• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 17
  • 8
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 84
  • 84
  • 19
  • 14
  • 14
  • 12
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Interpolation of non-smooth functions on anisotropic finite element meshes

Apel, Th. 30 October 1998 (has links)
In this paper, several modifications of the quasi-interpolation operator of Scott and Zhang (Math. Comp. 54(1990)190, 483--493) are discussed. The modified operators are defined for non-smooth functions and are suited for the application on anisotropic meshes. The anisotropy of the elements is reflected in the local stability and approximation error estimates. As an application, an example is considered where anisotropic finite element meshes are appropriate, namely the Poisson problem in domains with edges.
72

Sur quelques modèles hétérogènes en mécanique des fluides / On some heterogeneous models in fluid mechanics

Al Taki, Bilal 19 December 2016 (has links)
Cette thèse est consacrée à l'analyse mathématique de quelques modèles hétérogènes intervenants en mécanique des fluides. En particulier, elle est consacré a l'étude théorique des systèmes d'équations aux derivées partielles décrivants les trois modèles principaux que nous voulons présenter dans la suite. Le premier modèle étudié dans cette thèse est consacré à l'étude de l'écoulement d'un fluide visqueux newtonien et incompressible dans un bassin avec bathymétrie qui dégenère proche du bord. Le modèle mathématique étudié provient alors des équations de Navier-Stokes incompressible. On cherche à montrer que le problème de Cauchy correspondant est bien posé, au sens qu'on peut garantir l'existence globale et l'unicité de solutions faibles. Nous discuterons aussi la régularité de la solution faible. Finalement,nous établissons la convergence de la solution du modèle visqueux vers celle du modèle non visqueux quand le coefficient de viscosité tend vers zéro.La deuxième partie est dédiée à l'étude d'un modèle issu du système de Navier-Stokes dispersif ( il contient une correction dispersive) qui est lui meme obtenu à partir de la théorie cinétique des gaz. Notre modèle mathématique est dérivé a partir de ce dernier en supposant que le nombre de Mach est très faible. Le modèle obtenu est nommé effet fantôme (ou ghost effect an anglais), puisqu'il ne peut pas être obtenu à partir du modèle de Navier-Stokes compressible classique. L'objectif dans ce cadre sera d'étendre un résultat concernant l'existence locale d'une solution forte vers l'existence globale d'une solution faible. L'ingrédient principal dans notre analyse est une nouvelle inégalité fonctionnelle de type Log-Sobolev.La troisième partie de ce document est une contribution à une thématique de recherche se proposant d'analyser la compréhension des phénomènes rencontrés en géophysique qui font intervenir des milieux granulaires. Le modèle mathématique choisi est de type Bingham incompressible dont on fait dépendre le seuil de plasticité et le coe fficient de viscosité de la pression. On montre un résultat d'existence globale d'une solution faible du problème de Cauchy associé. / This thesis is devoted to the mathematical analysis of heterogeneous models raised by fluid mechanics. In particular, it is devoted to the theoretical study of partial differential equations used to describe the three main models that we present below.Initially, we are interested to study the motion of a compressible newtonienfluids in a basin with degenerate topography. The mathematical model studied derives from incompressible Navier-Stokes equations. We are interested to prove that the Cauchy problem associated is well posed. Well-posedness means that there exists a solution, that it is unique. In the meantime, we prove that the solution of the viscous model converges to the one of the inviscid limit model when the viscosity coe cient tends to zero.The second part in my thesis is devoted to study a model that arises from dispersive Navier-Stokes equations (that includes dispersive corrections to the classical compressible Navier-Stokes equations). Our model is derived from the last model assuming that the Mach number is very low. The obtained system is a Ghost eect system, which is so named because it can be derived from Kinetic theory. The main goal of this part is to extend a result concerning the local existence of strong solution to a global-in time existence of weak solutions. The main ingredient in this work is a new functional inequality of Log-Sobolev type.The last part of my thesis is a part of a research theme intends to analyze the understanding of phenomena encountered in geophysics which involves granular media. The mathematical model is of Bingham incompressible type with viscosity and placticity depending on the pressure. We provide a global existence of weak solutions of the Cauchy problem associated.
73

Um estudo sobre a boa colocação local da equação não linear de Schrödinger cúbica unidimensional em espaços de Sobolev periódicos / A study about the locally well posed of cubic nonlinear Schrödinger equation in periodic Sobolev spaces

