• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • 2
  • 2
  • Tagged with
  • 20
  • 13
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The Mind-Body Connection? Athletes' Perceptions of the Impact of Mental Health on Sport Performance

Beebe, Kelzie E. 08 1900 (has links)
Prevalence of mental health concerns among young adults is high and continues to increase. As a specific subset of young adults, NCAA student-athletes seem to experience these concerns at a similar or greater prevalence than their non-athlete, age-matched peers. Despite the number of college student-athletes who are experiencing mental health concerns, understanding how mental health impacts sport performance has not been robustly studied and has not included the diversity of identities present in the athlete population. Thus, I explored the beliefs of 266 college student-athletes who represented diverse identities and sports regarding how mental health impacts sport performance. Responses were collected using an on-line survey and analyzed using both quantitative and qualitative methods. Overall, as well as by gender, race/ethnicity, and sport type, 96.4% to 100.0% of participants believed that mental health impacts sport performance. From thematic analysis emerged three themes and various subthemes: (a) cognitive disruptions (concentration, confidence, self-talk, motivation, mindset, and decision-making), (b) the stress of being a student-athlete (life impact sport, team factors, sport impacts mental health), and (c) a mind-body connection (mind correlates with body, and mental health symptoms impact sport performance). Post-hoc cluster analysis by demographic and sport-type variables did not reveal clustering; these variables were represented consistently across subthemes. The universality of endorsement and consistent spread of identities across subthemes represent novel findings from which further exploration of the mental health-sport performance connection is warranted.
12

Ghosts and bottlenecks in elastic snap-through

Gomez, Michael January 2018 (has links)
Snap-through is a striking instability in which an elastic object rapidly jumps from one state to another. It is seen in the leaves of the Venus flytrap plant and umbrellas flipping on a windy day among many other examples. Similar structures that snap-through are used to generate fast motions in soft robotics, switches in micro-scale electronics and artificial heart valves. Despite the ubiquity of snap-through in nature and engineering, its dynamics is usually only understood qualitatively. In this thesis we develop analytical understanding of this dynamics, focussing on how the mathematical structure underlying the snap-through transition controls the timescale of instability. We begin by considering the dynamics of 'pull-in' instabilities in microelectromechanical systems (MEMS) - a type of snap-through caused by electrostatic forces in which the motions are dominated by fluid damping. Using a lumped-parameter model, we show that the observed time delay near the pull-in transition is a type of critical slowing down - a so-called 'bottleneck' due to the 'ghost' of a saddle-node bifurcation. We obtain a scaling law describing this slowing down, and, in the process, unify a large range of experiments and simulations that exhibit delay phenomena during pull-in. We also investigate the pull-in dynamics of MEMS microbeams, extending the lumped-parameter approach to incorporate the details of the beam geometry. This provides a model system in which to understand snap-through of a continuous elastic structure due to external loading. We develop a perturbation method that systematically exploits the proximity to pull-in to reduce the governing equations to a simpler evolution equation, with a structure that highlights the saddle-node bifurcation. This allows us to analyse the bottleneck dynamics in detail, which we compare with previous experimental and numerical data. The remainder of the thesis is concerned with the dynamics of snap-through in macroscopic systems. In particular, we explore the extent to which dissipation is required to explain anomalously slow snap-through. Considering an elastic arch as an archetype of a snapping system, we use the perturbation method developed earlier to show that two bottleneck regimes are possible, depending delicately on the relative importance of external damping. In particular, we show that critical slowing down occurs even in the absence of damping, leading to a new scaling law for the snap-through time that is confirmed by elastica simulations and experiments. In many real systems material viscoelasticity is present to some degree. Finally, we examine how this influences the snap-through dynamics of a simple truss-like structure. We present a regime diagram that characterises when the timescale of snap-through is controlled by viscous, elastic or viscoelastic effects.
13

Dynamique hors équilibre des monopôles magnétiques dans la glace de spin / Out of equilibrium dynamics of magnetic monopoles in spin ice

