• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 12
  • 10
  • 8
  • 7
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 116
  • 40
  • 27
  • 26
  • 16
  • 15
  • 12
  • 12
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

The Contribution of IFNα-Stimulated Immune Cell Populations to B6.NbA2 Lupus-likeDisease

Keller, Emma Jean 01 September 2021 (has links)
No description available.
112

Aktivierungsfähigkeit von myeloiden dendritischen Zellen durch das Lupus-Autoantigen La/SS-B

Ludwig, Florian 03 April 2019 (has links)
Der systemische Lupus erythematodes (SLE) ist der Prototyp einer systemischen Autoimmunkrankheit, bei dem neben leichteren Verläufen mit spontan remittierendem Hautausschlag und Gelenkschmerzen häufig eine Nierenbeteiligung in Form der Glomerulonephritis vorkommt. Eine weitere Autoimmunerkrankung ist das Sjögren-Syndrom, bei der exokrine Drüsen befallen werden und v. a. zu anhaltender Mund- und Augen-trockenheit führen. Beide Erkrankungen gehören zu den Kollagenosen (Bindegewebs-erkrankung), bei denen organunspezifische Autoantikörper gegen Zellkernmaterial (anti-nukleäre Antikörper) zur Diagnosefindung beitragen. Eines der Antigene nennt sich La/SS-B (Sjögren-Syndrom-B), es wird bei 70 % der Sjögren-Syndrom- und 25 % der SLE-Patienten registriert. Im Rahmen von Zelluntergang wie bei Infektionen oder UV-Licht-Exposition, wenn La/SS-B extrazellulär für das Immunsystem zugänglich wird, kommt es zu Krankheitsschüben von SLE. La/SS-B ist bei fast allen Eukaryonten ein essentielles Kernprotein, das Nukleinsäuren, v. a. RNA, und in gewissem Grad auch DNA binden kann. Beim Menschen hat es eine wichtige Funktion in der Bindung von RNA-Polymerase III-Transkripten. Das Protein besteht funktionell aus einem N- und einem C-Terminus. Der N-Terminus beinhaltet das La-Motiv und das RRM1 (RNA recognition motif 1, RNA-Erkennungmotiv). Es kann davon ausgegangen werden, dass im Rahmen der Erkrankungen in einer oder mehrerer Phasen dendritische Zellen des Immunsystems mit dem Protein in Kontakt treten, da diese zentralen Zellen des Immunsystems für die Bildung von Antikörpern essenziell sind. 6 sulfo LacNAc+ dendritische Zellen (slanDC) sind die proinflammatorische Hauptpopulation myeloider dendritischer Zellen (mDC) und produzieren bei Stimulation große Mengen Tumornekrosefaktor α (TNF α). Sie besitzen wie alle mDCs keinen TLR9 (toll-like receptor, Toll-ähnlicher Rezeptor), der durch CpG-reiche, bakterielle DNA aktiviert würde, dafür aber solche TLRs, die zu einer Aktivierung der slanDCs u. a. durch bakterielle RNA oder Lipopolysaccharide (LPS) führen. Eine entscheidende Frage ist, warum es zur Bildung von Autoantikörpern gegen das Kern- und RNA-Bindeprotein La kommt und ob La-Autoantikörper eine Begleiterscheinung sind oder ob es tatsächlich immunstimulierende Formen von La gibt. Da La ein Nukleinsäure-bindendes Protein ist, ist eine Assoziation mit bakteriellen Nukleinsäuren nach prokaryontischer Herstellung wie in dieser Arbeit wahrscheinlich. Da der N-Terminus des La-Proteins die RNA-Bindedomäne enthält, wurde dieser näher untersucht. Die Stimulierbarkeit von DCs durch La ist noch unzureichend erforscht. In dieser Arbeit wurde repräsentativ die Stimulierbarkeit von slanDCs durch La/SS-B nach Aufreinigung durch zwei variierende Verfahren untersucht. Zu prüfen war, ob und in welchem Umfang die gebundenen Nukleinsäuren Einfluss auf die Aktivierungsfähigkeit haben. La-Protein wurde prokaryontisch rekombinant in E. coli-Bakterien hergestellt und mit Nickel-Affinitätschromatographie aufgereinigt. Durch Einbau eines Stopcodons konnte zusätzlich der N-terminale Teil von La (LaN) separat hergestellt werden. Bei einer erneuten Aufreinigung wurde das Aufreinigungsverfahren um einen DNase-/RNase-Verdau erweitert. Um gebundene Nukleinsäuren nachzuweisen und zu messen wurden UV-Spektren der aufgereinigten Proteine bei 220–300 nm angefertigt. Zudem erfolgten Fluoreszenzfärbungen mit RiboGreen®, welches auf Nukleinsäuren reagiert. Für verschiedene Referenzversuche und Vergleiche wurden E. coli- und eukaryontische RNA mit TriPure Isolation Reagent und Chloroform isoliert. Die slanDCs wurden über magnetischer Zellseparierung aus PBMCs isoliert, die zuvor aus buffy coats mittels Ficoll-Dichtezentrifugation gewonnen wurden. Sie wurden bei Raumtemperatur 24 Stunden kultiviert, die Probenzugabe erfolgte 4 Stunden nach Kulturbeginn. Im Überstand wurde die