Spelling suggestions: "subject:"singularidades"" "subject:"ingularidades""
31 |
Singularidades no infinito de funções polinomiais / Singularities at infinity of polynomial functionsRibeiro, Nilva Rodrigues 22 October 2012 (has links)
O principal objetivo desta tese é classificar as singularidades no infinito de polinômios em \'C POT. n\'. Aplicamos inicialmente o método utilizado por Siersma e Smeltink em [38], para classificar polinômios de grau 3 em \'C POT. 3\'. Este método consiste em classificar polinômios fixando uma forma normal para a parte homogênea de maior grau. As singularidades no infinito de funções polinomiais podem ser estudadas através das singularidades das homogenizações destas aplicações definidas no espaço projetivo. Este é o método utilizado por Bruce e Wall em [11], que fazem uma classificação das superfícies cúbicas no espaço projetivo \'P POT. 3\', relacionando as singularidades destas superfícies com a classificação de certos sistemas polinomiais a elas associados. Um dos objetivos do nosso trabalho é estender parcialmente o método de Bruce e Wall para classificar as singularidades no infinito de polinomios f = \"f IND. d\'1 +\'f IND. d\' em \'C POT. n\', com d 3, através do estudo das singularidades do sistema polinomial g = (\'f IND. d\' 1, \'f IND. d\'). Para polinômios de grau 3 em \'C POT. 3\', fazemos um refinamento das formas normais de [11], que possibilita uma descrição mais detalhada da fibra especial e o estudo no infinito da topologia da fibra genérica. Isto é feito com o auxílio do invariante \' IND. n1\' (f) definido por Siersma e Tibar em [39], e por eles denominado defeito maximal de Betti / The main purpose of this thesis is to classify singularities at infinity of polynomial functions f : \'C POT. n\' C. We first apply Siersma and Smeltinks method [38] to classify degree 3 polynomials in \'C POT. 3\'. This method consists on classifying polynomials fixing the normal form of their highest homogeneous part. The singularities at infinity of polynomial functions may also be studied through the classification of singularities of the projective hypersurfaces F = 0, where F is the homogenization of f. This was the method applied by Bruce and Wall in [11], in their classification of the cubic surfaces in \'P POT. 3\'. They relate the singularities of the cubic surfaces with the singularities of certain systems of polynomials. In our work, we partially extend Bruce and Walls method to classify the singularities at infinity of polynomials f = \'f IND. d1\' + \'f IND. d\' in \'C POT. 3\', n 3, based on the investigation of singularities of the polynomial system g = (\'f IND. d1\', \'f IND. d\'). For the class of degree 3 polynomials in \'C POT. 3\', we refine Bruce-Walls classification, in order to present a more detailed description of the special fiber of f and to investigate its topology with the help of the invariant Betti maximal defect, introduced by Siersma and Tibar in [39]
|
32 |
Classificação de singularidades: o método da transversal completa. / Singularities classification: the complete transversal method.Sheng, Lee Yun 20 February 2002 (has links)
Através do Método da Transversal Completa apresentamos neste trabalho a classificação dos germes simples de Rn em R, a classificação dos germes do plano no plano de corank 1 e A-codimensão no máximo 4 e uma breve classificação de bigermes de R em R2. / Applying the Complete Transversal Method we obtain, in this work, a classification of simple germs of smooth function from Rn to R, a classification of germs of maps from the plane to the plane with A-codimension up to 4 of corank 1 and an introduction to the classification of bigerms of maps from R to R2.