Raban, Valentin 23 October 2018 (has links)
Les glaces de spin, comme Dy2Ti2O7 et Ho2Ti2O7, sont des matériaux présentant un magnétisme particulièrement exotique. Ils constituent les premiers composés cristallins ferromagnétiques frustrés à avoir été découverts. Cette frustration permet la fractionnalisation des degrés de liberté de spin et l’émergence de monopôles magné-tiques, dont la physique est formalisée par le modèle des haltères.Dans cette thèse, nous étudions dans un premier temps le diagramme de phase de ce modèle grâce à un parallèle avec le modèle de Blume-Capel S = 2. On identifie dans ce diagramme la phase fragmentée observée expérimentalement dans Ho2Ir2O7,et on localise le point critique de la transition entre la phase glace de spin et la phase fragmentée.Dans un second temps, on montre numériquement que la dynamique du système autour de ce point critique appartient à la classe d’universalité du modèle d’Ising 3D. On utilise pour cela deux outils : les lois d’échelle de Kibble-Zurek et le rapport de fluctuation-dissipation. L’obtention de ce dernier a nécessité l’introduction d’une méthode novatrice pour le calcul des fonctions de réponse. Nous soulignons également que ces outils sont spécifiquement intéressants dans le cas des glaces de spin où les temps microscopiques sont de l’ordre de 1 μs, rendant le ralentissement critique observable expérimentalement.Dans un troisième temps, nous employons à nouveau la violation du théorème de fluctuation-dissipation pour caractériser un régime fortement hors équilibre de la phase glace de spin, où les degrés de liberté sont cinétiquement bloqués du fait de l’attraction coulombienne entre les monopôles. / Spin ices, such as Dy2Ti2O7 and Ho2Ti2O7, are materials exhibiting exotic magnetic properties. They were the first frustrated ferromagnetic crystalline compounds to be discovered. The frustration leads to the fractionnalisation of the spin degrees of freedom and the emergence of magnetic monopoles, whose physics is formalised in the dumbbell model. In this thesis, we study the full phase diagram of this model in analogy with theS=2 Blume-Capel model. We identify in this diagram the fragmented phase observed experimentally in Ho2Ir2O7, and we localise the critical point of the transition between the spin ice phase and the fragmented phase.In a second part, we show numerically that the dynamics of this system at thecritical point belongs to the 3D Ising university class. We use for this two tools :the Kibble-Zurek scaling law and the fluctuation-dissipation ratio. For the latter, ithas been necessary to introduce a novel method to measure response functions. Wealso emphasize that these tools are specifically interesting for spin ice materials, as the unusually long microscopic time scale (1 μs) should make it possible to experimentallyobserve out-of-equilibrium phenomena related to critical slowing down.In a third part, we use the violation of the fluctuation-dissipation theorem to characterise a strongly out-of-equilibrium regime of spin ice - a thermal quench from high to low temperature, where degrees of freedom are kinetically blocked because ofthe Coulombic attraction between the monopoles.
14

A bite of food from another culture : Fostering cultural integration through homemade food

Kawaf, Leen January 2022 (has links)
Since food is such a vital part of life and an instinct that none of us can live without, I wanted to combine food with the fun of experiencing new recipes, connecting other cultures via cuisine, empowering individuals to start their own businesses, and easing the lives of people with daily responsibilities and obligations such as workers, students and families. “Tomatoes and oregano make it Italian; wine and tarragon make it French. Sour cream makes it Russian; lemon and cinnamon make it Greek. Soy sauce makes it Chinese; garlic makes it good.” Alice May Brock (of Alice’s Restaurant fame 1977). The complex, delectable food that we used to eat at our parents' house are not available at most places. However, by designing a system that connects brilliant chefs at their homes from many different cultures with customers who want such a service on busy days, they may use it in days or weeks filled with various activities and responsibilities and who want to experience different cuisines from other cultures throughout the world, they may find themselves craving the food they ate as a child. Even while attachment style develops throughout childhood, it has an impact on people's social attachments, interpersonal relationships, and emotion management well into adulthood (Gillath, Karantzas & Fraley, 2016).
15

