• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 5
  • 1
  • Tagged with
  • 17
  • 17
  • 17
  • 10
  • 8
  • 8
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Influence de l’assemblage du VIH-1 et de l’organisation du cytosquelette sur la dynamique et la répartition membranaire des tétraspanines CD9 et CD81analysée à l’échelle de la molécule unique / Influence of HIV-1 assembly and cytoskeleton integrityon tetraspanins CD9 and CD81 dynamics and partitioninganalysed at the single molecule level

Rassam, Patrice 25 October 2012 (has links)
Les mécanismes moléculaires d'assemblage et de bourgeonnement des virus tels que le VIH-1 dans les cellules infectées sont encore relativement mal connus. Toutefois, il semble établi que la multimérisation de la protéine Gag s'effectue à la membrane plasmique et que le bourgeonnement des particules virales a lieu au niveau de zones enrichies en tétraspanines. Ces protéines transmembranaires forment un réseau d'interactions protéiques à la surface de la cellule et s'organisent en microdomaines différents des radeaux lipidiques, bien qu'enrichis en cholestérol.En utilisant la technique de suivi de molécules uniques fluorescentes sur des cellules HeLa exprimant la protéine Gag, l'objectif de mon travail de thèse était d'abord de déterminer l'influence de l'assemblage et le bourgeonnement de pseudoparticules virales sur la dynamique et la répartition membranaires des tétraspanines CD9 et CD81. Nos résultats renforcent l'émergence d'un nouveau concept, selon lequel les composants cellulaires et viraux, plutôt que de se regrouper au niveau de plateformes membranaires préexistantes, s'organisent en structures de taille croissante où les tétraspanines sont peu à peu concentrées avec leurs partenaires pour former une architecture propice à l'assemblage et la sortie du VIH-1.Par ailleurs, nous avons montré que CD81 était plus confiné et moins dynamique que CD9 et avons donc étudié les mécanismes moléculaires expliquant cette différence de comportement membranaire. L'utilisation du pistage en molécule unique couplé à des marquages d'ensemble, l'emploi de protéines chimériques et de drogues spécifiques ont permis de révéler que la dynamique membranaire de CD81 est restreinte par le réseau d'actine, via l'ezrine, mais implique aussi EWI-2 et CD9P-1, deux partenaires membranaires de CD9 et de CD81. Enfin, cette étude montre que cette interaction avec le cytosquelette est impliquée dans le recrutement de CD81 et indirectement de CD9, lors de l'assemblage du VIH. / Molecular mechanisms of assembly and budding of HIV-1 particles in infected cells are still a matter of debate. However it is now well established that Gag assembly occurs at the plasma membrane and that budding involves tetraspanin-enriched areas. Tetraspanins are transmembrane proteins that form a network of protein interaction at the cell surface organized into microdomains enriched in cholesterol but distinct from rafts.Using single molecule tracking of fluorescent markers with Gag-expressing HeLa cells, the aim my PhD thesis was first to determine the influence of Gag assembly and budding of pseudo particles on the dynamics and partitioning of the tetraspanins CD9 and CD81 at the plasma membrane. Our results support an emerging concept that cellular and viral components, instead of clustering at preexisting microdomains or platforms, direct the organization of growing structures where tetraspanins are more and more concentrated with their partners, in order to form a membrane scaffold that helps HIV-1 assembly and egress.In a second work, we showed that CD81 is more confined and less dynamic than CD9, and tried to clarify the molecular mechanisms involved in this differential behavior at the plasma membrane. Single molecule tracking, in addition to ensemble labeling experiments, CD9/CD81 chimeric proteins, as well as specific drugs, demonstrated that CD81 membrane dynamics is restricted by the actin network through ezrin proteins, but also implicates EWI-2 and CD9P-1, primary partners of CD9 and CD81. Finally, this study reveals that this interaction with the cytoskeleton is in part responsible of the recruitment of CD81 and indirectly of CD9 during HIV-1 assembly.
12

Influence of gangliosides in the dynamics and partitioning of CD82 and its partners / Influence des gangliosides dans la dynamique et la compartimentation de la tétraspanine CD82 et de ses partenaires