|
33 |
Contorno aparente, envoltórias e equações diferenciais implícitas /Riul, Pedro Benedini. January 2015 (has links)
Orientadora: Luciana de Fátima Martins / Banca: Lizandro Sanchez Challapa / Banca: João Carlos Ferreira Costa / Resumo: Dada uma superfíıcie regular suave M em R3 podemos considerá-la localmente como imagem inversa de um valor regular de uma função suave F : R3 → R. O contorno aparente de M em uma dada direção coincide com a envoltória de uma família de curvas associadas à F. O estudo destes objetos é de bastante interesse na Teoria das Singularidades os quais podem ser relacionados com Equações Diferenciais Implícitas (EDI's). Uma EDI é uma equação da forma F(x, y, p) = 0, onde p = dxdy e F : R3 → R é uma função suave. Neste trabalho apresentamos um estudo sobre contorno aparente de uma superfície regular, sobre a envoltória (envelope) de uma família de curvas e sobre equações diferenciais implícitas, objetivando analisar qual a relação entre esses três... / Abstract: Given a smooth regular surface M in R3 we can locally consider it as an inverse image of a regular value of a smooth function F : R3 → R. The apparent contour of M in a given direction coincides with the envelope of a family of curves associated to F. The study of such objects is of great interest to the Singularity Theory and it can be related to Implicit Differential Equations (IDE's). An IDE is an equation of the form F(x, y, p) = 0 where p = dxdy and F : R3 → R is a smooth function. This work presents a study on apparent contour of a regular surface, envelope of family of curves, and implicit differential equations in order to analyze the relationship between ... / Mestre
|
34 |
Número de Milnor associado a curvas reduzidas /Santana, Hellen Monção de Carvalho. January 2016 (has links)
Orientador: Michelle Ferreira Zanchetta Morgado / Banca: Bruna Oréfice Okamoto / Banca: Parham Salehyan / Resumo: O objetivo deste trabalho é estudar curvas reduzidas. Associado a elas, Buchweitz e Greuel definem um número, chamado número de Milnor de curvas reduzidas, pois no caso de curvas planas este coincide com o número de Milnor definido por Milnor. Este número é obtido através de um importante objeto algébrico: o módulo dual de Grothendieck. Com o intuito de facilitar a obtenção deste número, mostraremos que ele está relacionado com outro número, chamado delta, mais fácil de ser calculado. Por fim, mostraremos que, de maneira análoga, Nuño-Ballesteros e Tomazella definem um número associado a germes de função finita definidos em curvas reduzidas. Este número está relacionado com o grau deste germe e com o número de Milnor da curva reduzida associada / Abstract: The aim of this work is to study reduced curves. Associate to them, Buchweitz and Greuel define a number, called Milnor number once that in the case of plane curves, this number coincides to the Milnor number defined by Milnor. This number is obtained through an important algebraic object: dual module of Grothendieck. In order to make it easier to obtain this number, we will prove that it is related to another number, called delta, easier to be computed. At last, we prove that, in the same way, Nuño-Ballesteros and Tomazella define a number associate to finite function germs defined over reduced curves. This number is related to the degree of this germ and to the Milnor number of the reduced curve associated to it / Mestre
|
35 |
Configurações das linhas de curvatura principal sobre superfícies seccionalmente suaves / Configurations of principal curvature lines on piecewise smooth surfacesMiranda, Gláucia Aparecida Soares 26 June 2014 (has links)
Nesta tese apresentamos uma contribuição para o estudo da transição do retrato de fase de uma equação diferencial descontínua específica ao longo de uma linha de descontinuidade. A equação diferencial que tratamos neste trabalho é a das linhas de curvatura principal de uma superfície S contendo uma curva distinguida B e imersa em R^3. A linha de descontinuidade é a curva B, a qual é o bordo comum de duas superfícies suaves justapostas que formam S. Na primeira parte do trabalho consideramos a superfície seccionalmente suave, S = S+ U B U S-, obtida pela justaposição de S+ e S- ao longo do bordo comum B. O estudo da configuração principal de S nos casos em que as linhas de curvatura principal das superfícies S+ e S- tem contato quadrático ou cruzam transversalmente B foi feito por comparação com a configuração principal de uma superfície suave, obtida de S pelo processo da \"regularização\" ao longo da curva de descontinuidade B. Na segunda parte do trabalho estudamos