Dispersion Engineering : Negative Refraction and Designed Surface Plasmons in Periodic Structures

Ruan, Zhichao January 2007 (has links)
The dispersion property of periodic structures is a hot research topic in the last decade. By exploiting dispersion properties, one can manipulate the propagation of electromagnetic waves, and produce effects that do not exist in conventional materials. This thesis is devoted to two important dispersion effects: negative refraction and designed surface plasmons. First, we introduce negative refraction and designed surface plasmons, including a historical perspective, main areas for applications and current trends. Several numerical methods are implemented to analyze electromagnetic effects. We apply the layer-KKR method to calculate the electromagnetic wave through a slab of photonic crystals. By implementing the refraction matrix for semi-infinite photonic crystals, the layer-KKR method is modified to compute the coupling coefficient between plane waves and Bloch modes in photonic crystals. The plane wave method is applied to obtain the band structure and the equal-frequency contours in two-dimensional regular photonic crystals. The finite-difference time-domain method is widely used in our works, but we briefly discuss two calculation recipes in this thesis: how to deal with the surface termination of a perfect conductor and how to calculate the frequency response of high-Q cavities more efficiently using the Pad\`{e} approximation method. We discuss a photonic crystal that exhibits negative refraction characterized by an effective negative index, and systematically analyze the coupling coefficients between plane waves in air and Bloch waves in the photonic crystal. We find and explain that the coupling coefficients are strong-angularly dependent. We first propose an open-cavity structure formed by a negative-refraction photonic crystal. To illuminate the physical mechanism of the subwavelength imaging, we analyze both intensity and phase spectrum of the transmission through a slab of photonic crystals with all-angle negative refraction. It is shown that the focusing properties of the photonic crystal slab are mainly due to the negative refraction effect, rather than the self-collimation effect. As to designed surface plasmons, we design a structured perfectly conducting surface to achieve the negative refraction of surface waves. By the average field method, we obtain the effective permittivity and permeability of a perfectly conducting surface drilled with one-dimensional periodic rectangle holes, and propose this structure as a designed surface plasmon waveguide. By the analogy between designed surface plasmons and surface plasmon polaritons, we show that two different resonances contribute to the enhanced transmission through a metallic film with an array of subwavelength holes, and explain that the shape effect is attributed to localized waveguide resonances. / QC 20100817
16

Vliv defektu pneumatiky na jízdní dynamiku vozidla / Influence of Tyre Defect on the Driving Dynamics of a Vehicle

Kubík, Adam January 2014 (has links)
In this thesis, an effect of a tyre defect on the driving dynamics of a vehicle is dealt with. The first part of the thesis is mainly concerned with the vehicle dynamics, road resistance, adhesion, orientation characteristics of the tyres and slowing down. This chapter is followed by an overview of the manufacturing process and construction of modern passenger car tyres. The practical part is focused on driving tests that are used to demonstrate the influence of tyre defects on handling characteristics of the vehicle. The main focus of this thesis is on directional variation, braking distance, deceleration and lateral acceleration. The very end of the thesis concentrates on tyre defect in higher speeds and its after-effects as well as precautions for mitigation of these after-effects.
17

Urbanistická opatření pro efektivní hospodaření s povrchovou vodou v zastavěných územích / Urban measures of effective surface water management in urban areas

Vacková, Michaela January 2017 (has links)
One of the main challenges in promoting rainwater management into practise is the fact that it was not recognized as an interdisciplinary issue. We should seek ways how to open the problem to other professions, specially for architects and urban planners, who are the key element of its farther development. This work analyzes the reasons of this unsatisfactory state of rainwater management in the Czech Republic and it defines the possible ways how to remedy this state and outlines scenarios of its further development. The default document of the work is czech technical standard "TNV 75 9010 Hospodaření se srážkovými vodami". The new methodological guide, which is part of this work, is based on it. The work extends the range of measures which are mentioned in the standard. It brings new ways for assessing the benefits of the various measures to streamline the application of rainwater management measures in urban space.
18

