• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 15
  • 13
  • Tagged with
  • 43
  • 30
  • 19
  • 15
  • 15
  • 15
  • 14
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Simulation und Optimierung neuartiger SOI-MOSFETs

Herrmann, Tom 21 December 2010 (has links) (PDF)
Die vorliegende Arbeit beschreibt die Berechnung und Optimierung von Silicon-On-Insulator-Metal-Oxide-Semiconductor-Field-Effect-Transistors, einschließlich noch nicht in Massenproduktion hergestellter neuartiger Transistorarchitekturen für die nächsten Technologiegenerationen der hochleistungsfähigen Logik-MOSFETs mit Hilfe der Prozess- und Bauelementesimulation. Die neuartigen Transistorarchitekturen umfassen dabei vollständig verarmte SOI-MOSFETs, Doppel-Gate-Transistoren und FinFETs. Die statische und dynamische Leistungsfähigkeit der neuartigen Transistoren wird durch Simulation bestimmt und miteinander verglichen. Der mit weiterer Skalierung steigende Einfluss von statistischen Variationen wird anhand der Oberflächenrauheit sowie der Polykantenrauheit untersucht. Zu diesem Zweck wurden Modelle für die Generierung der Rauheit erarbeitet und in das Programmsystem SIMBA implementiert. Die mikroskopische Rauheit wird mit der makroskopischen Bauelementesimulation kombiniert und deren Auswirkungen auf die Standardtransistoren und skalierte Bauelemente aufgezeigt. Zudem erfolgt eine ausführliche Diskussion der Modellierung mechanischer Verspannung und deren Anwendung zur Steigerung der Leistungsfähigkeit von MOSFETs. Die in SIMBA implementierten Modelle zur verspannungs-abhängigen Änderung der Ladungsträgerbeweglichkeit und Lage der Bandkanten werden ausführlich dargestellt und deren Einfluss auf die elektrischen Parameter von MOSFETs untersucht. Weiterhin wird die Verspannungsverteilung für verschiedene Herstellungsvarianten mittels der Prozess-simulation berechnet und die Wirkung auf die elektrischen Parameter dargestellt. Exponential- und Gaußverteilungsfunktionen bilden die Grundlage, um die mechanische Verspannung in der Bauelementesimulation nachzubilden, ohne die Verspannungsprofile aus der Prozesssimulation zu übernehmen. Darüber hinaus werden die Grenzfrequenzen der Logiktransistoren in Bezug auf die parasitären Kapazitäten und Widerstände und zur erweiterten MOSFET-Charakterisierung dargestellt.
32

Minimizing Overhead for Fault Tolerance in Event Stream Processing Systems

Martin, André 20 September 2016 (has links) (PDF)
Event Stream Processing (ESP) is a well-established approach for low-latency data processing enabling users to quickly react to relevant situations in soft real-time. In order to cope with the sheer amount of data being generated each day and to cope with fluctuating workloads originating from data sources such as Twitter and Facebook, such systems must be highly scalable and elastic. Hence, ESP systems are typically long running applications deployed on several hundreds of nodes in either dedicated data-centers or cloud environments such as Amazon EC2. In such environments, nodes are likely to fail due to software aging, process or hardware errors whereas the unbounded stream of data asks for continuous processing. In order to cope with node failures, several fault tolerance approaches have been proposed in literature. Active replication and rollback recovery-based on checkpointing and in-memory logging (upstream backup) are two commonly used approaches in order to cope with such failures in the context of ESP systems. However, these approaches suffer either from a high resource footprint, low throughput or unresponsiveness due to long recovery times. Moreover, in order to recover applications in a precise manner using exactly once semantics, the use of deterministic execution is required which adds another layer of complexity and overhead. The goal of this thesis is to lower the overhead for fault tolerance in ESP systems. We first present StreamMine3G, our ESP system we built entirely from scratch in order to study and evaluate novel approaches for fault tolerance and elasticity. We then present an approach to reduce the overhead of deterministic execution by using a weak, epoch-based rather than strict ordering scheme for commutative and tumbling windowed operators that allows applications to recover precisely using active or passive replication. Since most applications are running in cloud environments nowadays, we furthermore propose an approach to increase the system availability by efficiently utilizing spare but paid resources for fault tolerance. Finally, in order to free users from the burden of choosing the correct fault tolerance scheme for their applications that guarantees the desired recovery time while still saving resources, we present a controller-based approach that adapts fault tolerance at runtime. We furthermore showcase the applicability of our StreamMine3G approach using real world applications and examples.
33

