• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 188
  • 29
  • 29
  • 29
  • 27
  • 25
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 191
  • 191
  • 191
  • 70
  • 57
  • 47
  • 43
  • 39
  • 38
  • 34
  • 29
  • 22
  • 21
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Estudo de conjuntos minimais para sistemas descontínuos em dimensões 2 e 3

Euzébio, Rodrigo Donizete [UNESP] 02 June 2014 (has links) (PDF)
Made available in DSpace on 2014-11-10T11:09:53Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-06-02Bitstream added on 2014-11-10T11:57:47Z : No. of bitstreams: 1 000789673.pdf: 888363 bytes, checksum: 4194b0def3d843232659229fda2098ea (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Nesta tese são estudados conjuntos minimais de campos de vetores suaves e descontínuos em dimensões 2 e 3. Primeiramente, restringimos o estudos de conjuntos minimais a ciclos limite e respondemos questões sobre existência, distribuição e quantidade de tais objetos em campos de vetores suaves e descontínuos em dimensão 3. Posteriormente, abordamos a existência de conjuntos minimais não triviais e caos em dimensão 2 para campos de vetores descontínuos. Apresentamos exemplos de conjuntos minimais não triviais e verificamos a presença de caos não determinístico em alguns destes conjuntos. Finalmente, apresentamos uma versão do Teorema de Poincaré-Bendixson para campos de vetores descontínuos que não apresentam regiões de deslize e escape / In this thesis minimal sets of smooth and non-smooth vector fields in dimension 2 and 3 are studied. First the study of minimal sets is restricted to limit cycles. Questions about existence, distribution and quantity of such objects in smooth and non-smooth vector fields in dimension 3 are answered. Later, the existence of non-trivial minimal sets and chaos in dimension 2 is treated for non-smooth vector fields. Some examples of non-trivial minimal sets are presented and the presence of non-deterministic chaos on some of these sets is verified. Finally, a version of the Poincaré-Bendixson Theorem for non-smooth vector fields presenting neither escaping nor sliding motion is presented
112

Comportamento caótico em modelos matemáticos de câncer

Silva, Patrícia Demétria Branco [UNESP] 06 June 2014 (has links) (PDF)
Made available in DSpace on 2015-01-26T13:21:16Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-06-06Bitstream added on 2015-01-26T13:30:52Z : No. of bitstreams: 1 000801781.pdf: 5299732 bytes, checksum: b25c0038d88aaa4a08785c1de58d2278 (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / No presente trabalho estudamos um sistema de equações diferenciais ordinárias de um modelo biológico de câncer que apresenta caos. Para o estudo faz-se necessário o conhecimento a respeito de bifurcações, em especial a bifurcação de Hopf e a de período duplo (“flip”), também de uma noção básica de dinâmica simbólica. O modelo é analisado de duas formas. No decorrer da primeira análise são fixados os parâmetros envolvidos, deixando variar somente um deles, a taxa de crescimento das células saudáveis. Para determinado valor crítico deste parâmetro, em torno do ponto de equilíbrio de coexistência entre as três populações celulares em estudo (células saudáveis, células do sistema imune e células tumorais), ocorre o surgimento de um ciclo limite, originado de uma bifurcação de Hopf. Em seguida, há uma bifurcação de duplicação de período de tal ciclo limite, conduzindo as soluções ao comportamento caótico. Numa segunda abordagem, são variados dois parâmetros, a taxa de inativação das células efetoras pelas células tumorais e a taxa de inativação das células tumorais pelas células efetoras. Encontra-se um regime paramétrico no qual as soluções que possuem comportamento caótico têm suas trajetórias tendendo a um comportamento ordenado, o que é verificado através do cálculo da entropia topológica, expoentes de Lyapunov e previsibilidade. / In this work we study a system of ordinary differential equations which represent a mathematical model of cancer which has chaotic dynamics. In the study we use the bifurcation theory, especially the Hopf bifurcation and the period doubling bifurcation (flip), we also use the basic notion of symbolic dynamics. The model is analyzed from two points of view. In the first one we consider all the parameters as being fixed and vary only one of them, which is related to the growth rate of the healthy cells. For a determined critical value of this parameter, a Hopf bifurcation occurs in the equilibrium point representing the coexistence of the three types of cells (healthy cells, immune system cells and tumor cells), giving rise to the existence of a limit cycle. Studying the continuation of this limit cycle, we detect the occurrence of a cascade of period doubling bifurcations which, in the limit, leads to the chaotic behaviour of the solutions. In a second analysis, we vary two of the parameters of the model, representing the inactivation of the immune system cells by the tumor cells and the inactivation of the tumor cells by the immune system cells. In this analysis we determined certain parameter values for which the solutions having chaotic behavior tend to a regular regime, which is obtained by the calculation of the topological entropy, the Lyapunov exponents and predictability.
113

