodic Density Functional Theory (pDFT) en utilisant une approche post-Hartree-Fock, en fonction de la variable expérimentale d’intérêt. Les molécules-aimants sont d'un intérêt particulier pour le design de nouveaux matériaux magnétiques dans la science des surfaces (comme la spintronique), mais elles permettent également une connaissance des propriétés électroniques et magnétiques approfondie est également nécessaire. / The Ph.D. project was a joint agreement between two universities: Université de Rennes 1 in France and Università di Firenze in Italy. The project aimed to shed light on the rationalization of the inter- and intramolecular properties of novel lanthanide-based Single Molecule Magnets, SMMs, (“molecular part”) and their evolution once adsorbed on surface (“surface part”). Both aspects are examined within a theoretical and computational framework, with different multi-level techniques ranging from periodic Density Functional Theory (pDFT) to post-Hartree-Focks approaches, depending on the experimental observable of interest. SMMs are, indeed, at the cutting-edge in the design of novel magnetic materials in surface science (as spintronics or memory storage devices), but for their exploitation a deep understanding of their electronic and magnetic properties is needed.
26

Ingénierie de l’anisotropie magnétique dans les complexes mononucléaires de cobalt(II) et les métallacrowns à base de lanthanides / Engineering Magnetic Anisotropy in Mononuclear Cobalt(II) Complexes and Lanthanide-based Metallacrowns

Shao, Feng 04 July 2017 (has links)
Comme nous le savons, les applications sont déterminées par des propriétés, qui sont essentiellement déterminées par la structure. L’interaction entre la forme (structure moléculaire) et la fonction (propriétés physiques) peut être exploitée par le ligand, l’ion métallique, l'approche métallacrown et ainsi de suite. Les travaux portent sur la synthèse et l’étude du comportement magnétique de complexes mononucléaires cobalt(II) de géométrie bipyramide trigonale et sur l’étude de complexes mononucléaires de lanthanides possédant une structure de type métallacrown.Pour les complexes de cobalt(II), l’objectif a été de modifier l’anisotropie magnétique en modifiant la nature du ligand organique tétradenté et du ligand terminal en gardant, autant que faire se peut, la géométrie et même la symétrie des complexes. Presque tous ces complexes se comportent comme des molécules-aimants avec une barrière énergétique à l’inversion de l’aimantation qui peut être liée à leur anisotropie magnétique et donc à la nature des ligands. Et les complexes métallacrown à base de lanthanides étant hautement symétriques, permet de les utiliser comme modèles pour effectuer une corrélation entre la nature de l’ion lanthanide et leurs propriétés d’aimants.La thèse est composée de 6 chapitres. Le chapitre 1 présente l’état de l’art du magnétisme, des molécules-aimants (SMMs et SIMs), et quelques exemples importants. Le chapitre 2 se concentre sur une famille de complexes de géométriebipyramide trigonale de formule générale [Co(Me6tren)X]Y avec le ligand axial (X) et le contre-ion (Y) induisant le comportement SMM.Dans cette série de composés, j’ai étudié l’influence du ligand axial X sur la nature et l’amplitude de l’anisotropie magnétique. J’ai montré que la série des halogénures, l’anisotropie la plus forte est obtenue pour le ligand axial fluorure (F–). J’ai aussi étudié l’effet du cation Y qui influence l’interaction entre les molécules qui affectent le comportement d’aimant moléculaire. Au chapitre 3, on étudie l’influence du changement du ligand tétradenté. Le remplacement des trois atomes d’azote qui se trouvent en position équatoriale dans la sphère de coordination de cobalt(II) par des atomes de soufre induit une augmentation des distances Co–L dans le plan équatorial qui conduit à une plus forte anisotropie. Les calculs théoriques effectués sur ces complexes permettent de rationaliser les résultats expérimentaux et surtout de prévoir les propriétés de nouveaux complexes. Les chapitres 4 et 5 concernent deux séries de SMM 12-MC-4 basées sur LnGa4 (Ln = TbIII, DyIII, HoIII, ErIII, YbIII) avec les ligands basés sur l’acide salicylhydroxamique (H3shi) et l’acide 3-hydroxy-2-naphtohydroxamique (H3nha). J’ai préparé plusieurs complexes et étudié leurs propriétés magnétiques. Les calculs théoriques permettent de rationaliser la différence entre les propriétés des magnétiques dues aux différents ions lanthanide. Enfin, une conclusion générale avec des perspectives sont récapitulées au chapitre 6. / As we know, the applications are determined by properties, which are essentially determined by structure. The interplay between form (molecular structure) and function (physical properties) can be exploited engineering by the ligand, the metal ion, the metallacrown approach and so on. The work focuses on the synthesis and the study of the magnetic behavior of mononuclear cobalt(II) complexes with trigonal geometry and on the study of mononuclear lanthanide complexes that possess a metallacrown structure.For the cobalt(II) complexes, the aim was to tune the magnetic anisotropy by changing the nature of the tetradentate organic ligand and the terminal ligand. Almost all these complexes behave as Single Molecule Magnets with an energy barrier to the reversal of the magnetization that can be linked to their magnetic anisotropy and thus to the nature of the organic ligands. The lanthanide containing metallacrown complexes are highly symmetric, which allows performing a correlation between the nature of the lanthanide ion and their Single Molecule Magnet properties.The dissertation will be composed of 6 chapters. Chapter 1 introduces the background of the magnetism, Single Molecule Magnets, Single Ion Magnets, and some important SIMs. Chapter 2 focuses on a family of trigonal bipyramidal complexes [Co(Me6tren)X]Y. We show that the axial ligand affects the SMM behavior allowing us to prepare a complex with a magnetic bistability at T = 2 K. In Chapter 3, we examine the effect of changing the coordinated atoms (sulfur instead of nitrogen) in the equatorial coordination sphere of cobalt(II). We demonstrate that this slight change improves the SMM behavior. Chapter 4 and 5, which concern two series of 12-MC-4 SMMs based on LnGa4 (Ln = TbIII, DyIII, HoIII, ErIII, YbIII) with the ligands salicylhydroxamic acid (H3shi) and 3-hydroxy-2-naphthohydroxamic acid (H3nha), respectively, where we correlate the nature of the lanthanide ion to its magnetic behavior using ab initio calculations. At last, the understanding gained from this dissertation research, along with future research directions will be recapitulated in Chapter 6.
27