TNF α-Konzentration mittels ELISA bestimmt. Nach erfolgter Aufreinigung bestätigten Westernblots die Identität der Proteine La und LaN. Die UV-Spektren ergaben Protein-Nukleinsäure-Mischspektren, der Nukleasen-verdau verringerte jedoch den gebundenen Nukleinsäure-Anteil. RiboGreen®-Probefärbungen verschiedener Nukleinsäuren sowie Verdauungsversuche mit Nuklease zeigten eine Inhomogenität der Fluoreszenzintensitäten abhängig von der Art und Länge der Nukleinsäure. Dadurch war eine korrekte Quantifizierung des La-gebundenen bakteriellen Nukleinsäure-Gemischs nicht möglich. Trotzdem konnte beim getrennten Verdau mit DNase und RNase die Nukleinsäure an La-Protein als größtenteils RNA, an LaN als fast ausschließlich RNA identifiziert werden. In den slanDC-Aktivierungsversuchen erwiesen sich sowohl 5 pmol La-Volllänge als auch 5 pmol von dessen seperatem N-Terminus als potente Stimulatoren. Die Nuklease-verdauten Varianten von La und LaN waren signifikant weniger immunstimulierend. Selbst 50 pmol Nuklease-behandeltes La führten zu weniger TNF α-Produktion als 5 pmol unbehandeltes La. In einem Kontrollversuch war aufgereinigter E. coli-RNA ebenfalls stimulierend, eukaryontische RNA hingegen nicht. CpG-DNA führte ebenfalls zu keiner Aktivierung von slanDCs. Reassoziationsversuche von Nuklease-behandeltem N-terminalen La-Protein mit eukaryontischer RNA konnten keine immunstimulierende Wirkung hervorrufen. Es kann aus den Versuchen mit slanDCs geschlossen werden, dass an La gebundene bakterielle Nukleinsäuren für die Aktivierung der Immunzellen hauptverantwortlich waren. Mit großer Wahrscheinlichkeit beruht die Aktivierung auf RNA. Einerseits wurde v. a. RNA in den Proteinaufreinigungen nachgewiesen, andererseits tragen mDCs keinen TLR9 zur DNA-Erkennung. Diese Arbeit wirft die Frage auf, ob dem Protein La/SS B eine Funktion als Alarmin innewohnt, ähnlich dem Protein LL 37, das selbst das Immunsystem nicht stimuliert, aber körpereigene DNA komplexieren und dadurch in eine autostimulierende Form verwandeln kann. Möglicherweise wird durch Zellschaden freigewordenes La durch gleichzeitig vorhandene körperfremde Nukleinsäuren in Immunzellen geschleust, um auf diesem Weg die Immuntoleranz zu durchbrechen. Nachdem in dieser Arbeit offenbar die Nukleinsäuren für die Aktivierung von slanDCs verantwortlich waren, könnte in weiterführenden Versuchen an isolierten T Helferzellen oder an murinen T-Zellen in vivo untersucht werden, ob sie durch Stimulation mit La-aktivierten DCs tatsächlich auf La-Protein geprimt (priming, Prägung) werden. Zudem wird die Vermutung aufgeworfen, ob extrazelluläres La während einer bakteriellen Infektion deren Nukleinsäuren stabilisiert und vor Nukleasen schützt. Dadurch vermehrt auftretende extrazelluläre bakterielle Nukleinsäure könnte einen SLE-Schub auslösen, was für SLE charakteristisch wäre.:Inhaltsverzeichnis 3 Abbildungsverzeichnis 6 Tabellenverzeichnis 8 Abkürzungsverzeichnis 9 1. Einleitung 13 1.1 Das menschliche Immunsystem 13 1.1.1 Die zentrale Rolle dendritischer Zellen bei der Einleitung der Immunantwort 14 1.1.2 Die besondere Rolle dendritischer Zellen bei der spezifischen Immunantwort 15 1.1.3 SlanDCs, eine neue Gruppe dendritischer Zellen 17 1.1.4 Überempfindlichkeitsreaktionen des Immunsystems 18 1.2 Systemischer Lupus Erythematodes (SLE) 18 1.2.1 Allgemeines und Epidemiologie 18 1.2.2 Aspekte zur Pathogenese 20 1.3 Das Autoantigen La/SS B 23 1.4 Die Rolle von Nukleinsäuren bei autoimmunen Prozessen 26 1.5 Zielstellung 28 2. Materialien 30 2.1 Chemikalien und Reagenzien 30 2.2 Puffer und Lösungen 31 2.3 Medien 33 2.4 Bakterienstamm 33 2.5 Zelllinien 34 2.6 DNAs und RNAs 34 2.7 Enzyme 34 2.8 Antikörper 35 2.9 Molekulargewichtsmarker 35 2.10 Kitsystem 36 2.11 Verbrauchsmaterialien 36 2.12 Geräte und Software 36 3. Methoden 39 3.1 Molekularbiologische Methoden 39 3.1.1 Arbeiten mit Bakterien 39 3.1.1.1 Kultivierung von Bakterien für die prokaryotische Proteinproduktion 39 3.1.1.2 Bestimmung der OD600 40 3.1.2 Herstellung von RNA-Totalextrakten 40 3.1.2.1 RNA aus E. coli 40 3.1.2.2 RNA aus eukaryontischen Zellen 41 3.1.3 Photometrische Konzentrationsbestimmung von Nukleinsäuren 41 3.1.4 Bestimmung des Nukleinsäure-Gehalts mit RiboGreen® RNA Quantification Kit 41 3.2 Zellbiologische Methoden 43 3.2.1 Kultivierung von Raji- und U937-Zellen 43 3.2.2 Isolierung von peripheren mononukleären Zellen (PBMCs) aus buffy coats 43 3.2.3 