Critical Behavior and Crossover Effects in the Properties of Binary and Ternary Mixtures and Verification of the Dynamic Scaling Conception / Kritisches Verhalten und Crossover Effekte in den Eigenschaften Binärer und Ternärer Gemische sowie Verifizierung des Konzeptes der Dynamischen Skalierung

Iwanowski, Ireneusz 07 November 2007 (has links)
No description available.
19

Equilibrium and out-of-equilibrium physics of Bose gases at finite temperature

Wolswijk, Louise 24 June 2022 (has links)
The physics of ultracold quantum gases has been the subject of a long-lasting and intense research activity, which started almost a century ago with purely theoretical studies and had a fluorishing experimental development after the implementation of laser and evaporative cooling techniques that led to the first realization of a Bose Einstein condensate (BEC) over 25 years ago. In recent years, a great interest in ultracold atoms has developed for their use as platforms for quantum technologies, given the high degree of control and tunability offered by ultracold atom systems. These features make ultracold atoms an ideal test bench for simulating and studying experimentally, in a controlled environment, physical phenomena analogous to those occurring in other, more complicated, or even inaccessible systems, which is the idea at the heart of quantum simulation. In the rapidly developing field of quantum technologies, it is highly important to acquire an in-depth understanding of the state of the quantum many-body system that is used, and of the processes needed to reach the desired state. The preparation of the system in a given target state often involves the crossing of second order phase transitions, bringing the system strongly out-of-equilibrium. A better understanding of the out-of-equilibrium processes occurring in the vicinity of the transition, and of the relaxation dynamics towards the final equilibrium condition, is crucial in order to produce well-controlled quantum states in an efficient way. In this thesis I present the results of the research activity that I performed during my PhD at the BEC1 laboratory of the BEC center, working on ultracold gases of 23Na atoms in an elongated harmonic trap. This work had two main goals: the accurate determination of the equilibrium properties of a Bose gas at finite temperature, by the measurement of its equation of state, and the investigation of the out-of-equilibrium dynamics occurring when a Bose Einstein condensate is prepared by cooling a thermal cloud at a finite rate across the BEC phase transition.To study the equilibrium physics of a trapped atomic cloud, it is crucial to be able to observe its density distribution in situ. This requires a high optical resolution to accurately obtain the density profile of the atomic distribution, from which thermodynamic quantities can then be extracted. In particular, in a partially condensed atomic cloud at finite temperature, it is challenging to resolve well also the boundaries of the BEC, where the condensate fraction rapidly drops in a narrow spatial region. This required an upgrade of the experimental apparatus in order to obtain a high enough resolution. I designed, tested and implemented in the experimental setup new imaging systems for all main directions of view. Particular attention was paid for the vertical imaging system, which was designed to image the condensates in trap with a resolution below 2 μm, with about a factor 4 improvement compared to the previous setup. The implementation of the new imaging systems involved a partial rebuilding of the experimental apparatus used for cooling the atoms. This created the occasion for an optimization of the whole system to obtain more stable working conditions. Concurrently I also realized and included in the experiment an optical setup for the use of a Digital Micromirror Device (DMD) to project time-dependent arbitrary light patterns on the atoms, creating optical potentials that can be controlled at will. The use of this device opens up exciting future scenarios where it will be possible to locally modify the trapping potential and to create well-controlled barriers moving through the atomic cloud. Another challenge in imaging the density distribution in situ is determined by the fact that the maximum optical density (OD) of the BEC, in the trap center, exceeds the low OD of the thermal tails by several orders of magnitude. In order to obtain an accurate image of the whole density profile, we developed a minimally destructive, multi-shot imaging technique, based on the partial transfer of a fraction of atoms to an auxiliary state, which is then probed. Taking multiple images at different extraction fractions, we are able to reconstruct the whole density profile of the atomic cloud avoiding saturation and maintaining a good signal to noise ratio. This technique, together with the improvements in the imaging resolution, has allowed us to accurately obtain the optical density profile of the Bose gas in trap, from which the 3D density profile was then calculated applying an inverse Abel transform, taking advantage of the symmetry of the trap. From images of the same cloud after a time-of-flight expansion, we measured the temperature of the gas. From these quantities we could find the pressure as a function of the density and temperature, determining the canonical equation of state of the weakly interacting Bose gas in equilibrium at finite temperature. These measurements also allowed us to clearly observe the non-monotonic temperature behavior of the chemical potential near the critical point for the phase transition, a feature