as linhas de curvatura principal de uma superfície S em R^3 com bordo B e da superfície suave obtida de S através dos processos de engrossamento e regularização definidos por Garcia e Sotomayor em [5], onde os autores consideraram o caso genérico, sem pontos umbílicos e contato quadrático de uma linha de curvatura principal com B. Damos aqui continuidade ao estudo feito em [5] analisando o caso de contato cúbico com o bordo B. Obtivemos que dos pontos da curva bordo comum B de contato quadrático e de cruzamento transversal emergem, sobre a superfície regularizada, pontos umbílicos Darbouxianos dos tipos D1 e D3, enquanto que, para o ponto sobre B de contato cúbico obtivemos pontos umbílicos Darbouxianos dos tipos D1, D2 e D3 e também pontos umbílicos não Darbouxianos dos tipos D12 e D23. [5] Garcia, R., and Sotomayor, J. Umbilic and tangential singularities on configurations of principal curvature lines. Anais da Academia Brasileira de Ciências 74, 1 (2002), 117. / In this work we present a contribution to the study of the transition of the phase portrait of a specific discontinuous differential equation along a line of discontinuity. The differential equations under consideration will be that of the principal curvature lines of a surface S with a distinguished curve B immersed in R^3, where the line of discontinuity is the curve B which is the common border of two smooth surfaces attached to make up S. In the first part of the work we consider a piecewise smooth surface S = S+ U B U S-, obtained by the juxtaposition of two smooth surfaces S+ and S- along their common border B. The analysis of the principal configuration of S in the cases where the principal curvature lines of the surfaces S+ and S- have quadratic contact or cross transversally B was carried out by comparison with a smooth surface, obtained from S by the \"regularization\" along the discontinuity curve B. In the second part of the work we study the principal curvature lines of a surface S in R^3 with boundary B and of the smooth surface obtained from S by thickening and smoothing introduced by Garcia and Sotomayor in [5], where they considered the generic case of no umbilic points and at most quadratic contact of principal lines with B. Here we pursue the study in [5] and analyze the case of cubic contact with the border B. We established that while from quadratic contact points with B emerge on the smoothed surface Darbouxian umbilics of D1 and D3 types, from the cubic contact points appear Darbouxian umbilics of types D1, D2 and D3 as well as non Darbouxian points of types D12 and D23. [5] Garcia, R., and Sotomayor, J. Umbilic and tangential singularities on configurations of principal curvature lines. Anais da Academia Brasileira de Ciências 74, 1 (2002), 117.
|
36 |
Cr-invariantes para superfícies em R^4 / Cr-invariants for surfaces in R^4Silva, Jorge Luiz Deolindo 28 January 2016 (has links)
Nesta tese estudamos a geometria extrínseca de superfícies suave em R4 via seu contato com retas e hiperplanos. Uribe-Vargas introduziu um cr-invariante (crossratio) em uma cúspide de Gauss de uma superfície em R3. Para uma superfície em R4, o ponto P3(c) tem comportamento similar a uma cúspide de Gauss de uma superfície em R3. Estabelecemos nesta tese cross-ratio invariantes para superfícies em R4 de uma maneira análoga ao trabalho de Uribe-Vargas para superfícies em R3. Estudamos os lugares geométricos das singularidades locais e multi-locais das projeções ortogonais da superfície e classificamos os k-jatos de parametrizações de germes de superfícies no espaço projetivo P4 dadas na forma de Monge por mudanças projetivas. Os cross-ratio invariantes nos pontos P3(c) são usadas para recuperar os dois módulos no 4-jato da parametrização projetiva da superfície. / In this thesis we study the extrinsic geometry of smooth surfaces in R4 via their contact with lines and hyperplanes. Uribe-Vargas introduced a cr-invariant (crossratio) at a cusp of Gauss of a surface in R3. For a surface in R4, the point P3(c) has similar behavior to that of a cusp of Gauss of a surface in R3. We establish in this thesis cross-ratio invariants for surfaces in R4 in an analogous way to Uribe- Vargass work for surfaces in R3. We study the geometric locii of local and multilocal singularities of ortogonal projections of the surface and classify the k-jets of parametrizations of germs of surfaces in the projection space P4 given in Monge form by projective transformations. The cross-ratio invariants at P3(c) points are used to recover two moduli in the 4-jet of the projective parametrization of the surfaces.