Bestimmung der Zellzahl 44 3.2.4 Isolierung von slanDCs aus PBMCs 44 3.2.5 Durchflusszytometrie 44 3.2.5.1 Messung der Reinheit der slanDCs 45 3.2.5.2 Untersuchung von Oberflächenmarkern auf slanDCs 46 3.3 Proteinbiochemische Methoden 46 3.3.1 Aufreinigung der prokaryontisch produzierten Proteine 46 3.3.2 Dialyse 48 3.3.3 Photometrische Konzentrationsbestimmung von Proteinen 48 3.3.4 Spektralanalyse von Protein-Lösungen und von DNA 48 3.3.5 SDS-Polyacrylamid-Gelelektrophorese 48 3.3.6 Coomassiefärbung von SDS-Gelen 50 3.3.7 Konzentrationsbestimmung mit Proteinstandard im SDS-Gel 50 3.3.8 Western Blotting und Immundetektion 50 3.3.9 Aktivierungsversuche von slanDCs durch Zugabe von La 51 3.3.10 Enzyme-linked immunosorbent assay (ELISA) 51 4. Ergebnisse 53 4.1 Herstellung des Proteins La und dessen N-terminaler Domäne 53 4.2 Charakterisierung der Proteine und Quantifizierung des Nukleinsäure-Gehalts 56 4.2.1 Westernblots und Färbung mit verschiedenen Antikörpern 56 4.2.2 Quantifizierung des Nukleinsäure-Gehalts in La und LaN mittels UV-Spektrum 57 4.2.3 Quantifizierung und Differenzierung der an La gebundenen Nukleinsäuren mit RiboGreen® 63 4.3 Aktivierungsversuche mit slanDCs, der Hauptpopulation von mDCs 67 4.3.1 La und slanDCs 68 4.3.2 Immunstimulierende Kapazität von bakteriell exprimiertem La nach RNase- und DNase-Behandlung 72 4.3.3 Das Teilprotein LaN (N-terminale Domäne von La) 76 4.3.4 Die Reaktion von slanDCs auf eukaryontische und prokaryontische RNA sowie CpG-DNA 79 5. Diskussion 83 5.1 Erläuterungen zur Herstellung der Proteine La und dessen N-terminaler Domäne 83 5.2 Ist an bakteriell gewonnenem La-Protein Nukleinsäure gebunden? 84 5.3 SlanDCs werden durch La-Protein aktiviert, wenn bakterielle Nukleinsäure gebunden ist 87 6. Zusammenfassung 91 Summary 94 Literaturverzeichnis 97 Danksagung 107 Anlagen 109 / Systemic lupus erythematosus (SLE) is the prototype of a systemic autoimmune disease. Apart from a spontaneously remitting rash and joint pain a glomerulonephritis often damages the kidney. Sjögren’s syndrome is another autoimmune disease. It affects the exocrine glands whose destruction leads to persistent mouth and eye dryness. Both diseases belong to the group of collagenoses (connective tissue diseases) where organ non specific autoantibodies against nuclear material (antinuclear antibodies) are used for diagnosis. One antigen called La/SS-B (Sjögren’s Syndrome-B) has been detected in seventy percent of the patients with Sjögren’s syndrome and in twenty-five percent of the patients with SLE. On cell death, for example due to infections or exposure of UV light, La/SS-B is exposed to the extracellular space becoming available to the immune system and leads to an exacerbation of SLE. La/SS-B is an essential nuclear protein in almost all eukaryotes. It binds nucleic acids, particularly RNA, but also DNA to a lesser extent. A major function in humans is the binding of RNA polymerase III transcripts. The protein can be divided into an amino- and a carboxyl-terminus, each serving a different function. The amino-terminus contains the La motif and the RRM1 (RNA recognition motif 1). In one or more phases during the disease La/SS-B will interact with dendritic cells (DC). These central cells of the immune systems are essential for the generation of an antibody response. 6 sulfo LacNAc+ dendrite cells (slanDC) are the major population of myeloid dendritic cells (mDC) and have a high proinflammatory potential. In case of stimulation they produce large amounts of tumor necrosis factor α (TNF α). Like all mDCs they have no TLR9 (toll-like receptor), which could activate the slanDCs via bacterial DNA, but they have TLRs that activate these cells by bacterial RNA and lipopolysaccharide (LPS). A crucial question is why autoantibodies against the nuclear RNA binding protein La are generated. These autoantibodies could be the consequence of an epiphenomenon or of active immunostimulation. Because La is a nucleic acid binding protein, an association with bacterial nucleic acids after purification from transformed prokaryotes seemed possible. The amino-terminus was analyzed closer since in contains the RNA binding domain. The stimulation of DCs is still insufficiently researched. In this dissertation the stimulation of slanDCs by La/SS-B after purification, using two different methods, was studied. The goal was to clarify whether the bound nucleic acids have