that characterizes also other superfluid systems, but that had never been observed before in weakly interacting Bose gases. The second part of this thesis work is devoted to the study of the dynamical processes that occur during the formation of the BEC order parameter within a thermal cloud. The cooling at finite rate across the Bose-Einstein condensation transition brings the system in a strongly out-of-equilibrium state, which is worth investigating, together with the subsequent relaxation towards an equilibrium state. This is of interest also in view of achieving a better understanding of second order phase transitions in general, since such phenomena are ubiquitous in nature and relevant also in other platforms for quantum technologies. A milestone result in the study of second order phase transitions is given by the Kibble-Zurek mechanism, which provides a simple model capturing important aspects of the evolution of a system that crosses a second-order phase transition at finite rate. It is based on the principle that in an extended system the symmetry breaking associated with a continuous phase transition can take place only locally. This causes the formation of causally disconnected domains of the order parameter, at the boundaries of which topological defects can form, whose number and size scale with the rate at which the transition is crossed, following a universal power law. It was originally developed in the context of cosmology, but was later successfully tested in a variety of systems, including superfluid helium, superconductors, trapped ions and ultracold atoms. The BEC phase transition represents in this context a paradigmatic test-bench, given the high degree of control at which this second-order phase transition can be crossed by means of cooling ramps at different rates. Already early experiments investigated the formation of the BEC order parameter within a thermal cloud, after quasi-instantaneous temperature quenches or very slow evaporative cooling. In the framework of directly testing the Kibble-Zurek mechanism, further experiments were performed, both in 2D and 3D systems, focusing on the emergence of coherence and on the statistics of the spontaneously generated topological defects as a function of the cooling rate. The Kibble-Zurek mechanism, however, does not fully describe the out-of-equilibrium dynamics of the system at the transition, nor the post-quench interaction mechanisms between domains that lead to coarse-graining. Most theoretical models are based on a direct linear variation of a single control parameter, e.g. the temperature, across the transition. In real experiments, the cooling process is controlled by the tuning of other experimental parameters and a global temperature might not even be well defined, in a thermodynamic sense, during the whole process. Moreover, the temperature variation is usually accompanied by the variation of other quantities, such as the number of atoms and the collisional rate, making it difficult to accurately describe the system and predict the post-quench properties. Recent works included effects going beyond the Kibble-Zurek mechanism, such as the inhomogeneity introduced by the trapping potential, the role of atom number losses, and the saturation of the number of defects for high cooling rates. These works motivate further studies, in particular of the dynamics taking place at early times, close to the crossing of the critical point. The aim of the work presented in this thesis is to further investigate the timescales associated to the formation and evolution of the BEC order parameter and its spatial fluctuations, as a function of the rate at which the transition point is crossed. We performed experiments producing BECs by means of cooling protocols that are commonly used in cold-atom laboratories, involving evaporative cooling in a magnetic trap. We explored a wide range of cooling rates across the transition and found a universal scaling for the growth of the BEC order parameter with the cooling rate and a finite delay in its formation. The latter was already observed in earlier works, but for a much more limited range of cooling rates. The evolution of the fluctuations of the order parameter was also investigated, with an analysis of the timescale of their decay during the relaxation of the system, from an initial strongly out-of-equilibrium condition to a final equilibrium state. This thesis is structured as follows: The first chapter presents the theoretical background, starting with a brief introduction to the concept of Bose Einstein condensation and a presentation of different models describing the thermodynamics of an equilibrium Bose gas. The second part of this chapter then deals with the out-of-equilibrium dynamics that is inevitably involved in the crossing of a second-order phase transition such as the one for Bose-Einstein condensation. The Kibble-Zurek mechanism is briefly reviewed and beyond KZ effects are pointed out, motivating a more detailed investigation of the timescales involved in the BEC formation. In the second chapter, I describe the experimental apparatus that we use to cool and confine the atoms. Particular detail is dedicated to the parts that have been upgraded during my PhD, such as the imaging system. In the third chapter I show our experimental results on the measurement of the equation of state of the weakly interacting uniform Bose gas at finite temperature. In the fourth chapter I present our results on the out-of-equilibrium dynamics in the formation of the condensate order parameter and its spatial fluctuations, as a function of different cooling rates.
20