|
37 |
Configurações das linhas de curvatura principal sobre superfícies seccionalmente suaves / Configurations of principal curvature lines on piecewise smooth surfacesGláucia Aparecida Soares Miranda 26 June 2014 (has links)
Nesta tese apresentamos uma contribuição para o estudo da transição do retrato de fase de uma equação diferencial descontínua específica ao longo de uma linha de descontinuidade. A equação diferencial que tratamos neste trabalho é a das linhas de curvatura principal de uma superfície S contendo uma curva distinguida B e imersa em R^3. A linha de descontinuidade é a curva B, a qual é o bordo comum de duas superfícies suaves justapostas que formam S. Na primeira parte do trabalho consideramos a superfície seccionalmente suave, S = S+ U B U S-, obtida pela justaposição de S+ e S- ao longo do bordo comum B. O estudo da configuração principal de S nos casos em que as linhas de curvatura principal das superfícies S+ e S- tem contato quadrático ou cruzam transversalmente B foi feito por comparação com a configuração principal de uma superfície suave, obtida de S pelo processo da \"regularização\" ao longo da curva de descontinuidade B. Na segunda parte do trabalho estudamos as linhas de curvatura principal de uma superfície S em R^3 com bordo B e da superfície suave obtida de S através dos processos de engrossamento e regularização definidos por Garcia e Sotomayor em [5], onde os autores consideraram o caso genérico, sem pontos umbílicos e contato quadrático de uma linha de curvatura principal com B. Damos aqui continuidade ao estudo feito em [5] analisando o caso de contato cúbico com o bordo B. Obtivemos que dos pontos da curva bordo comum B de contato quadrático e de cruzamento transversal emergem, sobre a superfície regularizada, pontos umbílicos Darbouxianos dos tipos D1 e D3, enquanto que, para o ponto sobre B de contato cúbico obtivemos pontos umbílicos Darbouxianos dos tipos D1, D2 e D3 e também pontos umbílicos não Darbouxianos dos tipos D12 e D23. [5] Garcia, R., and Sotomayor, J. Umbilic and tangential singularities on configurations of principal curvature lines. Anais da Academia Brasileira de Ciências 74, 1 (2002), 117. / In this work we present a contribution to the study of the transition of the phase portrait of a specific discontinuous differential equation along a line of discontinuity. The differential equations under consideration will be that of the principal curvature lines of a surface S with a distinguished curve B immersed in R^3, where the line of discontinuity is the curve B which is the common border of two smooth surfaces attached to make up S. In the first part of the work we consider a piecewise smooth surface S = S+ U B U S-, obtained by the juxtaposition of two smooth surfaces S+ and S- along their common border B. The analysis of the principal configuration of S in the cases where the principal curvature lines of the surfaces S+ and S- have quadratic contact or cross transversally B was carried out by comparison with a smooth surface, obtained from S by the \"regularization\" along the discontinuity curve B. In the second part of the work we study the principal curvature lines of a surface S in R^3 with boundary B and of the smooth surface obtained from S by thickening and smoothing introduced by Garcia and Sotomayor in [5], where they considered the generic case of no umbilic points and at most quadratic contact of principal lines with B. Here we pursue the study in [5] and analyze the case of cubic contact with the border B. We established that while from quadratic contact points with B emerge on the smoothed surface Darbouxian umbilics of D1 and D3 types, from the cubic contact points appear Darbouxian umbilics of types D1, D2 and D3 as well as non Darbouxian points of types D12 and D23. [5] Garcia, R., and Sotomayor, J. Umbilic and tangential singularities on configurations of principal curvature lines. Anais da Academia Brasileira de Ciências 74, 1 (2002), 117.
|
38 |
Geometria de superfícies de posto 1 em R3 do ponto de vista de contato /Nunez, Tawana Garcia January 2018 (has links)
Orientador: Luciana de Fátima Martins / Banca: Ana Claudia Nabarro / Banca: Michelle Ferreira Z. Morgado / Resumo: A geometria de superfícies pode ser estudada do ponto de vista de contato, usando ferramentas da Teoria de Singularidades. Mais precisamente, estudando as singularidades de duas funções especiais, a função¸˜ao altura que mede o contato com hiperplanos, e a função distância ao quadrado que mede o contato com hiperesferas. Nosso objetivo neste trabalho 'e o estudo do contato de superfícies singulares de posto 1 em R3 com planos e esferas. Para isto estudamos a teoria básica para estas superfícies, como seu espaço tangente e normal, as formas fundamentais, direções assintóticas e a definição e propriedades de uma curvatura especial denominada curvatura umbílica. Para classificar o tipo de contato de planos e esferas com a superfície, precisamos entender que tipos de singularidades podem surgir nas funções altura e