Simulation und Optimierung neuartiger SOI-MOSFETs

Herrmann, Tom 11 February 2010 (has links)
Die vorliegende Arbeit beschreibt die Berechnung und Optimierung von Silicon-On-Insulator-Metal-Oxide-Semiconductor-Field-Effect-Transistors, einschließlich noch nicht in Massenproduktion hergestellter neuartiger Transistorarchitekturen für die nächsten Technologiegenerationen der hochleistungsfähigen Logik-MOSFETs mit Hilfe der Prozess- und Bauelementesimulation. Die neuartigen Transistorarchitekturen umfassen dabei vollständig verarmte SOI-MOSFETs, Doppel-Gate-Transistoren und FinFETs. Die statische und dynamische Leistungsfähigkeit der neuartigen Transistoren wird durch Simulation bestimmt und miteinander verglichen. Der mit weiterer Skalierung steigende Einfluss von statistischen Variationen wird anhand der Oberflächenrauheit sowie der Polykantenrauheit untersucht. Zu diesem Zweck wurden Modelle für die Generierung der Rauheit erarbeitet und in das Programmsystem SIMBA implementiert. Die mikroskopische Rauheit wird mit der makroskopischen Bauelementesimulation kombiniert und deren Auswirkungen auf die Standardtransistoren und skalierte Bauelemente aufgezeigt. Zudem erfolgt eine ausführliche Diskussion der Modellierung mechanischer Verspannung und deren Anwendung zur Steigerung der Leistungsfähigkeit von MOSFETs. Die in SIMBA implementierten Modelle zur verspannungs-abhängigen Änderung der Ladungsträgerbeweglichkeit und Lage der Bandkanten werden ausführlich dargestellt und deren Einfluss auf die elektrischen Parameter von MOSFETs untersucht. Weiterhin wird die Verspannungsverteilung für verschiedene Herstellungsvarianten mittels der Prozess-simulation berechnet und die Wirkung auf die elektrischen Parameter dargestellt. Exponential- und Gaußverteilungsfunktionen bilden die Grundlage, um die mechanische Verspannung in der Bauelementesimulation nachzubilden, ohne die Verspannungsprofile aus der Prozesssimulation zu übernehmen. Darüber hinaus werden die Grenzfrequenzen der Logiktransistoren in Bezug auf die parasitären Kapazitäten und Widerstände und zur erweiterten MOSFET-Charakterisierung dargestellt.
34

Minimizing Overhead for Fault Tolerance in Event Stream Processing Systems

Martin, André 17 December 2015 (has links)
Event Stream Processing (ESP) is a well-established approach for low-latency data processing enabling users to quickly react to relevant situations in soft real-time. In order to cope with the sheer amount of data being generated each day and to cope with fluctuating workloads originating from data sources such as Twitter and Facebook, such systems must be highly scalable and elastic. Hence, ESP systems are typically long running applications deployed on several hundreds of nodes in either dedicated data-centers or cloud environments such as Amazon EC2. In such environments, nodes are likely to fail due to software aging, process or hardware errors whereas the unbounded stream of data asks for continuous processing. In order to cope with node failures, several fault tolerance approaches have been proposed in literature. Active replication and rollback recovery-based on checkpointing and in-memory logging (upstream backup) are two commonly used approaches in order to cope with such failures in the context of ESP systems. However, these approaches suffer either from a high resource footprint, low throughput or unresponsiveness due to long recovery times. Moreover, in order to recover applications in a precise manner using exactly once semantics, the use of deterministic execution is required which adds another layer of complexity and overhead. The goal of this thesis is to lower the overhead for fault tolerance in ESP systems. We first present StreamMine3G, our ESP system we built entirely from scratch in order to study and evaluate novel approaches for fault tolerance and elasticity. We then present an approach to reduce the overhead of deterministic execution by using a weak, epoch-based rather than strict ordering scheme for commutative and tumbling windowed operators that allows applications to recover precisely using active or passive replication. Since most applications are running in cloud environments nowadays, we furthermore propose an approach to increase the system availability by efficiently utilizing spare but paid resources for fault tolerance. Finally, in order to free users from the burden of choosing the correct fault tolerance scheme for their applications that guarantees the desired recovery time while still saving resources, we present a controller-based approach that adapts fault tolerance at runtime. We furthermore showcase the applicability of our StreamMine3G approach using real world applications and examples.
35