Études de l’effet tunnel des spins quantiques macroscopiques

Owerre, Solomon Akaraka 10 1900 (has links)
Dans cette thèse, nous présentons quelques analyses théoriques récentes ainsi que des observations expérimentales de l’effet tunnel quantique macroscopique et des tran- sitions de phase classique-quantique dans le taux d’échappement des systèmes de spins élevés. Nous considérons les systèmes de spin biaxial et ferromagnétiques. Grâce à l’approche de l’intégral de chemin utilisant les états cohérents de spin exprimés dans le système de coordonnées, nous calculons l’interférence des phases quantiques et leur distribution énergétique. Nous présentons une exposition claire de l’effet tunnel dans les systèmes antiferromagnétiques en présence d’un couplage d’échange dimère et d’une anisotropie le long de l’axe de magnétisation aisé. Nous obtenons l’énergie et la fonc- tion d’onde de l’état fondamentale ainsi que le premier état excité pour les systèmes de spins entiers et demi-entiers impairs. Nos résultats sont confirmés par un calcul utilisant la théorie des perturbations à grand ordre et avec la méthode de l’intégral de chemin qui est indépendant du système de coordonnées. Nous présentons aussi une explica- tion claire de la méthode du potentiel effectif, qui nous laisse faire une application d’un système de spin quantique vers un problème de mécanique quantique d’une particule. Nous utilisons cette méthode pour analyser nos modèles, mais avec la contrainte d’un champ magnétique externe ajouté. La méthode nous permet de considérer les transitions classiques-quantique dans le taux d’échappement dans ces systèmes. Nous obtenons le diagramme de phases ainsi que les températures critiques du passage entre les deux régimes. Nous étendons notre analyse à une chaine de spins d’Heisenberg antiferro- magnétique avec une anisotropie le long d’un axe pour N sites, prenant des conditions frontière périodiques. Pour N paire, nous montrons que l’état fondamental est non- dégénéré et donné par la superposition des deux états de Néel. Pour N impair, l’état de Néel contient un soliton, et, car la position du soliton est indéterminée, l’état fondamen- tal est N fois dégénéré. Dans la limite perturbative pour l’interaction d’Heisenberg, les fluctuations quantiques lèvent la dégénérescence et les N états se réorganisent dans une bande. Nous montrons qu’à l’ordre 2s, où s est la valeur de chaque spin dans la théorie des perturbations dégénérées, la bande est formée. L’état fondamental est dégénéré pour s entier, mais deux fois dégénéré pour s un demi-entier impair, comme prévu par le théorème de Kramer / This thesis presents recent theoretical analyses together with experimental observa- tions on macroscopic quantum tunneling and quantum-classical phase transitions of the escape rate in large spin systems. We consider biaxial ferromagnetic spin systems. Using the coordinate dependent spin coherent state path integral, we obtain the quantum phase interference and the energy splitting of these systems. We also present a lucid exposition of tunneling in antiferromagnetic exchange-coupled dimer, with easy-axis anisotropy. Indeed, we obtain the ground state, the first excited state, and the energy splitting, for both integer and half-odd integer spins. These results are then corroborated using per- turbation theory and the coordinate independent spin coherent state path integral. We further present a lucid explication of the effective potential method, which enables one to map a spin Hamiltonian onto a particle Hamiltonian; we employ this method to our models, however, in the presence of an applied magnetic field. This method enables us to investigate quantum-classical phase transitions of the escape rate of these systems. We obtain the phase boundaries, as well as the crossover temperatures of these phase transi- tions. Furthermore, we extend our analysis to one-dimensional anisotropic Heisenberg antiferromagnet, with N periodic sites. For even N, we show that the ground state is non-degenerate and given by the coherent superposition of the two Neél states. For odd N, however, the Neél state contains a soliton; as the soliton can be placed anywhere along the ring, the ground state is, indeed, N-fold degenerate. In the perturbative limit (weak exchange interaction), quantum fluctuation stemming from the interaction term lifts this degeneracy and reorganizes the states into a band. We show that this occurs at order 2s in (degenerate) perturbation theory. The ground state is non-degenerate for inte- ger spin, but degenerate for half-odd integer spin, in accordance with Kramers’ theorem
28