Romão, Darliton Cezario 25 March 2009 (has links)
In this work we study, in details, the Cauchy problem of the nonlinear Schrödinger equation, with initial datas in periodic Sobolev spaces. Specifically, we prove that this problem is locally well posed for datas in Hsper, with s ≥ 0. Particularly, for initial datas in L2 the problem is globally well posed, due to the conservation law of the equation in this space. Moreover, we prove the this result is the best one, seeing we expose examples that show that the equation flow is not locally uniformly continuous for initial datas with regularity less than L2. / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho, fazemos um estudo detalhado do problema de Cauchy para a equação não-linear cúbica de Schrödinger, com dados iniciais em espaços de Sobolev no toro. Especificamente, provaremos que este modelo é localmente bem posto para dados em Hsper, com s ≥ 0. Em particular, para dados iniciais em L2 o modelo é globalmente bem posto, devido à lei de conservação da equação neste espaço. Além disso, provaremos que os resultados obtidos são os melhores possíveis, visto que exibiremos exemplos que mostram que o fluxo da equação não é localmente uniformemente contínuo para dados iniciais com regularidade menor que L2.
74

Soluções locais para uma equação hiperbólica

Jesus, Rafael Oliveira de 02 February 2017 (has links)
Fundação de Apoio a Pesquisa e à Inovação Tecnológica do Estado de Sergipe - FAPITEC/SE / This work we will study the existence and uniqueness of the solution to the following nonlinear hyperbolic problem: where is a bounded open set of Rn with boundary - consisted of two parts -0 and -1, with -0 \ -1 = ; > 1 is a real constant and h : -1 R -! R is a continuous function and strongly monotonous in the second variable. The existence of the above problem will be done using the Faedo-Galerkin method with a special basis for V \H2( ), Strauss' approximations of continuous functions and trace theorems for non-smooth functions. The uniqueness will be obtained in the case where h = p, where 2 W1;1(-1), and p : R -! R is a Lipschitzian function and strongly monotonous. / Neste trabalho estudaremos a existência e unicidade de solução para o seguinte problema hiperbólico não linear. A existência da solução do problema será feita utilizando o método de Faedo-Galerkin com uma base especial, aproximações à Strauss de funções contínuas e teoremas de traços para funções não suaves. A unicidade será obtida no caso especial que a função lipschitziana e fortemente monótona.
75

Symétrie et brisure de symétrie dans quelques problèmes elliptiques

Torne, Olaf 11 October 2004 (has links)
Etude des propriétés de symétrie des solutions de quelques problèmes aux limites de type elliptique. / Doctorat en sciences, Spécialisation mathématiques / info:eu-repo/semantics/nonPublished
76

Régularité des solutions de problèmes elliptiques ou paraboliques avec des données sous forme de mesure / Regularity of the solutions of elliptic or parabolic problems with data measure

Ariche, Sadjiya 25 June 2015 (has links)
Dans cette thèse on étudie la régularité de problèmes elliptiques (Laplace, Helmholtz) ou paraboliques (équation de la chaleur) avec donnée mesure dans divers cadres géométriques. Ainsi, on considère pour les seconds membres des masses de Dirac en un point, sur une ligne infinie, semi-infinie ou finie, et également sur une courbe régulière. Les solutions de ces problèmes étant singulières sur la fracture (modélisée par la masse de Dirac dans le second membre), on étudie la régularité dans des espaces de Sobolev avec poids. Dans le cas d'une fracture droite, on utilise une technique classique qui consiste à appliquer une transformée de Fourier ou de Mellin à l'équation de Laplace. Ceci nous amène à étudier l'équation de Helmholtz en 2D. Pour ce dernier, on montre des estimations uniformes qui permettent ensuite de prendre la transformée inverse et d'obtenir le résultat de régularité attendu. De même, la transformée de Laplace transforme l'équation de la chaleur dans la même équation de Helmholtz en 2D. Dans le cas d'une fracture courbe régulière, grâce aux résultats de [D'angelo:2012], en utilisant un argument de localisation et un recouvrement dyadique, on obtient une régularité améliorée de la solution toujours dans les espaces de Sobolev avec poids. / In this thesis, we study the regularity of elliptic problems (Laplace, Helmholtz) or parabolic problems (heat equation) with measure data in different geometric frames. Thus, we consider for the second members, Dirac masses at a point, on a line, on a half-line, or on a bounded segment, and also on a regular curve.  As the solutions of these problems are singular on the fracture (modeled by Dirac mass in the second member), we study their regularity in weighted Sobolev spaces.   In the case of a straight fracture, using Fourier or Mellin technique reduces the problem in dimension three to a Helmholtz problem in dimension two. For the latter, we prove uniform estimates, which are then used to apply the inverse transform and to obtain the expected regularity result. Similarly, the Laplace transformation transforms the heat equation into the same Helmholtz equation in 2D.  In the case of a smooth curve fracture, thanks to the results of [D'angelo:2012], using a localization argument and a dyadic recovery we get an improved smoothness of the solution always in weighted Sobolev spaces.
77

[en] REGULARITY TRANSMISSION BY APPROXIMATION METHODS: THE ISAACS EQUATION / [pt] TEORIA DE REGULARIDADE POR MÉTODOS DE APROXIMAÇÃO: A EQUAÇÃO DE ISAACS