Verspannungstechniken zur Leistungssteigerung von SOI-CMOS-Transistoren

Flachowsky, Stefan 25 October 2010 (has links)
Mit dem Erreichen der Grenzen der konventionellen MOSFET-Skalierung werden neue Techniken untersucht, um die Leistungsfähigkeit der CMOS-Technologie dem bisherigen Trend folgend weiter zu steigern. Einer dieser Ansätze ist die Verwendung mechanischer Verspannungen im Transistorkanal. Mechanische Verspannungen führen zu Kristalldeformationen und ändern die elektronische Bandstruktur von Silizium, so dass n- und p-MOSFETs mit verspannten Kanälen erhöhte Ladungsträgerbeweglichkeiten und demzufolge eine gesteigerte Leistungsfähigkeit aufweisen. Die vorliegende Arbeit beschäftigt sich mit den Auswirkungen mechanischer Verspannungen auf die elektronischen Eigenschaften planarer Silicon-On-Insulator-MOSFETs für Höchstleistungsanwendungen sowie mit deren Optimierung und technologischen Begrenzungen. Der Effekt der Verspannung auf die Bandstruktur von Silizium und die Ladungsträgerbeweglichkeit wird zunächst systematisch mit Hilfe der empirischen Pseudopotenzialmethode und der Deformationspotenzialtheorie untersucht. Verringerte Streuraten und kleinere effektive Massen als Folge der Aufspaltung der Energiebänder sowie von Bandverformungen sind der Hauptgrund für eine erhöhte Löcher- bzw. Elektronenbeweglichkeit. Die unterschiedlichen Konzepte zur Erzeugung der Verspannung werden kurz rekapituliert. Der Schwerpunkt der Untersuchungen liegt auf den verspannten Deckschichten, den Si1-xGex- bzw. Si1-yCy- Source/Drain-Gebieten, den verspannungsspeichernden Prozessen und den verspannten Substraten. Die starke Abhängigkeit dieser Verspannungstechniken von der Transistorstruktur macht die Nutzung numerischer Simulationen unabdingbar. So werden die Auswirkungen von Variationen der Transistorgeometrie sowie von Prozessparametern im Hinblick auf die Verspannung und die Drainstromänderungen der Transistoren neben den Messungen am gefertigten Transistor auch anhand numerischer Simulationen dargestellt und verglichen. Wesentliche Parameter für eine erhöhte Verspannung werden bestimmt und technologische Herausforderungen bei der Prozessintegration diskutiert. Die durchgeführten Simulationen und das erlangte Verständnis der Wirkungsweise der Verspannungstechniken ermöglichen es, das Potenzial dieser Verspannungstechniken für weitere Leistungssteigerungen in zukünftigen Technologiegenerationen abzuschätzen. Dadurch ist es möglich, die Prozessbedingungen und die Eigenschaften der fertigen Bauelemente im Hinblick auf eine gesteigerte Leistungsfähigkeit hin zu optimieren. Mit der weiteren Verkleinerung der Strukturgrößen der Bauelemente wird der zunehmende Einfluss der parasitären Source/Drain-Widerstände als Begrenzung der Effektivität der Verspannungstechniken identifiziert. Anschließend werden die Wechselwirkungen zwischen den einzelnen Verspannungstechniken hervorgehoben bzw. die gegebenenfalls auftretenden Einschränkungen angesprochen. Abschließend wird das Transportverhalten sowohl im linearen ohmschen Bereich als auch unter dem Einfluss hoher elektrischer Feldstärken analysiert und die deutlichen Unterschiede für die Leistungssteigerungen der verspannten n- und p-MOSFETs begründet. / As conventional MOSFET scaling is reaching its limits, several novel techniques are investigated to extend the CMOS roadmap. One of these techniques is the introduction of mechanical strain in the silicon transistor channel. Because strain changes the inter-atomic distances and thus the electronic band structure of silicon, ntype and p-type transistors with strained channels can show enhanced carrier mobility and performance. The purpose of this thesis is to analyze and understand the effects of strain on the electronic properties of planar silicon-on-insulator MOSFETs for high-performance applications as well as the optimization of various stress techniques and their technological limitations. First, the effect of strain on the electronic band structure of silicon and the carrier mobility is studied systematically using the empirical pseudopotential method and the deformation potential theory. Strain-induced energy band splitting and band deformations alter the electron and hole mobility through modulated effective masses and modified scattering rates. The various concepts for strain generation inside the transistor channel are reviewed. The focus of this work is on strained overlayer films, strained Si1-xGex and Si1-yCy in the source/drain regions, stress memorization techniques and strained substrates. It is shown, that strained silicon based improvements are highly sensitive to the device layout and geometry. For that reason, numerical simulations are indispensable to analyze the efficiency of the strain techniques to transfer strain into the channel. In close relation with experimental work the results from detailed simulation studies including parameter variations and material analyses are presented, as well as a thorough investigation of critical parameters to increase the strain in the transistor channel. Thus, the process conditions and the properties of the fabricated devices can be optimized with respect to higher performance. In addition, technological limitations are discussed and the potential of the different strain techniques for further performance enhancements in future technology generations is evaluated. With the continuing reduction in device dimensions the detrimental impact of the parasitic source/drain resistance on device performance is quantified and projected to be the bottleneck for strain-induced performance improvements. Next, the effects from a combination of individual strain techniques are studied and their interactions or possible restrictions are highlighted. Finally, the transport properties in the low-field transport regime as well as under high electrical fields are analyzed and the notable differences between strained n-type and p-type transistors are discussed.
36