Fernandez, Laurent 22 September 2017 (has links)
Un membre de la famille des tétraspanines, CD82, est une protéine transmembranaire et l'un des rares suppresseurs de métastase identifié jusqu'à présent. Cependant, le mécanisme de suppression de métastase induite par CD82 reste mal compris. Les tétraspanines, y compris CD82, ont la propriété unique de créer un réseau d'interactions protéines-protéines à la membrane plasmique, appelé « tetraspanin web ». Dans ce réseau, CD82 est connu pour interagir avec d’autres tétraspanines, y compris CD9, CD81 et CD151, en plus d’autres protéines membranaires telles que les intégrines, les récepteurs de facteurs de croissance et les protéines de type immunoglobuline. De plus, des travaux antérieurs ont identifié que l'interaction de CD82 avec l’EGFR, d'autres tétraspanines et les intégrines dépend de l'expression des gangliosides au sein de la membrane plasmique.À ce jour, les études dans ce domaine ont utilisé des techniques d'ensemble qui ne peuvent pas tenir compte de la dynamique et de la stochasticité de la membrane, alors qu'il est maintenant bien établi que l'organisation spatio-temporelle de ses composants est cruciale pour certaines fonctions cellulaires.Ainsi, lors de ma thèse de doctorat, j'ai cherché à étudier à la fois la dynamique et la compartimentation de CD82 et de ses partenaires à la membrane plasmique des cellules épithéliales mammaires HB2. Pour ce faire, la technique de pistage en molécule unique basée sur l’utilisation d’un microscope TIRF a été utilisée afin d’obtenir des informations directes à l'échelle nanométrique sur la dynamique de protéines individuelles dans les cellules vivantes. Nos expériences en pistage de molécule unique ont démontré que l'expression de CD82 augmentait la dynamique CD81 à la membrane plasmique des cellules HB2 et modifiait ses interactions au sein du tetraspanin web. En revanche, les dynamiques de CD9 et de l’intégrine α3 n'ont pas été modifiées par l'expression de CD82. De plus, en modifiant enzymatiquement l'expression des gangliosides, nous avons montré que ces lipides sont impliqués à la fois dans la dynamique et la compartimentation des tétraspanines à la membrane plasmique. En effet, la déplétion en gangliosides entraine une augmentation de la dynamique de CD82, CD81 et de l’intégrine α3 ainsi qu'une redistribution des tétraspanines à la membrane plasmique. Nous avons également étudié la migration en 2D des cellules HB2 et montré que CD82 et les gangliosides modifiaient de façon différentielle la migration des cellules HB2.L’ensemble de nos résultats démontrent que CD82 et les gangliosides modulent de manière différente la dynamique et la compartimentation des tétraspanines et de leurs partenaires à la membrane plasmique des cellules HB2. Enfin, ce travail suggère que l'activité de CD82 en tant que suppresseur de métastase pourrait être en partie liée à sa capacité, en coopération avec les gangliosides, à moduler l'organisation spatio-temporelle de ses partenaires au sein du tetraspanin web. / A member of the family of tetraspanins, CD82, is a transmembrane protein and one of the rare metastasis suppressors identified so far. However, the mechanism of CD82-induced metastasis suppression remains not fully revealed. Tetraspanins, including CD82, have the unique property to create a network of protein-protein interactions within the plasma membrane, called tetraspanin web. Within this network, tetraspanins interact with each other (eg. CD82 with CD9, CD81 and CD151) as well as with other proteins, such as: integrins, growth factor receptors and immunoglobulin-like proteins. Additionally previous work has identified that the interaction of CD82 with EGFR, other tetraspanins and integrins depends on the expression of gangliosides at the plasma membrane.To date, studies in this field have employed ensemble-averaging techniques which are unable to account for membrane dynamics and stochasticity. Nevertheless, it is now well established that the spatio-temporal organization of its components is crucial for cellular functions.Thus, during my PhD thesis I aimed to study both the dynamics and partitioning of CD82 and its partners at the plasma membrane of HB2 mammary cells. To achieve this aim, a TIRF-based Single Molecule Tracking (SMT) approach was employed to provide direct nanoscale insights by observing individual proteins in living cells. Our SMT experiments demonstrated that CD82 overexpression increased CD81 dynamics at the plasma membrane of HB2 cells and modified its interaction within the tetraspanin web. In contrast, CD9 and α3 integrin dynamics were not modified by CD82 expression. Moreover, by enzymatically tuning gangliosides expression, we showed that these lipids are involved in both dynamics and partitioning of tetraspanins at the plasma membrane. Indeed, gangliosides depletion resulted in an increase in CD82, CD81 and α3 integrin dynamics as well as a redistribution of tetraspanins at the plasma membrane. We also investigated the 2D migration of HB2 cells showing that CD82 and gangliosides differentially altered the cellular migration of HB2 cells.Taken together, our results demonstrate that both CD82 and gangliosides differentially modulate the dynamics and partitioning of tetraspanins and their partners at the plasma membrane of HB2 cells. Finally, this work suggests that CD82 activity as metastasis suppressor could be in part linked to its ability, in cooperation with gangliosides, to modulate the spatio-temporal organization of its partners within the tetraspanin web.
13