Controle de dissociação molecular com ferramentas de dinâmica não linear

Almeida Junior, Allan Kardec de [UNESP] January 2013 (has links) (PDF)
Made available in DSpace on 2015-01-26T13:21:26Z (GMT). No. of bitstreams: 0 Previous issue date: 2013Bitstream added on 2015-01-26T13:30:28Z : No. of bitstreams: 1 000803664.pdf: 3533882 bytes, checksum: 8bc4ff2457dbbcfb1fa75fea2c7c1038 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O objetivo principal deste trabalho é utilizar a teoria de dinâmica não linear no controle da dissociação molecular através da introdução da dissipação em um modelo já bem conhecido na literatura, que consiste em um potencial de interação interatômico e uma perturbação na forma de interação dipolo – campo elétrico. Tal campo elétrico pode ser proveniente dos fótons, pois a incidência de fótons já mostrou ser uma ferramenta efetiva na dissociação molecular. Primeiramente, o estudo mostra a possibilidade de controle de dissociação sem dissipação para condições bastante específicas, em seguida tais condições são generalizadas com a introdução da dissipação, tais como condições iniciais, tempo de exposição à perturbação e possíveis valores dos parâmetros de controle (constantes nas equações de movimento), mostrando os benefícios que a dissipação pode trazer no controle e na descrição da dissociação molecular. O sistema é confinado em um atrator cuja energia seja suficiente para que haja dissociação caso o mesmo esteja submetido somente ao potencial de interação de Morse. É realizada também uma varredura nos parâmetros de controle, no intuito de mostrar que a dissociação também pode ser controlada em uma ampla gama de valores para estes parâmetros. Este trabalho ainda faz um estudo baseado na probabilidade de dissociação como função de cada parâmetro de controle, de maneira que os resultados deste são comparados com resultados de outros trabalhos já conhecidos na literatura / The main objective of this work is to use the nonlinear dynamics theory in the control of the molecular dissociation through the introduction of dissipation in a literature well-known model that consists of an interatomic interaction potential and of a perturbation given by the interaction between the molecule dipole – electric field. This field may be from the photons, because the incidence of photons has already proved to be an effective tool in molecular dissociation. First of all, the study shows the possibility of the dissociation control without dissipation in very specific conditions. These conditions are generalized as the work makes the introduction of the dissipation, like the initial conditions, exposure time to the perturbation and possible values of the control parameters (constants in the motion equations), showing the benefits the dissipation can bring to the control and to the description of the molecular dissociation. The system is trapped in an attractor whose energy is enough to bring dissociation in case it is subjected to only the Morse potential interaction. This study also sweeps the parameters in order to show that the dissociation can also be controlled to a wide range of the values of the control parameters. This work makes a study based in the dissociation probability as a function of each control parameter so the results of this work can be compared with results of other works already known in the literature
114