Integration von Multi-Gate-Transistoren auf Basis einer 22 nm-Technologie

Baldauf, Tim 10 January 2014 (has links)
Die kontinuierliche Skalierung der planaren MOSFETs war in den vergangenen 40 Jahren der Schlüssel, um die Bauelemente immer kleiner und leistungsfähiger zu gestalten. Hinzu kamen Techniken zur mechanischen Verspannung, Verfahren zur Kurzzeitausheilung, die in-situ-dotierte Epitaxie und neue Materialien, wie das High-k-Gateoxid in Verbindung mit Titannitrid als Gatemetall. Jedoch erschwerten Kurzkanaleffekte und eine zunehmende Streuung der elektrischen Eigenschaften die Verkleinerung der planaren Transistoren erheblich. Somit gelangten die planaren MOSFETs mit der aktuellen 28 nm-Technologie teilweise an die Grenzen ihrer Funktionalität. Diese Arbeit beschäftigt sich daher mit der Integration von Multi-Gate-Transistoren auf Basis einer 22 nm-Technologie, welche eine bessere Steuerfähigkeit des Gatekontaktes aufweisen und somit die Fortführung der Skalierung ermöglichen. Zudem standen die Anforderungen eines stabilen und kostengünstigen Herstellungsprozesses als Grundvoraussetzung zur Übernahme in die Volumenproduktion stets mit im Vordergrund. Die Simulationen der Tri-Gate-Transistoren stellten dabei den ersten Schritt hin zu einer Multi-Gate-Technologie dar. Ihre Prozessabfolge unterscheidet sich von den planaren Transistoren nur durch die Formierung der Finnen und bietet damit die Möglichkeit eines hybriden 22 nm-Prozesses. Am Beispiel der Tri-Gate-Transistoren wurden zudem die Auswirkungen der Kristallorientierung, der mechanischen Verspannung und der Überlagerungseffekte es elektrischen Feldes auf die Leistungsfähigkeit von Multi-Gate-Strukturen analysiert. Im nächsten Schritt wurden Transistoren mit vollständig verarmten Kanalgebieten untersucht. Sie weisen aufgrund einer niedrigen Kanaldotierung eine Volumeninversion, eine höhere Ladungsträgerbeweglichkeit und eine geringere Anfälligkeit gegenüber der zufälligen Dotierungsfluktuation auf, welche für leistungsfähige Multi-Gate-Transistoren entscheidende Kriterien sind. Zu den betrachteten Varianten zählen die planaren ultradünnen SOI-MOSFETs, die klassischen FinFETs mit schmalen hohen Finnen und die vertikalen Nanowire-Transistoren. Anschließend wurden die Vor- und Nachteile der verschiedenen Transistorstrukturen für eine mittel- bis langfristige industrielle Nutzung betrachtet. Dazu erfolgte eine Analyse der statistischen Schwankungen und eine Skalierung hin zur 14 nm-Technologie. Eine Zusammenfassung aller Ergebnisse und ein Ausblick auf die mögliche Übernahme der Konzepte in die Volumenproduktion schließen die Arbeit ab.:Symbol- und Abkürzungsverzeichnis 1 Einleitung 2 Grundlagen und Entwicklung der CMOS-Technologie 2.1 Planare Transistoren 2.1.1 Theoretische Grundlagen von MOSFETs 2.1.2 Skalierung und Kurzkanalverhalten planarer Transistoren 2.1.3 Mechanische Verspannung von Silizium 2.1.4 Techniken zur mechanischen Verspannung 2.2 Multi-Gate-Transistoren 2.2.1 Multi-Gate-Strukturen 2.2.2 Überlagerungseffekte 2.2.3 Quanteneffekte 2.3 Stand der Technik 3 Grundlagen der Simulation 3.1 Prozesssimulation 3.1.1 Abscheiden und Abtragen von Schichten 3.1.2 Implantation 3.1.3 Thermische Ausheilung mit Diffusion 3.2 Bauelementesimulation 3.2.1 Grundgleichungen und Ladungsträgertransport 3.2.2 Bandlückenverengung 3.2.3 Generation und Rekombination 3.2.4 Ladungsträgerbeweglichkeit 3.2.5 Effekte der mechanischen Verspannung 3.2.6 Ladungsträgerquantisierung 