STUDYING TRANSMEMBRANE PROTEIN TRANSPORT IN PRIMARY CILIA WITH SINGLE MOLECULE TRACKING

Ruba, Andrew January 2019 (has links)
The primary cilium is an immotile, microtubule-based protrusion on the surface of many eukaryotic cells and contains a unique complement of proteins that function critically in cell motility and signaling. Critically, the transport of membrane and cytosolic proteins into the primary cilium is essential for its role in cellular signaling. Since cilia are incapable of synthesizing their own protein, nearly 200 unique ciliary proteins need to be trafficked between the cytosol and primary cilia. However, it is still a technical challenge to map three-dimensional (3D) locations of transport pathways for these proteins in live primary cilia due to the limitations of currently existing techniques. To conquer the challenge, this work employed a high-speed virtual 3D super-resolution microscopy, termed single-point edge-excitation sub-diffraction (SPEED) microscopy, to determine the 3D spatial location of transport pathways for both cytosolic and membrane proteins in primary cilia of live cells. Using SPEED microscopy and single molecule tracking, we mapped the movement of membrane and soluble proteins at the base of the primary cilium. In addition to the well-known intraflagellar transport (IFT) route, we identified two new pathways within the lumen of the primary cilium - passive diffusional and vesicle transport routes - that are adopted by proteins for cytoplasmic-cilium transport in live cells. Independent of the IFT path, approximately half of IFT motors (KIF3A) and cargo (α-tubulin) take the passive diffusion route and more than half of membrane-embedded G protein coupled receptors (SSTR3 and HTR6) use RAB8A-regulated vesicles to transport into and inside cilia. Furthermore, ciliary lumen transport is the preferred route for membrane proteins in the early stages of ciliogenesis and inhibition of SSTR3 vesicle transport completely blocks ciliogenesis. Furthermore, clathrin-mediated, signal-dependent internalization of SSTR3 also occurs through the ciliary lumen. These transport routes were also observed in Chlamydomonas reinhardtii flagella, suggesting their conserved roles in trafficking of ciliary proteins. While the 3D transport pathways in this work are always replicated multiple times with a high degree of consistency, several experimental parameters directly affect the 3D transport routes’ error, such as single molecule localization precision and the number of single molecule localizations. In fact, if these experimental parameters do not meet a minimum threshold, the resultant 3D transport pathways may not have significant resolution to determine any biological details. To estimate the 3D transport routes’ error, this work will explain in detail the component of SPEED microscopy that estimates 3D sub-diffraction-limited structural or dynamic information in rotationally symmetric bio-structures, such as the primary cilium. This component is a post-localization analysis that transforms 2D super-resolution images or 2D single-molecule localization distributions into their corresponding 3D spatial probability distributions based on prior known structural knowledge. This analysis is ideal in cases where the ultrastructure of a cellular structure is known but the sub-structural localization of a particular protein is not. This work will demonstrate how the 2D-to-3D component of SPEED microscopy can be successfully applied to achieve 3D structural and functional sub-diffraction-limited information for 25-300 nm subcellular organelles that meet the rotational symmetry requirement, such as the primary cilium and microtubules. Furthermore, this work will provide comprehensive analyses of this method by using computational simulations which investigate the role of various experimental parameters on the 3D transport pathway error. Lastly, this work will demonstrate that this method can distinguish different types of 3D transport pathway distributions in addition to their locations. / Biology
14