Análise de fluxo multifásico em meios porosos

Wilk, Alexis André Didier Christophe 27 March 2015 (has links)
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Civil e Ambiental, 2015. / Submitted by Fernanda Percia França (fernandafranca@bce.unb.br) on 2015-12-16T17:52:20Z No. of bitstreams: 1 2015_AlexisAndreDidierChristopheWilk.pdf: 3038049 bytes, checksum: 9d8c800a476c43f5c7a0804e60dc788e (MD5) / Approved for entry into archive by Marília Freitas(marilia@bce.unb.br) on 2016-05-04T12:31:27Z (GMT) No. of bitstreams: 1 2015_AlexisAndreDidierChristopheWilk.pdf: 3038049 bytes, checksum: 9d8c800a476c43f5c7a0804e60dc788e (MD5) / Made available in DSpace on 2016-05-04T12:31:27Z (GMT). No. of bitstreams: 1 2015_AlexisAndreDidierChristopheWilk.pdf: 3038049 bytes, checksum: 9d8c800a476c43f5c7a0804e60dc788e (MD5) / O petróleo tem papel fundamental no funcionamento da matriz energética mundial, representando cerca 30% do total de energia consumida. Por consequência, melhorar o desempenho da produção de óleo é um problema de relevância econômica e estratégica. Desta forma, neste trabalho será realizado um estudo teórico sobre fluxo multifásico em meios poroso com objetivo de aplicar posteriormente o conhecimento adquirido na simulação do processo de produção de petróleo e gás. Inicialmente um estudo teórico sobre petróleo e fluxo multifásico foi realizado. Em seguida as formulações necessárias foram apresentadas, e para o caso trifásico uma formulação alternativa, se baseando no bifásico, foi apresentada. Além disso, um estudo sobre as respostas de produção e o fluxo multifásico no interior de um reservatório também foi apresentado. Optou-se por utilizar a ferramenta numérica FlexPDE, devido a sua versatilidade e simplicidade. Foram realizadas simulações de fluxo bifásico sem troca de matéria entre si (água e óleo) e trifásico sem troca de matéria entre si(água, óleo e gás). Um estudo paramétrico sobre a influência da curva de pressão capilar e da compressibilidade dos fluidos foi realizado. Além disso, foram realizadas simulações considerando que o reservatório possuía diferentes valores de saturações iniciais de cada uma das fases. Em todos os resultados foram analisadas as pressões, os graus de saturação e as vazões no poço produtor. De uma forma geral, os resultados demostraram a importância de se conhecer melhor parâmetros como a compressibilidade de cada fase, curva de pressão capilar do sólido e os valores de saturações iniciais das fases. Além disso, foi possível observar a redução, devido à variações dos parâmetros, na vazão do poço produtor, a queda de pressão de óleo no reservatório e redução do valor de saturação inicial de óleo armazenado. Finalmente, pode-se concluir que apesar de simples, a ferramenta FlexPDE pode ser utilizada na simulação de fluxo multifásico de reservatórios de petróleo. / The oil has major role in the functioning of the global energy mix, accounting for about 30% of total energy consumed. Consequently, improving the performance of oil production is an issue of economic and strategic importance. Thus, this work will be a theoretical study on multiphase flow in porous media in order to subsequently apply the knowledge acquired in the simulation of oil and gas production process. Initially a theoretical study on oil and multiphase flow was conducted. Then the necessary formulations were made, and the three-phase case an alternative formulation, the relying biphasic, it was presented. In addition, a study of responses and the production of multiphase flow within a reservoir is also presented. It is choosing to use the numerical tool FlexPDE, due to its versatility and simplicity. Two-phase flow simulations were performed without exchange of matter among themselves (water and oil) and threephase without exchange of matter among themselves (water, oil and gas). A parametric study of the influence of the capillary pressure curve and compressibility of the fluids was conducted. In addition, simulations were performed considering that the reservoir had different values of initial saturation of each of the phases. In all the results were analyzed pressures, the degree of saturation, and flows in production well. In general, the results demonstrated the importance of knowing the parameters such as the compressibility of each phase, the solid capillary pressure curve and saturation values of the initial phases. Moreover, it was possible to observe a reduction due to variations of the parameters in the flow of the production, the oil pressure drop in the reservoir and a reduction of the initial saturation value stored oil. Finally, it can be concluded that though simple, the FlexPDE tool can be used in multiphase flow simulation of oil reservoirs.
115

Ciclos limites de campos de vetores polinomiais cúbicos e quadráticos /

Oliveira, Érika Patrícia Dantas de. January 2009 (has links)
Orientador: Paulo Ricardo da Silva / Banca: Maurício Firmino Silva Lima / Banca: Luci Any Francisco Roberto / Resumo: Apresentamos dois critérios para estudar a não existência, a existência e a unicidade dos ciclos limites dos campos de vetores planares. Aplicamos estes critérios para algumas famílias de campos de vetores polinomiais quadráticos e cúbicos, e computamos uma fórmula explícita para o número de ciclos limites que bifurcam a partir do centro x′ = −y, y′ = x, quando tratamos do sistema x′ = −y + εPn i+j=1 aijxiyj, y′ = x + εPn i+j=1 aijxiyj . Al'em disso, usando o segundo critério, apresentamos um método para obter a forma do ciclo limite bifurcado a partir do centro. / Abstract: We present two new criteria for studying the nonexistence, existence and uniqueness of limit cycles of planar vector fields. We apply these criteria to some families of quadratic and cubic polynomial vector fields, and to compute an explicit formula for the number of limit cycles which bifurcate out of the linear centre x′ = −y, y′ = x, when we deal with the system x′ = −y + εPn i+j=1 aijxiyj , y′ = x + εPn i+j=1 aijxiyj . Moreover, by using the second criterion we present a method to derive the shape of the bifurcated limit cycles from a centre. / Mestre
116