3.3 Kalibrierung der Modellparameter 3.3.1 Prozessparameter 3.3.2 Modellparameter 4 Planare Transistoren auf Basis einer 22 nm-Technologie 4.1 Transistoraufbau 4.1.1 Replacement-Gate-Prozess 4.1.2 In-situ-dotierte Source-Drain-Gebiete 4.1.3 Haloimplantation 4.1.4 Elemente der mechanischen Verspannung 4.2 Charakterisierung des elektrischen Verhaltens 4.2.1 Stationäres Verhalten 4.2.2 Gatesteuerung und Kurzkanaleffekte 4.2.3 Dynamisches Verhalten 5 Tri-Gate-Transistoren 5.1 Prozessintegration und Transistoraufbau 5.1.1 Anforderungen an hochintegrierte Schaltkreise 5.1.2 Hybride CMOS-Technologie 5.1.3 Strukturierung der Finne 5.1.4 Geometrieabhängiges Dotierungsprofil 5.2 Charakterisierung des elektrischen Verhaltens 5.2.1 Stationäres Verhalten 5.2.2 Kurzkanaleffekte und Gatesteuerung 5.2.3 Eckeneffekt 5.2.4 Eckenimplantation 5.2.5 Finnengeometrie 5.2.6 Dynamisches Verhalten 5.3 Optimierung der Tri-Gate-Struktur 5.3.1 Gestaltung der epitaktischen Source-Drain-Gebiete 5.3.2 Mechanisch verspanntes Isolationsoxid 5.3.3 Substratorientierung 6 Transistoren mit vollständig verarmtem Kanal 6.1 Ultra-Dünne-SOI-MOSFETs 6.1.1 Prozessintegration 6.1.2 Charakterisierung des elektrischen Verhaltens 6.2 FinFETs 6.2.1 Prozessintegration 6.2.2 Charakterisierung des elektrischen Verhaltens 6.3 Vertikale Nanowire-MOSFETs 6.3.1 Prozessintegration 6.3.2 Strukturierung des Aktivgebiets 6.3.3 Charakterisierung des elektrischen Verhaltens 6.3.4 Asymmetrisches Dotierungsprofil 6.3.5 Mechanische Verspannung 7 Skalierung und statistische Schwankungen der Strukturen 7.1 Skalierung zur 14 nm-Technologie 7.1.1 Leistungsfähigkeit 7.1.2 Kurzkanalverhalten und Steuerfähigkeit 7.2 Statistische Schwankungen 7.2.1 Impedanz-Feld-Methode 7.2.2 Zufällige Dotierungsfluktuation 7.2.3 Fixe Ladungen im Oxid 7.2.4 Metall-Gate-Granularität 7.2.5 Geometrische Variationen 7.2.6 Kombination der Störquellen 8 Zusammenfassung und Ausblick Anhang Literaturverzeichnis Danksagung Acknowledgement / Within the past 40 years the continuous scaling of planar MOSFETs was key to shrink the devices and to improve their performance. Techniques like mechanical stressing, rapid thermal annealing and in-situ doped epitaxial growing as well as novel materials, such as high-k-gate-oxide in combination with titanium nitride as metal-gate, has been introduced. However, short-channel-effects and increased scattering of electrical proper-ties significantly complicate the scaling of planar transistors. Thus, the planar MOSFETs gradually reached their limits of functionality with the current 28 nm technology node. For that reason, this work focuses on integration of multi-gate transistors based on a 22 nm technology, which show an improved gate control and allow a continuous scaling. Furthermore, the requirements of a stable and cost-efficient process as decisive condition for mass fabrication were always taken into account. The simulations of the tri-gate transistors present the first step toward a multi-gate technology. The process sequence differs from the planar one solely by a fin formation and offers the possibility of a hybrid 22 nm process. Also, the impact of crystal orientation, mechanical stress and superposition of electrical fields on the efficiency of multi-gate structures were analyzed for the tri-gate transistors. In a second step transistors with fully depleted channel regions were studied. Due to low channel doping they are showing a volume inversion, a