Transmission, reflection and absorption in Sonic and Phononic Crystals

Cebrecos Ruiz, Alejandro 26 October 2015 (has links)
Tesis por compendio / [EN] Phononic crystals are artificial materials formed by a periodic arrangement of inclusions embedded into a host medium, where each of them can be solid or fluid. By controlling the geometry and the impedance contrast of its constituent materials, one can control the dispersive properties of waves, giving rise to a huge variety of interesting and fundamental phenomena in the context of wave propagation. When a propagating wave encounters a medium with different physical properties it can be transmitted and reflected in lossless media, but also absorbed if dissipation is taken into account. These fundamental phenomena have been classically explained in the context of homogeneous media, but it has been a subject of increasing interest in the context of periodic structures in recent years as well. This thesis is devoted to the study of different effects found in sonic and phononic crystals associated with transmission, reflection and absorption of waves, as well as the development of a technique for the characterization of its dispersive properties, described by the band structure. We start discussing the control of wave propagation in transmission in conservative systems. Specifically, our interest is to show how sonic crystals can modify the spatial dispersion of propagating waves leading to control the diffractive broadening of sound beams. Making use of the spatial dispersion curves extracted from the analysis of the band structure, we first predict zero and negative diffraction of waves at frequencies close to the band-edge, resulting in collimation and focusing of sound beams in and behind a 3D sonic crystal, and later demonstrate it through experimental measurements. The focusing efficiency of a 3D sonic crystal is limited due to the strong scattering inside the crystal, characteristic of the diffraction regime. To overcome this limitation we consider axisymmetric structures working in the long wavelength regime, as a gradient index lens. In this regime, the scattering is strongly reduced and, in an axisymmetric configuration, the symmetry matching with acoustic sources radiating sound beams increase its efficiency dramatically. Moreover, the homogenization theory can be used to model the structure as an effective medium with effective physical properties, allowing the study of the wave front profile in terms of refraction. We will show the model, design and characterization of an efficient focusing device based on these concepts. Consider now a periodic structure in which one of the parameters of the lattice, such as the lattice constant or the filling fraction, gradually changes along the propagation direction. Chirped crystals represent this concept and are used here to demonstrate a novel mechanism of sound wave enhancement based on a phenomenon known as "soft" reflection. The enhancement is related to a progressive slowing down of the wave as it propagates along the material, which is associated with the group velocity of the local dispersion relation at the planes of the crystal. A model based on the coupled mode theory is proposed to predict and interpret this effect. Two different phenomena are observed here when dealing with dissipation in periodic structures. On one hand, when considering the propagation of in-plane sound waves in a periodic array of absorbing layers, an anomalous decrease in the absorption, combined with a simultaneous increase of reflection and transmission at Bragg frequencies is observed, in contrast to the usual decrease of transmission, characteristic in conservative periodic systems at these frequencies. For a similar layered media, backed now by a rigid reflector, out-of-plane waves impinging the structure from a homogeneous medium will increase dramatically the interaction strength. In other words, the time delay of sound waves inside the periodic system will be considerably increased resulting in