Quantitative Study of Membrane Nano-organization by Single Nanoparticle Imaging / Etude quantitative de la Nano-organisation Membranaire par Imagerie Simple de Nanoparticules

Yu, Chao 24 July 2019 (has links)
La nano-organisation de la membrane cellulaire est essentielle à la régulation de certaines fonctions cellulaires. Dans cette thèse, les récepteurs EGF, CPεT et de la transferrine ont été marqués avec des nanoparticules luminescentes et ont été suivis à la fois dans leur environnement local dans la membrane cellulaire vivantes pour de longues durées et sous un flux hydrodynamique. Nous avons alors appliqué des techniques d'inférence bayésienne, d’arbre de décision et de clustering de données extraire des informations quantitatives sur les paramètres caractéristiques du mouvement des récepteurs, notamment la forme de leur confinement dans des microdomaines. L’application d’une force hydrodynamique sur les nanoparticules nous a alors permis de sonder les interactions auxquelles ces récepteurs sont soumis. Nous avons appliqué cette approche in vitro pour favoriser et mesurer la dissociation in vitro de paires récepteur / ligand à haute affinité entre des récepteurs membranaires et leurs ligands pharmaceutiques, telles que HB-EGF et DTR et l’avons ensuite appliqué à l’étude d’interactions à la membrane cellulaire. Nous avons ainsi mis en évidence trois modes différents d'organisation de la membrane et de confinement des récepteurs: le confinement de CPεTR est déterminé par l'interaction entre les récepteurs et les constituants lipidiques / protéiques des microdomaines, le potentiel de confinement de l'EGFR résulte de l'interaction avec les lipides et les protéines de l’environnement du radeau et de l’interaction avec la F-actine; les récepteurs de la transferrine diffusent librement dans la membrane, uniquement limités stériquement par des barrières d’actine, selon le modèle ‘picket-and-fence’. Nous avons de plus montré que les nanodomaines de type radeau sont rattachés au cytoskelette d’actine. Ce travail présente donc à la fois un aperçu quantitatif du récepteur membranaire, des mécanismes d’organisation à l’échelle nanométrique, et établit un cadre méthodologique avec lequel différents types de propriétés membranaires peuvent être étudiés. / In this thesis, EGF, CPεT and transferrin receptors were labeled with luminescent nanoparticles, , and were tracked both in their local environment in the cell membrane and under a hydrodynamic flow. Bayesian inference, Bayesian decision tree, and data clustering techniques can then be applied to obtain quantitative information on the receptor motion parameters. Furthermore, we introduced hydrodynamic force application in vitro to study biomolecule dissociation between membrane receptors and their pharmaceutical ligands in high affinity receptor- ligand pairs, such as HB-EGF and DTR. Finally, three different modes of membrane organization and receptor confinement were revealed: the confinement of CPεTR is determined by the interaction between the receptors and the lipid/protein constituents of the raft; the confining potential of EGFR results from the interaction with lipids and proteins of the raft environment and from the interaction with F-actin; transferrin receptors diffuse freely in the membrane, only sterically limited by actin barriers, according to the “picket-and-fence” model. We moreover showed that all raft nanodomains are attached to the actin cytoskeleton.
15