O método averagin e aplicações /

Silva Junior, Jairo Barbosa da. January 2009 (has links)
Orientador: Claudio Aguinaldo Buzzi / Banca: Maurício Firmino Silva Lima / Banca: Marcelo Messias / Resumo: Neste trabalho estudamos o Método Averaging. Este método é uma ferramenta extremamente útil para quantificar o número de ciclos limites que podem bifurcar de uma singularidade do tipo centro de um sistema de equações diferenciais. A parte inicial do trabalho apresenta a Teoria de Aproximação Assintótica e um primeiro contato com o Averaging. Posteriormente apresentamos uma versão do Averaging via a Teoria do Grau de Brouwer. Finalmente fizemos algumas aplicações do método apresentando uma cota superior para o número de ciclos limites que podem bifurcar a partir das órbitas periódicas de centros de um sistema de equações diferenciais. Além disso, mostramos através de exemplos concretos que esta cota superior pode ser realizada. / Abstract: In this work we study the Averaging Method. This method is a useful tool in order to give the maximum number of limit cycles that can bifurcate from a center type singularity of a di®erential equation system. In the first part of the work we present the Asymptotic Approximation Theory and a first view of the averaging. After that, we present a version of the averaging via Brouwer Degree Theory. Finally we give some applications of this method presenting an upper bound for the number of limit cycles that can bifurcate from a center type singularity of a di®erential equation system. Moreover, we show by presenting concrete examples that this upper bound can be realized. / Mestre
117

Superfícies de impasse e bifurcações de sistemas forçados /

Silva, Lucas Casanova. January 2009 (has links)
Orientador: Paulo Ricardo da Silva / Banca: João Carlos da Rocha Medrado / Banca: João Carlos Ferreira Costa / Resumo: Neste trabalho, estudamos as famíılias de sistemas forçados com superfície de impasse regular, as formas normais de seus pontos "típicos"bem como seus retratos de fase. Vemos ainda alguns resultados sobre a genericidade desses pontos e a estabilidade estrutural de um sistema forçado. Abordamos o tema de uma forma simples: apresentamos o que é um sistema forçado e uma família de sistemas forçados para depois estudar as formas normais de seus pontos "típicos" através de dois campos de direções, os quais se tornam fundamentais para o assunto. Utilizamos o Teorema de Peixoto (adaptado para este assunto) como norte para dar as características de um sistema forçado estruturalmente estável. No capítulo 3, damos a estratificação da superfície de impasse e, como resultado final, vemos que esta estratificação é genérica (no conjunto de todas as famílias de sistemas forçados). / Abstract:In this work we study the families of constrained systems with regular impasse surface, the normal forms of its "typical"points and the respectively phase portrait. We see some results about the genericity of these points and the structural stability of a constrained system. We broach the theme in a simple way: we introduce a constrained system and a family of a constrained systems, and so, we study the normal forms of its "typical"points through two line fields, which become essential for the subject. We use the Peixoto's Theorem (adapted for this subject) to characterize a structural stable of constrained systems. In the chapter 3, we make a stratification of the impasse surface and, as a last result, we see that stratification is genericity (in the set of all families of constrained systems). / Mestre
118