an enhanced absorption, for a broadband spectral range. / [ES] Los cristales fonónicos son materiales artificiales formados por una disposición periódica de inclusiones en un medio, pudiendo ambos ser de carácter sólido o fluido. Controlando la geometría y el contraste de impedancias entre los materiales constituyentes se pueden controlar las propiedades dispersivas de las ondas. Cuando una onda propagante se encuentra un medio con diferentes propiedades físicas puede ser transmitida y reflejada, en medios sin pérdidas, pero también absorbida, si la disipación es tenida en cuenta. La presente tesis está dedicada al estudio de diferentes efectos presentes en cristales sónicos y fonónicos relacionados con la transmisión, reflexión y absorción de ondas, así como el desarrollo de una técnica para la caracterización de sus propiedades dispersivas, descritas por la estructura de bandas. En primer lugar, se estudia el control de la propagación de ondas en transmisión en sistemas conservativos. Específicamente, nuestro interés se centra en mostrar cómo los cristales sónicos son capaces de modificar la dispersión espacial de las ondas propagantes, dando lugar al control del ensanchamiento de haces de sonido. Haciendo uso de las curvas de dispersión espacial extraídas del análisis de la estructura de bandas, se predice primero la difracción nula y negativa de ondas a frecuencias cercanas al borde de la banda, resultando en la colimación y focalización de haces acústicos en el interior y detrás de un cristal sónico 3D, y posteriormente se demuestra mediante medidas experimentales. La eficiencia de focalización de un cristal sónico 3D está limitada debido a las múltiples reflexiones existentes en el interior del cristal. Para superar esta limitación se consideran estructuras axisimétricas trabajando en el régimen de longitud de onda larga, como lentes de gradiente de índice. En este régimen, las reflexiones internas se reducen fuertemente y, en configuración axisimétrica, la adaptación de simetría con fuentes acústicas radiando haces de sonido incrementa la eficiencia drásticamente. Además, la teoría de homogenización puede ser empleada para modelar la estructura como un medio efectivo con propiedades físicas efectivas, permitiendo el estudio del frente de ondas en términos refractivos. Se mostrará el modelado, diseño y caracterización de un dispositivo de focalización eficiente basado en los conceptos anteriores. Considérese ahora una estructura periódica en la que uno de los parámetros de la red, sea el paso de red o el factor de llenado, cambia gradualmente a lo largo de la dirección de propagación. Los cristales chirp representan este concepto y son empleados aquí para demostrar un mecanismo novedoso de incremento de la intensidad de la onda sonora basado en un fenómeno conocido como reflexión "suave". Este incremento está relacionado con una ralentización progresiva de la onda conforme se propaga a través del material, asociado con la velocidad de grupo de la relación de dispersión local en los planos del cristal. Un modelo basado en la teoría de modos acoplados es propuesto para predecir e interpretar este efecto. Se observan dos fenómenos diferentes al considerar pérdidas en estructuras periódicas. Por un lado, si se considera la propagación de ondas sonoras en un array periódico de capas absorbentes, cuyo frente de ondas es paralelo a los planos del cristal, se produce una reducción anómala en la absorción combinada con un incremento simultáneo de la reflexión y transmisión a las frecuencias de Bragg, de forma contraria a la habitual reducción de la transmisión, característica de sistemas periódicos conservativos a estas frecuencias. En el caso de la misma estructura laminada en la que se cubre uno de sus lados mediante un reflector rígido, la incidencia de ondas sonoras desde un medio homogéneo, cuyo frente de ondas es perpendicular a los planos del cristal, produce un gran incremento de la fuerza de / [CA] Els cristalls fonònics són materials artificials formats per una disposició d'inclusions