Advanced Fluorescence Microscopy to Study Plasma Membrane Protein Dynamics

Piguet, Joachim January 2010 (has links)
Membrane protein dynamics is of great importance for living organisms. The precise localization of proteins composing a synapse on the membrane facing a nerve terminus is essential for proper functioning of the nervous system. In muscle fibers, the nicotinic acetylcholine is densely packed under the motor nerve termini. A receptor associated protein, rapsyn, acts as a linker between the receptor and the other components of the synaptic suramolecular assembly. Advances in fluorescence microscopy have allowed to measure the behavior of a single receptor in the cell membrane. In this work single-molecule microscopy was used to track the motion of ionotropic acetylcholine (nAChR) and serotonin (5HT3R) receptors in the plasma membrane of cells. We present methods for measuring single-molecule diffusion and their analysis. Single molecule tracking has shown a high dependence of acetylcholine receptors diffusion on its associated protein rapsyn. Comparing muscle cells that either express rapsyn or are devoid of it, we found that rapsyn plays an important role on receptor immobilization. A three-fold increase of receptor mobility was observed in muscle cells devoid of rapsyn. However, in these cells, a certain fraction of immobilized receptors was also found immobile. Furthermore, nAChR were strongly confined in membrane domains of few tens of nanometers. This showed that membrane composition and membrane associated proteins influence on receptor localization. During muscle cell differentiation, the fraction of immobile nAChR diminished along with the decreasing nAChR and stable rapsyn expression levels. The importance of rapsyn in nAChR immobilization has been further confirmed by measurements in HEK 293 cells, where co-expression of rapsyn increased immobilization of the receptor. nAChR is a ligand-gated ion-channel of the Cys-loop family. In mammals, members of this receptor family share general structural and functional features. They are homo- or hetero-pentamers and form a membrane-spanning ion channel. Subunits have three major regions, an extracellular ligand binding domain, a transmembrane channel and a large intracellular loop. 5HT3R was used as a model to study the effect of this loop on receptor mobility. Single-molecule tracking experiments on receptors with progressively larger deletions in the intracellular loop did not show a dependence of the size of the loop on the diffusion coefficient of mobile receptors. However, two regions were identified to play a role in receptor mobility by changing the fractions of immobile and directed receptors. Interestingly, a prokaryotic homologue of cys-loop receptors, ELIC, devoid of a large cytoplasmic loop was found to be immobile or to show directed diffusion similar as the wild-type 5HT3R. The scaffolding protein rapsyn stabilizes nAChR clusters in a concentration dependent manner. We have measured the density and self-interactions of rapsyn using FRET microscopy. Point-mutations of rapsyn, known to provoke myopathies, destabilized rapsyn self-interactions. Rapsyn-N88K, and R91L were found at high concentration in the cytoplasm suggesting that this modification disturbs membrane association of rapsyn. A25V was found to accumulate in the endoplasmic reticulum. Fluorescent tools to measure intracellular concentration of calcium ions are of great value to study the function of neurons. Rapsyn is highly abundant at the neuromuscular junction and thus is a genuine synaptic marker. A fusion protein of rapsyn with a genetically encoded ratiometric calcium sensor has been made to probe synapse activity. This thesis has shown that the combined use of biologically relevant system and modern fluorescence microscopy techniques deliver important information on pLGIC behaviour in the cell membrane. / <p>QC 20151217</p>
16

Characterization of heterogeneous diffusion in confined soft matter

Täuber, Daniela 26 October 2011 (has links) (PDF)
A new method, probability distribution of diffusivities (time scaled square displacements between succeeding video frames), was developed to analyze single molecule tracking (SMT) experiments. This method was then applied to SMT experiments on ultrathin liquid tetrakis(2-ethylhexoxy)silane (TEHOS) films on Si wafer with 100 nm thermally grown oxide, and on thin semectic liquid crystal films. Spatial maps of diffusivities from SMT experiments on 220 nm thick semectic liquid crystal films reveal structure related dynamics. The SMT experiments on ultrathin TEHOS films were complemented by fluorescence correlation spectroscopy (FCS). The observed strongly heterogeneous single molecule dynamics within those films can be explained by a three-layer model consisting of (i) dye molecules adsorbed to the substrate, (ii) slowly diffusing molecules in the laterally heterogeneous near-surface region of 1 - 2 molecular diameters, and (iii) freely diffusing dye molecules in the upper region of the film. FCS and SMT experiments reveal a strong influence of substrate heterogeneity on SM dynamics. Thereby chemisorption to substrate surface silanols plays an important role. Vertical mean first passage times (mfpt) in those films are below 1 µs. This appears as fast component in FCS autocorrelation curves, which further contain a contribution from lateral diffusion and from adsorption events. Therefore, the FCS curves are approximated by a tri-component function, which contains an exponential term related to the mfpt, the correlation function for translational diffusion and a stretched exponential term for the broad distribution of adsorption events. Lateral diffusion coefficients obtained by FCS on 10 nm thick TEHOS films, thereby, are effective diffusion coefficients from dye transients in the focal area. They strongly depend on the substrate heterogeneity. Variation of the frame times for the acquisition of SMT experiments in steps of 20 ms from 20 ms to 200 ms revealed a strong dependence of the corresponding probability distributions of diffusivities on time, in particular in the range between 20 ms and 100 ms. This points to average dwell times of the dye molecules in at least one type of the heterogeneous regions (e.g. on and above silanol clusters) in the range of few tens of milliseconds. Furthermore, time series of SM spectra from Nile Red in 25 nm thick poly-n-alkyl-methacrylate (PnAMA) films were studied. In analogy to translational diffusion, spectral diffusion (shifts in energetic positions of SM spectra) can be studied by probability distributions of spectral diffusivities, i.e. time scaled square energetic displacements. Simulations were run and analyzed to study contributions from noise and fitting uncertainty to spectral diffusion. Furthermore the effect of spectral jumps during acquisition of a SM spectrum was investigated. Probability distributions of spectral diffusivites of Nile Red probing vitreous PnAMA films reveal a two-level system. In contrast, such probability distributions obtained from Nile Red within a 25 nm thick poly-n-butylmethacrylate film around glass transition and in the melt state, display larger spectral jumps. Moreover, for longer alkyl side chains a solvent shift to higher energies is observed, which supports the idea of nanophase separation within those polymers.
17