an effect on the activation ability of La/SS-B. La protein was produced recombinantly in E. coli bacteria and purified with nickel affinity chromatography. It was possible to create and purify the separate amino-terminus of La (LaN) by insertion of a stop codon in the transformed prokaryotic DNA. In a second purification of La and LaN the procedure was supplemented by a treatment with DNase and RNase. An UV spectral analysis at 220–300 nm was performed to verify and measure bound nucleic acid of the purified proteins. Furthermore RiboGreen®, which reacts to nucleic acids, was used for fluorescence staining. E. coli and eukaryotic RNA were isolated with TriPure Isolation Reagent and Chloroform for several experiments and comparisons. The slanDCs were isolated by magnetic cell isolation from PBMCs which were obtained from buffy coats by Ficoll density centrifugation. The DCs were cultivated for 24 hours at room temperature and the samples were added 4 hours into the process. In the supernatant the TNF α concentration was measured by ELISA. After protein purification, western blots were used to verify the identity of La and LaN. The UV spectral analysis showed mixed spectra of proteins and nucleic acids, however the treatment with nucleases reduced the amount of nucleic acids bound to the proteins. RiboGreen® fluorescence staining of various nucleic acids and digestion experiments with nucleases reveal an inhomogeneous fluorescence depending on the type and length of the nucleic acid. This made it impossible to quantify the correct amount of the La-bound bacterial nucleic acid mixture. With the use of a separate treatment with either DNase or RNase the biggest part of the nucleic acid bound to La could be identified as RNA. For LaN this was almost exclusively RNA. 5 pmol La as well as its amino-terminus LaN proved to be potent stimulators in the activation experiment of slanDCs. The nuclease-treated protein variants of La and LaN were significantly less immunostimulatory. Even 50 pmol nuclease-treated La led to less TNF α production than 5 pmol untreated La. E. coli RNA was equally stimulatory to slanDCs in the control experiment. The same did not hold true for eukaryotic RNA. CpG DNA also did not lead to an activation of slanDCs well. The attempt to reassociate nuclease-treated LaN with eukaryotic RNA did not induce a conversion of LaN in an immunestimulatory activator for slanDCs. It was shown that La-bound bacterial nucleic acids are mainly responsible for the activation of slanDCs. The activation seems to be triggered by the RNA. On one hand RNA was found to be large part of the purified proteins, on the other hand mDCs do not have a TLR9 for the recognition of DNA. This dissertation raises the question whether La/SS B has a role as an alarmin similar to the small protein LL 37, that could not stimulate the immune system itself, but complex the body’s own DNA and convert it to an autostimulatory form. Extracellular La from cell death might be taken up by DCs which are stimulated by foreign nuclein acids at the same time, leading to an immune response against La, too. Due to the observation that nucleic acids were responsible for the activation of slanDCs, further experiments with isolated T helper cells or murine T cells in vivo should be performed. These experiments should address questions whether La specific T cells, which are subsequently responsible for the activation of B cells, are primed. The results of this dissertation led to the assumption that extracellular La could potentially stabilize and protect bacterial nucleic acids during infections from nucleases. This increase of extracellular bacterial nucleic acids could trigger an exacerbation of SLE, which is typically observed in SLE.:Inhaltsverzeichnis 3 Abbildungsverzeichnis 6 Tabellenverzeichnis 8 Abkürzungsverzeichnis 9 1. Einleitung 13 1.1 Das menschliche Immunsystem 13 1.1.1 Die zentrale Rolle dendritischer Zellen bei der Einleitung der Immunantwort 14 1.1.2 Die besondere Rolle dendritischer Zellen bei der spezifischen Immunantwort 15 1.1.3 SlanDCs, eine neue Gruppe dendritischer Zellen 17 1.1.4 Überempfindlichkeitsreaktionen des Immunsystems 18 1.2 Systemischer Lupus Erythematodes (SLE) 18 1.2.1 Allgemeines und Epidemiologie 18 1.2.2 Aspekte zur Pathogenese 20 1.3 Das Autoantigen La/SS B 23 1.4 Die Rolle von Nukleinsäuren bei autoimmunen Prozessen 26 1.5 Zielstellung 28 2. Materialien 