en un medi, ambdós poden ser sòlids o fluids. Controlant la geometría i el contrast d'impedàncies dels seus materials constituents, és poden controlar les propietats dispersives de les ondes, permetent una gran varietatde fenòmens fonamentals interessants en el context de la propagació d'ones. Quan una ona propagant troba un medi amb pèrdues amb propietats físiques diferents es pot transmetre i reflectir, però també absorbida si la dissipació es té en compte. Aquests fenòmens fonamentals s'han explicat clàssicament en el context de medis homogenis, però també ha sigut un tema de creixent interés en el context d'estructures periòdiques en els últims anys. Aquesta tesi doctoral tracta de l'estudi de diferents efectes en cristalls fonònics i sònics lligats a la transmissió, reflexió i absorció d'ones, així com del desenvolupament d'una tècnica de caracterització de les propietats dispersives, descrites mitjançant la estructura de bandes. En primer lloc, s'estudia el control de la propagació ondulatori en transmissió en sistemes conservatius. Més específicament, el nostre interés és mostrar com els cristalls sonors poden modificar la dispersió espacial d'ones propagants donant lloc al control de l'amplària per difracció dels feixos sonors. Mitjançant les corbes dispersió espacial obtingudes de l'anàlisi de l'estructura de bandes, es prediu, en primer lloc, la difracció d'ones zero i negativa a freqüències próximes al final de banda. El resultat és la collimació i focalització de feixos sonors dins i darrere de cristalls de so. Després es mostra amb mesures experimentals. L'eficiència de focalització d'un cristall de so 3D està limitada per la gran dispersió d'ones dins del cristall, que és característic del règim difractiu. Per a superar aquesta limitació, estructures axisimètriques que treballen en el règim de llargues longituds d'ona, i es comporten com a lents de gradient d'índex. En aquest règim, la dispersió es redueix enormement i, en una configuració axisimètrica, a causa de l'acoblament de la simetría amb les fonts acústiques que radien feixos sonors, l'eficiència de radiació s'incrementa significativament. D'altra banda, la teoria d'homogeneïtzació es pot utilitzar per a modelar, dissenyar i caracteritzar un dispositiu eficient de focalització basat en aquests conceptes. Considerem ara una estructura periòdica en la qual un dels seus paràmetres de xarxa, com ara la constant de xarxa o el factor d'ompliment canvia gradualment al llarg de la direcció de propagació. Els cristalls chirped representen aquest concepte i s'utilitzen ací per a demostrar un mecanisme nou d'intensificació d'ones sonores basat en el fenòmen conegut com a reflexió "suau". La intensificació està relacionada amb la alentiment progressiva de l'ona conforme propaga al llarg del material, que està associada amb la velocitat de grup de la relació de dispersió local en els diferents plànols del cristall. Es proposa un model basat en la teoria de modes acoblats per a predir i interpretar este efecte. Dos fenòmens diferents cal destacar quan es tracta d'estructures periòdiques amb dissipació. Per un costat, al considerar la propagació d'ones sonores en el plànol en un array periòdic de capes absorbents, s'observa una disminució anòmala de l'absorció i es combina amb un augment simultani de reflexió i transmissió en les freqüències de Bragg que contrasta amb la usual disminució de transmissió, característica dels sistemes conservatius a eixes freqüències. Per a un medi similar de capes, amb un reflector rígid darrere, les ones fora del pla incidint l'estructura des de un medi homogeni, augmentaran considerablement la interacció. En altres paraules, el retràs temporal de les ones sonores dins del sistema periòdic augmentarà significativament produint un augmen / Cebrecos Ruiz, A. (2015). Transmission, reflection and absorption in Sonic and Phononic Crystals [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/56463 / TESIS / Premios Extraordinarios de tesis doctorales / Compendio

Page generated in 0.0613 seconds