higher carrier mobility and a lower sensitivity to random doping fluctuations, which are essential criteria for powerful multi-gate transistors. Reviewed structure variants include planar ultra-thin-body-SOI-MOSFETs, classic FinFETs with a tall, narrow fins and vertical nanowire transistors. Then advantages and disadvantages of the considered transistor structures have been observed for a medium to long term industrial use. For this purpose, an analysis of statistical fluctuations and the scaling-down to 14 nm technology was carried out. A summary of all results and an outlook to the transfer of concepts into mass fabrication complete this work.:Symbol- und Abkürzungsverzeichnis 1 Einleitung 2 Grundlagen und Entwicklung der CMOS-Technologie 2.1 Planare Transistoren 2.1.1 Theoretische Grundlagen von MOSFETs 2.1.2 Skalierung und Kurzkanalverhalten planarer Transistoren 2.1.3 Mechanische Verspannung von Silizium 2.1.4 Techniken zur mechanischen Verspannung 2.2 Multi-Gate-Transistoren 2.2.1 Multi-Gate-Strukturen 2.2.2 Überlagerungseffekte 2.2.3 Quanteneffekte 2.3 Stand der Technik 3 Grundlagen der Simulation 3.1 Prozesssimulation 3.1.1 Abscheiden und Abtragen von Schichten 3.1.2 Implantation 3.1.3 Thermische Ausheilung mit Diffusion 3.2 Bauelementesimulation 3.2.1 Grundgleichungen und Ladungsträgertransport 3.2.2 Bandlückenverengung 3.2.3 Generation und Rekombination 3.2.4 Ladungsträgerbeweglichkeit 3.2.5 Effekte der mechanischen Verspannung 3.2.6 Ladungsträgerquantisierung 3.3 Kalibrierung der Modellparameter 3.3.1 Prozessparameter 3.3.2 Modellparameter 4 Planare Transistoren auf Basis einer 22 nm-Technologie 4.1 Transistoraufbau 4.1.1 Replacement-Gate-Prozess 4.1.2 In-situ-dotierte Source-Drain-Gebiete 4.1.3 Haloimplantation 4.1.4 Elemente der mechanischen Verspannung 4.2 Charakterisierung des elektrischen Verhaltens 4.2.1 Stationäres Verhalten 4.2.2 Gatesteuerung und Kurzkanaleffekte 4.2.3 Dynamisches Verhalten 5 Tri-Gate-Transistoren 5.1 Prozessintegration und Transistoraufbau 5.1.1 Anforderungen an hochintegrierte Schaltkreise 5.1.2 Hybride CMOS-Technologie 5.1.3 Strukturierung der Finne 5.1.4 Geometrieabhängiges Dotierungsprofil 5.2 Charakterisierung des elektrischen Verhaltens 5.2.1 Stationäres Verhalten 5.2.2 Kurzkanaleffekte und Gatesteuerung 5.2.3 Eckeneffekt 5.2.4 Eckenimplantation 5.2.5 Finnengeometrie 5.2.6 Dynamisches Verhalten 5.3 Optimierung der Tri-Gate-Struktur 5.3.1 Gestaltung der epitaktischen Source-Drain-Gebiete 5.3.2 Mechanisch verspanntes Isolationsoxid 5.3.3 Substratorientierung 6 Transistoren mit vollständig verarmtem Kanal 6.1 Ultra-Dünne-SOI-MOSFETs 6.1.1 Prozessintegration 6.1.2 Charakterisierung des elektrischen Verhaltens 6.2 FinFETs 6.2.1 Prozessintegration 6.2.2 Charakterisierung des elektrischen Verhaltens 6.3 Vertikale Nanowire-MOSFETs 6.3.1 Prozessintegration 6.3.2 Strukturierung des Aktivgebiets 6.3.3 Charakterisierung des elektrischen Verhaltens 6.3.4 Asymmetrisches Dotierungsprofil 6.3.5 Mechanische Verspannung 7 Skalierung und statistische Schwankungen der Strukturen 7.1 Skalierung zur 14 nm-Technologie 7.1.1 Leistungsfähigkeit 7.1.2 Kurzkanalverhalten und Steuerfähigkeit 7.2 Statistische Schwankungen 7.2.1 Impedanz-Feld-Methode 7.2.2 Zufällige Dotierungsfluktuation 7.2.3 Fixe Ladungen im Oxid 7.2.4 Metall-Gate-Granularität 7.2.5 Geometrische Variationen 7.2.6 Kombination der Störquellen 8 Zusammenfassung und Ausblick Anhang Literaturverzeichnis Danksagung Acknowledgement
37