30 2.1 Chemikalien und Reagenzien 30 2.2 Puffer und Lösungen 31 2.3 Medien 33 2.4 Bakterienstamm 33 2.5 Zelllinien 34 2.6 DNAs und RNAs 34 2.7 Enzyme 34 2.8 Antikörper 35 2.9 Molekulargewichtsmarker 35 2.10 Kitsystem 36 2.11 Verbrauchsmaterialien 36 2.12 Geräte und Software 36 3. Methoden 39 3.1 Molekularbiologische Methoden 39 3.1.1 Arbeiten mit Bakterien 39 3.1.1.1 Kultivierung von Bakterien für die prokaryotische Proteinproduktion 39 3.1.1.2 Bestimmung der OD600 40 3.1.2 Herstellung von RNA-Totalextrakten 40 3.1.2.1 RNA aus E. coli 40 3.1.2.2 RNA aus eukaryontischen Zellen 41 3.1.3 Photometrische Konzentrationsbestimmung von Nukleinsäuren 41 3.1.4 Bestimmung des Nukleinsäure-Gehalts mit RiboGreen® RNA Quantification Kit 41 3.2 Zellbiologische Methoden 43 3.2.1 Kultivierung von Raji- und U937-Zellen 43 3.2.2 Isolierung von peripheren mononukleären Zellen (PBMCs) aus buffy coats 43 3.2.3 Bestimmung der Zellzahl 44 3.2.4 Isolierung von slanDCs aus PBMCs 44 3.2.5 Durchflusszytometrie 44 3.2.5.1 Messung der Reinheit der slanDCs 45 3.2.5.2 Untersuchung von Oberflächenmarkern auf slanDCs 46 3.3 Proteinbiochemische Methoden 46 3.3.1 Aufreinigung der prokaryontisch produzierten Proteine 46 3.3.2 Dialyse 48 3.3.3 Photometrische Konzentrationsbestimmung von Proteinen 48 3.3.4 Spektralanalyse von Protein-Lösungen und von DNA 48 3.3.5 SDS-Polyacrylamid-Gelelektrophorese 48 3.3.6 Coomassiefärbung von SDS-Gelen 50 3.3.7 Konzentrationsbestimmung mit Proteinstandard im SDS-Gel 50 3.3.8 Western Blotting und Immundetektion 50 3.3.9 Aktivierungsversuche von slanDCs durch Zugabe von La 51 3.3.10 Enzyme-linked immunosorbent assay (ELISA) 51 4. Ergebnisse 53 4.1 Herstellung des Proteins La und dessen N-terminaler Domäne 53 4.2 Charakterisierung der Proteine und Quantifizierung des Nukleinsäure-Gehalts 56 4.2.1 Westernblots und Färbung mit verschiedenen Antikörpern 56 4.2.2 Quantifizierung des Nukleinsäure-Gehalts in La und LaN mittels UV-Spektrum 57 4.2.3 Quantifizierung und Differenzierung der an La gebundenen Nukleinsäuren mit RiboGreen® 63 4.3 Aktivierungsversuche mit slanDCs, der Hauptpopulation von mDCs 67 4.3.1 La und slanDCs 68 4.3.2 Immunstimulierende Kapazität von bakteriell exprimiertem La nach RNase- und DNase-Behandlung 72 4.3.3 Das Teilprotein LaN (N-terminale Domäne von La) 76 4.3.4 Die Reaktion von slanDCs auf eukaryontische und prokaryontische RNA sowie CpG-DNA 79 5. Diskussion 83 5.1 Erläuterungen zur Herstellung der Proteine La und dessen N-terminaler Domäne 83 5.2 Ist an bakteriell gewonnenem La-Protein Nukleinsäure gebunden? 84 5.3 SlanDCs werden durch La-Protein aktiviert, wenn bakterielle Nukleinsäure gebunden ist 87 6. Zusammenfassung 91 Summary 94 Literaturverzeichnis 97 Danksagung 107 Anlagen 109
113

Impact des ApoExos dans le bris de la tolérance aux antigènes vasculaires et au déclenchement d’une réponse auto-immune systémique

Juillard, Sandrine 08 1900 (has links)
Les exosomes apoptotiques (ApoExo) sont des vésicules extracellulaires (EVs) dérivées de lésions vasculaires et libérées par des cellules endothéliales (ECs) apoptotiques dont la taille, les protéines, le profil en ARN et l'activité enzymatique sont différents de ceux des corps apoptotiques classiques. Notre groupe a montré que les ApoExos accéléreraient le rejet vasculaire en association avec les anti-LG3 circulants, des auto-anticorps (auto-Ac) dirigés contre le LG3, le fragment 5' du perlécan. Nous avons également démontré le rôle de biomarqueur et le rôle effecteur des anti-LG3 dans les lésions vasculaires rénales, à la fois dans les reins natifs et transplantés. La néphrite lupique (NL) est une manifestation fréquente et grave du lupus érythémateux disséminé (LED). Il n'existe pas de biomarqueurs du dysfonctionnement rénal progressif dans la NL. Nous émettons l'hypothèse que les ApoExos stimulent des cellules B spécifiques qui existent dans le répertoire immunitaire normal et que les conditions pro-inflammatoires prévalant chez les patients atteints de LED, telles que l'activation accrue des récepteurs Toll-like (TLRs), amplifient cette réponse, conduisant à la production d'anti-LG3, un auto-Ac important dans l'établissement de la NL. Des cellules B productrices d’anti-LG3 ont été trouvées dans la cavité péritonéale de souris saines et ont produit des anti-LG3 suite à une stimulation in vitro avec des agonistes des TLR1/2, TLR4, TLR7 et TLR9. Il est intéressant de noter que