New Pyrazole- and Triazine-Based Ligands as Scaffolds for Oligonuclear Complexes: From Multiredox Stability to Heteronuclear Single Molecule Magnets

Das, Animesh 20 January 2010 (has links)
No description available.
29

Density functional study of the electronic and magnetic properties of selected transition metal complexes

Martin, Claudia 27 February 2014 (has links) (PDF)
Die vorliegende Promotionsarbeit “Density functional study of the electronic and magnetic properties of selected transition metal complexes” beschäftigt sich mit dem Zusammenhang zwischen strukturellen Merkmalen sowie elektronischen und magnetischen Eigenschaften von Einzelmolekül-Magneten. Im Wesentlichen konnte dabei gezeigt werden, dass die magnetischen Eigenschaften sowohl von strukturellen Merkmalen als auch von den elektronischen Eigenschaften bestimmt werden. Des Weiteren ergab sich, dass verschiedene Kenngrößen der magnetischen Eigenschaften (im speziellen der magnetische Grundzustand S sowie die magnetische Anisotropie D) miteinander korreliert sind. Dies ist im Besonderen für eine mögliche Anwendung von Einzelmolekül-Magneten im Bereich der Datenspeicherung von Bedeutung.
30

Synthèse et transport électronique dans des nanotubes de carbone ultra-propres / Synthesis and electrical transport of ultra-clean carbon nanotubes

Nguyen, Ngoc Viet 25 October 2012 (has links)
Cette thèse décrit des expériences sur la synthèse de nanotubes de carbone (CNT) mono-paroi, leur intégration dans des dispositifs ultra-propres, ainsi que l'étude de leurs propriétés électroniques par des mesures de transport à très basse température. La première partie de ce travail décrit l'optimisation des paramètres de synthèse par déposition chimique en phase vapeur (CVD) tels que les précurseurs de carbone, les flux de gaz, la température, ou le catalyseur pour la croissance de CNT de très bonne qualité. Parmis tous ces paramètres, la composition du catalyseur joue un rôle decisif pour permettre une croissance sélective en mono-paroi ansi qu'une distribution de faible diamètre. Dans la deuxième partie nous développons la nanofabrication de boites quantiques ultra-propres à base de CNT ainsi que les mesures de transport de ces échantillons à basse température (40 mK). Le spectre de la première couche électronique du nanotube est mesuré par spectroscopie de cotunneling inélastique sous champ magnétique, montrant alors un fort couplage spin-orbite négatif, dans ce système. Nous montrons que la séquence de remplissage d'électrons dans notre cas (ΔSO < 0) est différente de celle que l'on obtiendrait en régime Kondo SU (4) (ΔSO = 0). En effet, un effet Kondo purement orbital est observé pour N =2e à champ magnétique fini. Dans la dernière partie de cette thèse, nous décrivons la mise en œuvre expérimentale d'un évaporateur thermique à aimants à molécule unique (SMM) pour la fabrication future de dispositifs hybrides CNT-SMM ultra-propres. / This thesis describes experiments on the synthesis of single wall carbon nanotubes (SWNTs), fabrication of ultra-clean CNT devices, and study of electronic properties of CNTs with transport measurements. The first part of this work describes the optimization of the synthesis parameters (by chemical vapor deposition - CVD) such as carbon precursor, gas flows, temperature, catalyst for the growth of high quality SWNTs. In all these parameters, the catalyst composition plays a very important role on the high selective growth of SWNTs with a narrow diameter distribution. The second part deals with the nanofabrication of ultra-clean CNT devices and the low temperature (40 mK) transport measurements of these CNT quantum dots. The level spectra of the electrons in the first shell are investigated using inelastic cotunneling spectroscopy in an axial magnetic field, which shows a strong negative spin-orbit coupling of electron. We find that the sequence of electron shell filling in our case (ΔSO < 0) is different from which would be obtained in the pure SU(4) Kondo regime (ΔSO = 0). Indeed, a pure orbital Kondo effect is observed in N=2e at a finite magnetic field. In the last part of this thesis, we describe the experimental implementation of the thermal evaporation of single-molecule magnet (SMM) for the future fabrication of ultra-clean CNT-SMM hybrid devices.

Page generated in 0.092 seconds