On the stabilization of ferroelectric negative capacitance in nanoscale devices

Hoffmann, Michael, Pešić, Milan, Slesazeck, Stefan, Schroeder, Uwe, Mikolajick, Thomas 12 October 2022 (has links)
Recently, the proposal to use voltage amplification from ferroelectric negative capacitance (NC) to reduce the power dissipation in nanoelectronic devices has attracted significant attention. Homogeneous Landau theory predicts, that by connecting a ferroelectric in series with a dielectric capacitor, a hysteresis-free NC state can be stabilized in the ferroelectric below a critical film thickness. However, there is a strong discrepancy between experimental results and the current theory. Here, we present a comprehensive revision of the theory of NC stabilization with respect to scaling of material and device dimensions based on multi-domain Ginzburg–Landau theory. It is shown that the use of a metal layer in between the ferroelectric and the dielectric will inherently destabilize NC due to domain formation. However, even without this metal layer, domain formation can reduce the critical ferroelectric thickness considerably, limiting not only the range of NC stabilization, but also the maximum amplification attainable. To overcome these obstacles, the downscaling of lateral device dimensions is proposed as a way to prevent domain formation and to enhance the voltage amplification due to NC. These insights will be crucial for future NC device design and scaling towards nanoscale dimensions.
38

Modellierung und Evaluierung von Multiagentensystemen im Kontext von Kooperationsproblemen / Modelling and analysis of multiagent systems concerning cooperation problems

Reinhold, Thomas 28 February 2005 (has links) (PDF)
The subject of this diploma thesis is the modelling and the analysis of mechanisms that enable multiagentsystems to establish communication relations and using them to control the interaction. With regards to the emergence of such symbol systems one groundwork of this paper is the realization that coordination problems aren't applicative to advance to evolution of "higher communication capabilities". With this in mind, this analysis uses a class of problems with explicit conflicts of interests between agents and the necessity of solving such interaction problems with the help of communication. The paper determines and discusses mechanisms and constraints that enable multiagentsystems to evolve such self-organisating social structures as well as preserving them. / Thema dieser Diplomarbeit ist die Modellierung und Untersuchung von Mechanismen, auf deren Grundlage Multiagentensysteme in der Lage sind, Kommunikationsbeziehungen aufzubauen und kommunikative Akte interaktionssteuernd zu verwenden. Hinsichtlich der Emergenz derartiger Symbolsysteme besteht eine wesentliche Erkenntnis, auf der diese Arbeit aufbaut, darin, dass Koordinationsprobleme als Kontext für MAS kein geeignetes experimentelles Umfeld für die Herausbildung "höherer kommunikativer Fähigkeiten" darstellen. Davon ausgehend werden für eine Klasse von Problemen, in denen die Abstimmung über eine Interaktion aufgrund von Interessenkonflikten einen expliziten Teil des kommunikativ zu lösenden Problems darstellt, Mechanismen und Constraints herausgearbeitet und diskutiert, die Agenten in die Lage versetzen, ein sich selbst organisierendes soziales Gefüge aufzubauen und zu erhalten.
39

Erzeugung und Untersuchung von schnellen Mikrotropfen für Reinigungsanwendungen / Generation and investigation of fast micro drops with respect to cleaning applications