ces cellules sont absentes de la cavité péritonéale de souris saines ayant reçu une injection d'ApoExos. En explorant l'importance fonctionnelle des TLRs dans le déclenchement d'une réponse auto-immune dans un modèle murin lupique, nous montrons que les agonistes de TLRs connus pour contribuer à la pathogenèse du LED (TLR2, 4, 7 et 9) déclenchent une production significativement plus élevée d'IgM anti-LG3, alors que la stimulation des TLRs qui ne sont pas associés à la pathogenèse du LED (TLR3 et 5) ne le fait pas. L’injection d'ApoExo a également déclenché l'axe auto-immun IL-23/IL-17 (mesuré par ELISA et essai cytokinique), augmenté les cellules B de centres germinatifs spléniques (mesuré par cytométrie de flux), augmenté les taux circulants d’IgG totaux, d’anti-LG3 et d’auto-Ac classiques du LED (mesuré par micropuce et ELISA) par rapport à l’injection de véhicule. Des niveaux élevés d'IgG anti-LG3 circulants sont observés chez les souris prédisposées au LED par rapport aux souris saines (mesurés par ELISA), ainsi qu'une proportion accrue de cellules B1 spléniques et de cavité péritonéale (mesurés par cytométrie de flux) augmentant avec l’établissement de la maladie. Ces observations suggèrent un rôle spécifique des ApoExos dans la modulation de la production d'auto-Ac qui, à son tour, déclenche l'involution microvasculaire importante dans les maladies auto-immunes et le rejet de greffe. Ces observations suggèrent également que les cellules B spécifiques de LG3 peuvent être modulées dans des conditions pro-inflammatoires telles que celles qui prévalent chez les patients atteints de LED, conduisant à la production d'auto-Ac. Une meilleure compréhension de l'impact de ces mécanismes permettra d'améliorer l'identification, la prédiction et la prise en charge de la NL. / Apoptotic exosomes (ApoExo) are vascular injury derived extracellular vesicles (EVs) released by apoptotic endothelial cells (ECs) with distinct size, protein, RNA profile and enzymatic activity from classical apoptotic bodies. Our group showed that ApoExo accelerated vascular rejection in association with circulating anti-LG3, autoantibodies (autoAb) against LG3, the 5’ fragment of the perlecan. We have also unravelled biomarkers and effector roles of anti-LG3 in kidney vascular damage in both native and transplanted kidneys. Lupus Nephritis (LN) is a common and serious manifestation of systemic lupus erythematosus (SLE). Biomarkers of progressive renal dysfunction in LN, are lacking. We hypothesize that ApoExo stimulate specific B cells that exist in the normal immune repertoire and that the pro-inflammatory conditions prevalent in SLE patients, such as increased Toll-like Receptors (TLRs) activation, amplify this response, leading to anti-LG3 production, autoAb of importance in LN development. B cells producing anti-LG3 were found in the peritoneal cavity of healthy mice and produced anti-LG3 AutoAb when stimulated in vitro with TLR 1/2, 4, 7 and 9 agonists. Interestingly, these cells disappeared from the peritoneal cavity of healthy mice infused with ApoExo. ApoExo infusion also triggered circulating IL-23/IL-17 autoimmune axis (measured by cytokines assay), increased splenic germinal centre B cells (measured by flow cytometry), increased total circulating IgG, anti-LG3 and classical autoAb (measured by microarray and ELISA) compared to vehicle infusion. Elevated circulating anti-LG3 IgG levels are found in SLE prone mice compared to healthy ones (measured by ELISA) as well as an increased proportion of splenic and peritoneal cavity B1 cells (measured by flow cytometry). Exploring the functional importance of TLRs in triggering such a response, we show that while TLR agonists known to contribute to SLE pathogenesis (TLR2, 4, 7 and 9) triggered significantly higher IgM anti-LG3 production, stimulation of TLR that are not associated with SLE pathogenesis (TLR3 and 5) did not. These observations suggest a specific role for ApoExo in modulating the production of autoAb which, in turn, trigger microvascular involution of importance in autoimmune diseases and transplant rejection. These observations also suggest that LG3-specific B cells may be modulated under pro-inflammatory conditions such as those prevalent in lupus patients, leading to production of autoAb. A better understanding of the impact of these mechanisms will lead to improved identification, prediction, and management of LN.