Characterization of heterogeneous diffusion in confined soft matter

Täuber, Daniela 20 October 2011 (has links)
A new method, probability distribution of diffusivities (time scaled square displacements between succeeding video frames), was developed to analyze single molecule tracking (SMT) experiments. This method was then applied to SMT experiments on ultrathin liquid tetrakis(2-ethylhexoxy)silane (TEHOS) films on Si wafer with 100 nm thermally grown oxide, and on thin semectic liquid crystal films. Spatial maps of diffusivities from SMT experiments on 220 nm thick semectic liquid crystal films reveal structure related dynamics. The SMT experiments on ultrathin TEHOS films were complemented by fluorescence correlation spectroscopy (FCS). The observed strongly heterogeneous single molecule dynamics within those films can be explained by a three-layer model consisting of (i) dye molecules adsorbed to the substrate, (ii) slowly diffusing molecules in the laterally heterogeneous near-surface region of 1 - 2 molecular diameters, and (iii) freely diffusing dye molecules in the upper region of the film. FCS and SMT experiments reveal a strong influence of substrate heterogeneity on SM dynamics. Thereby chemisorption to substrate surface silanols plays an important role. Vertical mean first passage times (mfpt) in those films are below 1 µs. This appears as fast component in FCS autocorrelation curves, which further contain a contribution from lateral diffusion and from adsorption events. Therefore, the FCS curves are approximated by a tri-component function, which contains an exponential term related to the mfpt, the correlation function for translational diffusion and a stretched exponential term for the broad distribution of adsorption events. Lateral diffusion coefficients obtained by FCS on 10 nm thick TEHOS films, thereby, are effective diffusion coefficients from dye transients in the focal area. They strongly depend on the substrate heterogeneity. Variation of the frame times for the acquisition of SMT experiments in steps of 20 ms from 20 ms to 200 ms revealed a strong dependence of the corresponding probability distributions of diffusivities on time, in particular in the range between 20 ms and 100 ms. This points to average dwell times of the dye molecules in at least one type of the heterogeneous regions (e.g. on and above silanol clusters) in the range of few tens of milliseconds. Furthermore, time series of SM spectra from Nile Red in 25 nm thick poly-n-alkyl-methacrylate (PnAMA) films were studied. In analogy to translational diffusion, spectral diffusion (shifts in energetic positions of SM spectra) can be studied by probability distributions of spectral diffusivities, i.e. time scaled square energetic displacements. Simulations were run and analyzed to study contributions from noise and fitting uncertainty to spectral diffusion. Furthermore the effect of spectral jumps during acquisition of a SM spectrum was investigated. Probability distributions of spectral diffusivites of Nile Red probing vitreous PnAMA films reveal a two-level system. In contrast, such probability distributions obtained from Nile Red within a 25 nm thick poly-n-butylmethacrylate film around glass transition and in the melt state, display larger spectral jumps. Moreover, for longer alkyl side chains a solvent shift to higher energies is observed, which supports the idea of nanophase separation within those polymers.

Page generated in 0.0884 seconds