distância ao quadrado. Para isso, estudamos também símbolos de Boardman e pontos especiais denominados roundings e flattenings / Abstract: The geometry of surfaces can be studied by the viewpoint of contact, using tools of Singularity Theory. More precisely, on studying the singularities of two special functions, height function, that measures the contact with hiperplanes, and the distance squared function, that measures the contact with hiperspheres. Our goal in this work is the study of contact between a corank 1 surface of R3 and planes and spheres. For this, we study the basic theory for these surfaces, i.e., their tangent space and normal, the fundamental forms, asymptotic directions and the definition and properties of a special curvature called umbilic curvature. In order to classify the contact type of planes and spheres with the surface, we need to understand what types of singularities may arise in the height and distance squared functions. With this goal, we study the Boardman symbols and special points called roundings and flattenings / Mestre
|
39 |
Sobre invariantes topológicos de folheações holomorfas com singularidade isolada / On topological invariants of holomorphic leaflets with isolated singularityAraujo, Hamilton Regis Menezes de 19 May 2017 (has links)
ARAUJO, H. R. M. Sobre invariantes topológicos de folheações holomorfas com singularidade isolada. 2017. 62 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará,
Fortaleza, 2017. / Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-05-25T20:23:00Z
No. of bitstreams: 1
2017_dis_hrmaraujo.pdf: 556971 bytes, checksum: 9f274c4a5c917004f3b67a3fc72c5547 (MD5) / Rejected by Rocilda Sales (rocilda@ufc.br), reason: Boa tarde,
Conferi a Dissertação de HAMILTON REGIS MENEZES DE ARAUJO, e constatei apenas dois erros na formatação no trabalho que dever ser alterados pelo autor:
1- Epígrafe ( a estrutura desse elemento deve ser a que se segue, com alinhamento à direita:
"O sucesso é ir de fracasso em fracasso sem
perder o entusiasmo." (Winston Churchill)
2- Títulos das seções (os títulos das seções que se encontram no sumário e ao longo do texto estão incorretos. As normas da ABNT recomendam que apenas a primeira letra do título das seções esteja em maiúscula, com exceção de nomes próprios.
Ex.:
2.2 Índice de um Campo em uma Singularidade Isolada
deve ser alterado para:
2.2 Índice de um campo em uma singularidade isolada
Atenciosamente,
on 2017-05-26T16:04:16Z (GMT) / Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-05-29T13:43:41Z
No. of bitstreams: 1
2017_dis_hrmaraujo.pdf: 556572 bytes, checksum: cae2a014846c47e96be936dd25bbd9da (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-05-29T14:07:05Z (GMT) No. of bitstreams: 1
2017_dis_hrmaraujo.pdf: 556572 bytes, checksum: cae2a014846c47e96be936dd25bbd9da (MD5) / Made available in DSpace on 2017-05-29T14:07:05Z (GMT). No. of bitstreams: 1
2017_dis_hrmaraujo.pdf: 556572 bytes, checksum: cae2a014846c47e96be936dd25bbd9da (MD5)
Previous issue date: 2017-05-19 / Considering the foliation induced by a complex holomorph vector field, we will look for topological invariants in the neighborhood of a singular point. At first, the Milnor Number of a vector field becomes important, in the sense that this number is topological invariant. In another discussion, we will emphasize vector fields in dimension two, in which case the leaves, whose foliation is induced by the field, will be integral curves of a 1-form. In this sense, we will deal with Desingularization, that is, after a finite number of processes, which we will call Blow-ups or explosions, we will turn the initial foliation into a foliation whose singularities are all simple. Finally, the Desingularization process of a field will give us tools that make it possible to relate the data obtained in this process to the objects treated throughout the work, with this we will present other topological invariants of foliations. / Considerando a folheação induzida por um campo vetorial complexo holomorfo, buscaremos exibir invariantes topológicos na vizinhança de um ponto singular. Num primeiro momento, ganha importância o Número de Milnor de um campo vetorial, no sentido desse número ser invariante topológico. Em outra discussão, daremos ênfase a campos vetoriais em dimensão dois, nesse caso, as folhas, cuja folheação é induzida pelo campo, serão curvas integrais de uma 1-forma. Nesse sentido, trataremos de Desingularização, ou seja, após um número finito de processos, que chamaremos de Blow-ups, ou explosões, transformaremos a folheação inicial em uma folheação cujas singularidades são todas simples. Por fim, o processo de Desingularização de um campo nos dará ferramentas que possibilitam relacionar os dados obtidos nesse processo com os objetos tratados ao longo de todo o trabalho, diante disto apresentaremos outros invariantes topológicos de folheações.
|
40 |
Soluções da equação fyux-fxuy=gCosta, Elizabeth Quintana Ferreira da January 1996 (has links)
Resumo não disponível
|
Page generated in 0.0707 seconds