114

Etude des mécanismes de rupture de tolérance lymphocytaire au cours des déficits immunitaires primitifs de l'adulte avec manifesations auto-immunes / Study of lymphocyte tolerance breakdown in adults primary immunodeficiencies with autoimmunity

Guffroy, Aurélien 01 April 2019 (has links)
L’association entre déficits immunitaires primitifs (DIPs) et manifestations auto-immunes peut sembler paradoxale lorsque l’on aborde les DIPs comme des défauts d’immunité opposés à l’autoimmunité vue comme excès d’immunité adaptative à l’encontre du soi. Néanmoins, loin de se résumer à un simple défaut d’une ou plusieurs composantes du système immunitaire qui prédispose aux infections par divers agents pathogènes, les DIPs sont fréquemment associés à une autoimmunité; parfois révélatrice. Ainsi, les données épidémiologiques issues de registres ou de larges séries de patients atteints de DIPs s’accordent sur une prévalence globale de 25 à 30% de complications auto-immunes (au premier rang desquelles figurent les cytopénies auto-immunes). Différentes hypothèses sont avancées pour rendre compte de l’auto-immunité dans les DIPs. On peut citer : 1°) une perturbation profonde de l’homéostasie lymphocytaire, en particulier dans les déficits immunitaires combinés sévères (CID) avec lymphopénies T et B ; 2°) des défauts intrinsèques des lymphocytes B permettant une rupture de tolérance précoce des LB auto réactifs ; 3°) un comportement aberrant des LT (défaut de maturation, excès d’activation) ; 4°) une absence de lymphocytes T ou de B régulateurs ; 5°) une production inappropriée de certaines cytokines proinflammatoires comme dans les interféronopathies. Ces hypothèses concernent surtout les DIPs pédiatriques sévères. Mon travail de thèse explore la rupture de tolérance immunitaire adaptative au cours des DIPs de l’adulte par différentes approches. Nous nous sommes en particulier attachés au plus fréquent, le DICV (Déficit Immunitaire Commun Variable), déficit immunitaire humoral pas toujours bien défini sur le plan génétique et physiopathologique qui constitue un défi thérapeutique lorsqu’il est compliqué d’une auto-immunité nécessitant un traitement immunosuppresseur. / The association between primary immune deficiency (PID) and autoimmunity may seem paradoxical when PID is considered only as an immune response defect against pathogens and autoimmunity only as an excess of immunity. Nevertheless, far from being simple immune defects increasing the risk of infections, DIPs are frequently associated with autoimmunity. Even more, autoimmunes manifestations can sometimes reveal a PID. Thus, epidemiological data from registers or large series of patients with PIDs agree on an overall prevalence of 25 to 30% of autoimmune complications (with auto-immune cytopenias as first causes). Several hypotheses have been proposed with different underlying mechanisms to explain the tolerance breakdown in PIDs. We can cite : 1°) a severe disturbance of lymphocyte homeostasis, for example in severe combined immunodeficiencies ; 2°) an impaired B-cell developpement with earlystage defects of tolerance ; 3°) a dysregulation of T cells (developpement or activation impairments) ; 4°) a dysfunction of T-reg (or B-reg) ; 5°) an excess of production of proinflammatory cytokines. These hypotheses are especially true for early-onset PIDs (in infancy). In this work (PhD), we explore the mechanisms of tolerance breakdown involved in adults PIDs. We use several approaches to describe the pathways leading to autoimmunity, focusing on the most common PID in adult : CVID (common variable immunodeficiency). This syndrome is not well defined on the genetic and physiopathological level. It is still a therapeutic challenge when complicated by autoimmunity (requiring immunosuppressive therapy).
115

The Effects of Immune Regulation and Dysregulation: Helper T Cell Receptor Affinity, Systemic Lupus Erythematosus and Cancer Risk, and Vaccine Hesitancy

Johnson, Deborah K. 03 June 2020 (has links)
Helper T cells direct the immunological response to foreign pathogens and cancer. To become activated, helper T cells must recognize unique peptides presented on major histocompatibility complex II (pMHCII) by antigen presenting cells (APCs) with their T cell receptor (TCR). While much is known about helper T cell activation signaling cascades and the subsequent roles of helper T cell subsets, the initiation of helper T cell activation by the TCR and other co-receptors is less well understood. Specifically, the affinity of the TCR for its pMHCII can change helper T cell subset fate, proliferation, and alter the risk for activation induced cell death. High affinity TCRs are attractive targets for immunotherapies, but little is known about how helper T cells respond to high affinity TCRs. Here we describe high affinity TCR activation thresholds for both full length TCRs and chimeric antigen receptor TCRs both with and without the presence of the coreceptor CD4 and propose a mechanism whereby CD4 inhibits T cell activation via Lck sequestration and a CD4-independent method. Dysregulated helper T cells play critical roles in the development and perpetuation of systemic lupus erythematosus (SLE), a systemic autoimmune disease that causes widespread inflammation and organ damage throughout the body. Chronic inflammation in SLE affects the immune response to viruses and the risk of developing cancer. However, in SLE patients, it is unclear if viruses initiate the development of cancer directly or if the effects are non-interacting and concomitant. Here we describe the interactions between SLE, viruses, and cancer risk revealing that viruses and SLE do interact to increase the both the overall cancer risk and the risk for hematological malignancies. Due to vaccine efficacy, vaccine preventable diseases (VPDs) are no longer commonly experienced or understood by the public. Vaccines are a victim of their own success and according to the World Health Organization (WHO), vaccine hesitancy (VH) is one of the top threats to global health. VH is the refusal to accept vaccinations and the reasons for VH vary across time, place, and vaccine. Refuting VH is difficult as directly confronting false assumptions can cause individuals to become more entrenched in their position resulting in confirmation bias. Adults with VH attitudes are often motivated by concerns over personal liberty, harm, independence, and body purity. Here we describe the results of a VPD interview- and education-based intervention geared towards promoting positive vaccine attitudes for young adults and demonstrate that education focused on VPDs is more effective than vaccine safety.