Expoentes de escala para mapeamentos discretos bidimensionais /

Penalva, Julia. January 2014 (has links)
Orientador: Edson Denis Leonel / Banca: Juliana Antônio de Oliveira / Banca: Ricardo Egydio de Carvalho / Resumo: Uma transição de integrabilidade para não integrabilidade em um conjunto de mapeamentos discretos bidimensionais e que exibem espaços de fase misto é caracterizada neste trabalho. Os espaços de fase dos mapeamentos apresentam um extenso mar de caos que envolve um conjunto de ilhas de estabilidade e é limitado por um conjunto de curvas invariantes do tipo spanning. A descrição da transição de integrabilidade para não integrabilidade é feita utilizando funções de escala para as quantidades médias no espaço de fases ao longo do mar de caos. Expoentes de Lyapunov foram utilizados para a caracterização das órbitas caóticas. Os expoentes críticos são obtidos por simulações numéricas de larga escala. Uma conexão com o mapa padrão é estabelecida como uma aproximação analítica dos expoentes críticos. Após reescalas apropriadas nos eixos do desvio da ação média, invariâncias de escala são observadas / Abstract: A transition from integrability to non-integrability in a set of two-dimensional, nonlinear and area preserving mappings that exhibit mixed phase space is characterized in this work. The phase space of the mappings present an extense chaotic sea surrounding a set of establity islands and is limited by a set of invariant spanning curves. The description of the transition from integrability to nonintegrability is made using scaling functions for average quantities in the phase space along the chaotic sea. The critical exponents are obtained by large scale simulations. A connection to the standard map is established as an analytical approximation for the critical exponents / Mestre
119

Estudo de conjuntos minimais para sistemas descontínuos em dimensões 2 e 3 /

Euzébio, Rodrigo Donizete. January 2014 (has links)
Orientador: Claudio Aguinaldo Buzzi / Banca: Joan Torregrosa / Banca: Maurício Firmino Silva Lima / Banca: Marco Antonio Teixeira / Banca: Luci Any Francisco Roberto / Resumo: Nesta tese são estudados conjuntos minimais de campos de vetores suaves e descontínuos em dimensões 2 e 3. Primeiramente, restringimos o estudos de conjuntos minimais a ciclos limite e respondemos questões sobre existência, distribuição e quantidade de tais objetos em campos de vetores suaves e descontínuos em dimensão 3. Posteriormente, abordamos a existência de conjuntos minimais não triviais e caos em dimensão 2 para campos de vetores descontínuos. Apresentamos exemplos de conjuntos minimais não triviais e verificamos a presença de caos não determinístico em alguns destes conjuntos. Finalmente, apresentamos uma versão do Teorema de Poincaré-Bendixson para campos de vetores descontínuos que não apresentam regiões de deslize e escape / Abstract: In this thesis minimal sets of smooth and non-smooth vector fields in dimension 2 and 3 are studied. First the study of minimal sets is restricted to limit cycles. Questions about existence, distribution and quantity of such objects in smooth and non-smooth vector fields in dimension 3 are answered. Later, the existence of non-trivial minimal sets and chaos in dimension 2 is treated for non-smooth vector fields. Some examples of non-trivial minimal sets are presented and the presence of non-deterministic chaos on some of these sets is verified. Finally, a version of the Poincaré-Bendixson Theorem for non-smooth vector fields presenting neither escaping nor sliding motion is presented / Doutor
120

Leis de escala para o mapa padrão dissipativo /

Francisco, Caio Henrique. January 2015 (has links)
Orientador: Edson Denis Leonel / Banca: Ricardo Paupitz Barbosa dos Santos / Banca: Marcus Werner Beims / Resumo: Estudamos neste trabalho algumas propriedades de escala para a dinâmica do mapa padrão dissipativo. O mapa é descrito por duas variáveis dinâmicas sendo elas a ação, I e o ângulo, θ. O modelo é caracterizado por dois parâmetros de controle k e γ. O parâmetro k controla a intensidade da não linearidade ao passo que o parâmetro fornece a intensidade da dissipação. Para γ= 0, temos o caso não dissipativo. Dependendo do valor de k, o espaço de fase é misto exibindo ilhas de periodicidade, curvas invariantes e caos. Para k > 0; 9716..., as curvas invariantes do tipo spanning são destruídas e a ação pode se difundir sem limites ao longo do espaço de fases. Por outro lado quando γ= 0, o sistema é dissipativo e atratores aparecem no espaço de fases.... / Abstract: We considered in this work the characterisation of some scaling properties for the dynamics of the dissipative standard map. The map is described by the use of two dynamical variables, the action I, and the angle θ. The model is also characterised by two control parameters k and γ. The parameter k controls the intensity of the nonlinearity while γ describes the amount of dissipation. For γ= 0 the system is non dissipative. Depending on the parameter k, the phase space is mixed containing either periodic islands, invariant curves and chaos. For k > 0:9716..., the invariant spanning curves are all destroyed allowing the action to diffuse unbounded in the phase space. On the other hand when γ= 0, the system is dissipative and attractors appear in the phase space... / Mestre

Page generated in 0.1061 seconds