Frommhold, Philipp Erhard 20 May 2015 (has links)
Seit mehr als einem Jahrhundert ist ein wachsendes wissenschaftliches Interesse an Tropfen und den Vorgängen bei deren Aufprall auf die verschiedensten Substrate zu verzeichnen, wohl auch durch die Fotografien von Worthington (1908) ausgelöst. Inzwischen wurden viele Erkenntnisse durch große Fortschritte bei der experimentellen Untersuchung (z.B. mittels Hochgeschwindigkeitsaufnahmen) und durch theoretische und computergestützte Untersuchung (z.B. durch skalenfreie und numerische Modellierung) gewonnen. Trotzdem bleibt durch die Vielfältigkeit und Komplexität der Phänomene während des Tropfenaufpralls sowie wegen der ständig erweiterten Anwendungsbereiche dieses Forschungsgebiet hochaktuell. Insbesondere sehr kleine und gleichzeitig sehr schnelle Tropfen (Tropfendurchmesser 10µm bis 100µm, Tropfengeschwindigkeit 10m/s bis 100m/s) kommen in vielen modernen Anwendungen vor (z.B. Verbrennungsmotoren, Tintenstrahldrucker, Reinigung von Oberflächen). In diesem wichtigen, aber für Untersuchungen schwer zugänglichen Parameterbereich gibt es immer noch offene Fragen. Die vorliegende Arbeit beschäftigt sich daher mit diesen schnellen Mikrotropfen in Bezug auf ihre Herstellung und den Aufprallvorgang auf ein festes, trockenes oder benetztes Substrat. Zunächst wird eine Methode zur Erzeugung eines Hochgeschwindigkeitssprays realisiert, welche auf dem durch Ultraschall gesteuerten Plateau-Rayleigh-Zerfall eines Flüssigkeitsstrahls beruht. Sie ermöglicht es, sowohl Tropfengröße als auch –geschwindigkeit präzise und mit hoher Reproduzierbarkeit über den gesamten oben angegebenen Parameterbereich einzustellen. Durch gezielte Manipulation eines Einzeltropfens durch elektrische Felder wird anschließend der Tropfenaufprall auf Substrate unterschiedlicher Benetzbarkeit mit sehr hoher zeitlicher Auflösung (ca. 100 Mio. Bilder pro Sekunde) bei gleichzeitig hoher räumlicher Auflösung (< 1µm) untersucht. Es zeigt sich, dass bekannte Modelle für langsamere und größere Tropfen im Millimeterbereich auch für schnelle Mikrotropfen Gültigkeit behalten. Somit ist bei gleichen dimensionslosen Kennzahlen (z.B. Reynolds-Zahl, Weber-Zahl, Ohnesorge-Zahl) eine skalenfreie Beschreibung des Tropfenaufpralls möglich. Schließlich wird die Methode zur Tropfenerzeugung auf einen für Anwendungen in der Reinigung relevanten Fall übertragen. Hierbei geht es um den Tropfenaufprall auf ein von einem Flüssigkeitsfilm überströmten Substrat. Es werden die während des Auftreffvorgangs auftretenden Geschwindigkeiten in der sich bildenden radialen Strömung in Abhängigkeit von verschiedenen Prozessparametern bestimmt. Aus den Ergebnissen lassen sich Aussagen über die zu erwartende Reinigungswirkung durch derartige Tropfen und den Einfluss der Prozessparameter treffen.
40

Modellierung und Evaluierung von Multiagentensystemen im Kontext von Kooperationsproblemen: Modellierung und Evaluierung von Multiagentensystemen im Kontext von Kooperationsproblemen

Reinhold, Thomas 01 August 2004 (has links)
The subject of this diploma thesis is the modelling and the analysis of mechanisms that enable multiagentsystems to establish communication relations and using them to control the interaction. With regards to the emergence of such symbol systems one groundwork of this paper is the realization that coordination problems aren't applicative to advance to evolution of "higher communication capabilities". With this in mind, this analysis uses a class of problems with explicit conflicts of interests between agents and the necessity of solving such interaction problems with the help of communication. The paper determines and discusses mechanisms and constraints that enable multiagentsystems to evolve such self-organisating social structures as well as preserving them. / Thema dieser Diplomarbeit ist die Modellierung und Untersuchung von Mechanismen, auf deren Grundlage Multiagentensysteme in der Lage sind, Kommunikationsbeziehungen aufzubauen und kommunikative Akte interaktionssteuernd zu verwenden. Hinsichtlich der Emergenz derartiger Symbolsysteme besteht eine wesentliche Erkenntnis, auf der diese Arbeit aufbaut, darin, dass Koordinationsprobleme als Kontext für MAS kein geeignetes experimentelles Umfeld für die Herausbildung "höherer kommunikativer Fähigkeiten" darstellen. Davon ausgehend werden für eine Klasse von Problemen, in denen die Abstimmung über eine Interaktion aufgrund von Interessenkonflikten einen expliziten Teil des kommunikativ zu lösenden Problems darstellt, Mechanismen und Constraints herausgearbeitet und diskutiert, die Agenten in die Lage versetzen, ein sich selbst organisierendes soziales Gefüge aufzubauen und zu erhalten.

Page generated in 0.0685 seconds