116

Influence of Nrf2 Activators and Keap1 Inhibitors on Antioxidative Phenotypes of THP-1-Derived M1 and M2 macrophages: Therapeutic Potential for Systemic Lupus Erythematosus

Svahn, Leo January 2023 (has links)
POPULAR SCIENTIFIC SUMMARY Systemic lupus erythematosus (SLE) is not your average disorder. It behaves like a mischievous troublemaker, wreaking havoc throughout the body, causing inflammation that affects multiple organs. SLE presents a puzzle that keeps health care professionals worldwide intrigued, searching for answers amidst its complex of immunologic manifestations and clinical symptoms. While we’ve made progress in understanding SLE, its specific cause remains a mystery. What we do know is that SLE triggers a fascinating interplay between genetic, hormonal, and environmental factors in susceptible individuals. Macrophages, specialized white blood cells, can be likened to moody actors on a stage wearing different masks and wielding functional props. Among them are M1 macrophages, fiery troublemakers who provoke pro-inflammatory responses, and M2 macrophages, peacemakers striving for balance by generating anti-inflammatory responses. Then there is NRF2, the vigilante, normally held by its captor, KEAP1. However, when cells stress NRF2 manages to break free from KEAP1 and spring into action, embarking on a crucial journey into the cell nucleus where DNA is stored. Once inside, NRF2 binds specific regions of the DNA, promoting genes associated with protective activities, including antioxidative responses and detoxification processes, thereby shielding cells from further harm. Now, let us envision a therapeutic strategy that utilizes this; if we can deliberately unleashNRF2 on command, triggering a powerful cascade of antioxidative responses throughout the body,such a treatment would offer tremendous promise and serve as a paradigm for patients sufferingfrom chronic inflammation. But the question remains: Is it possible? In this study, we investigated the effects of certain chemicals on macrophages in a controlledlab environment. Our goal was to explore their potential for therapeutic purposes. Excitingly, wediscovered that these chemicals can indeed influence macrophages to produce a stronger antiinflammatory and antioxidant response. These findings could be promising for developing futuretreatments, especially in patients diagnosed with conditions such as SLE. / ABSTRACT Systemic lupus erythematosus (SLE) is a multifaceted, chronic autoimmune disorder that leads to inflammation and affects various organs. A wide range of immunologic manifestations and clinical symptoms characterizes SLE. While the specific cause remains unknown, it is thought to result from a combination of genetic susceptibility and the intricate interplay between environmental and hormonal factors. A significant subset of SLE patients also experience renal manifestation, lupus nephritis (LN), characterized by distinct inflammatory responses in which macrophages play a role. Macrophages exhibit different functional characteristics depending on their environment, and generally display two contrasting phenotypes; M1, which elicits proinflammatory responses, and M2, which generates anti-inflammatory responses Homeostasis is vital, yet environmental stress is inevitable. NRF2, a transcription factor known for its involvement in oxidative stress response, plays a pivotal role. Under basal conditions, NRF2 resides in the cytoplasm and is targeted for degradation by the protein KEAP1. However, during cellular stress, the NRF2-KEAP1 complex dissociates, allowing NRF2 to translocate into the nucleus where it binds specific regulatory regions of genes that promote cytoprotective activities. The NRF2 pathway has gained attention as a potential target for therapeutic strategies in inflammatory conditions, including SLE. This study aimed to assess the effects of certain chemical NRF2 activators and a KEAP1 inhibitor on an in vitro model of M1 and M2 macrophage polarization. The objective was to investigate whether these compounds could enhance antioxidative response. To evaluate this, key genes and proteins involved in antioxidative pathways were analyzed. Gene expression was assessed using quantitative real-time PCR (qPCR), and protein presence was determined through immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA). The findings of this study indicate that stimulation of macrophage subgroups with the selected compounds promotes a shift towards anti-inflammatory and antioxidative response. / <p>Rektor tilldelade Leo Svahn stipendie Österby för <em>välartade obemedlade studier</em>.</p>

Page generated in 0.0499 seconds