MIGUEL BELTRAN WALKER URENA 30 April 2020 (has links)
[pt] A equação de Isaacs é um exemplo importante de equação elíptica totalmente não-linear, aparecendo em uma grande variedade de disciplinas. Um fato de interesse particular é que tais equações são dirigidas por operadores não convexos. Portanto, são compatíveis com a teoria de EvansKrylov e apresentam delicados desafios quando se trata de sua teoria da regularidade. Descrevemos uma série de resultados recentes sobre a teoria da regularidade da Equação de Isaacs. Estas cobrem estimativas nos espaços Hölder e Sobolev. Argumentamos através de um método genuinamente geométrico, importando informações de uma equação de Bellman relacionada. / [en] Isaacs equation is an important example of fully nonlinear elliptic equation, appearing in a wide of disciplines. Of particular interest is the fact that such equations are driven by nonconvex operators. Therefore, it falls off the scope of the Evans-Krylov theory and poses additional, delicate, challenges when it comes to its regularity theory. We describe a series of recent results on the regularity theory of the Isaacs equation. These cover estimates in Holder and Sobolev spaces. We argue through a genuinely geometrical method, by importing information from a related Bellman equation.
78

Propriétés spectrales et universalité d’opérateurs de composition pondérés / Spectral properties and universality of weighted composition operators

Pozzi, Élodie 14 October 2011 (has links)
Cette thèse est dédiée à l'étude d'opérateurs de composition pondérés sur plusieurs espaces fonctionnels sous fond du problème du sous-espace invariant. Cet important problème ouvert pose la question de l'existence pour tout opérateur sur un espace de Hilbert, complexe, séparable de dimension infinie, d'un sous-espace fermé, non-trivial et invariant par cet opérateur. La première partie est consacrée à l'étude spectrale et à la caractérisation des vecteurs cycliques d'un opérateur de composition à poids particulier sur L^2([0,1]^d) : l'opérateur de type Bishop, introduit comme possible contre-exemple au problème du sous-espace invariant. Les seconde, troisième et quatrième parties abordent ce problème sous un autre aspect : celui de l'universalité d'un opérateur. Ces opérateurs universels possèdent la propriété d'universalité : la description complète des sous-espaces invariants d'un opérateur universel permettrait de répondre au problème du sous-espace invariant. Déterminer l'universalité d'un opérateur repose sur l'établissement de propriétés spectrales fines de l’opérateur considéré (théorème de Caradus). Dans ce but, nous établissons des propriétés spectrales ad-hoc de classes d’opérateurs de composition à poids sur L^2([0,1]), les espaces de Sobolev d’ordre n, sur les espaces de Hardy du disque unité et du demi-plan supérieur, permettant de déduire des résultats d’universalité. Nous obtenons aussi une généralisation du critère d’universalité. Dans la dernière partie, nous donnons une caractérisation des opérateurs de composition rsid16415432 inversibles et une caractérisation partielle des opérateurs de composition isométriques sur les espaces de Hardy de l’anneau / In this thesis, we study classes of weighted composition operators on several functional spaces in the background of the invariant subspace problem. This important open problem asks the question of the existence for every operator, defined on a complex and separable infinite dimensional Hilbert space, of a non trivial closed subspace invariant under the operator. The first part is dedicated to the establishment of the spectrum and the characterization of cyclic vectors of a special weighted composition operator defined on L^2([0,1]^d) : the Bishop type operator, introduced as possible counter-example of the invariant subspace problem. The second, third and fourth part approach the problem from the point of view of universal operators. More precisely, universal operators have the universal property in the sense of the complete description of all the invariant subspaces of a universal operator could solve the invariant subspace problem. A sufficient condition for an operator to be universal (Caradus’theorem) is given in terms of spectral properties. To this aim, we establish ad-hoc spectral properties of a class of weighted composition operators on L^2([0,1]) and Sobolev spaces of order n, of composition operator in the Hardy space of the unit disc and of the upper half-plane, which lead us to deduce universality results. We also obtain a generalization of the universality criteria mentioned above. In the last part, we give a characterization of invertible composition operators and a partial characterization of composition operators on the Hardy space of the annulus
79

Noncommutative manifolds and Seiberg-Witten-equations / Nichtkommutative Mannigfaltigkeiten und Seiberg-Witten-Gleichungen

Alekseev, Vadim 07 September 2011 (has links)
No description available.
80

Uma desigualdade do tipo Trudinger-Moser em espaços de Sobolev com peso e aplicações

Albuquerque, Francisco Sibério Bezerra 14 April 2014 (has links)
Made available in DSpace on 2015-05-15T11:46:17Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 2216718 bytes, checksum: 2b03ed1c154fa751c5c18afd31a144ad (MD5) Previous issue date: 2014-04-14 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work addresses a class of Trudinger-Moser type inequalities in weighted Sobolev spaces in R2. As an application of these inequalities and by using variational methods, we establish sufficient conditions for the existence, multiplicity and nonexistence of solutions for some classes of nonlinear Schrödinger elliptic equations (and systems of equations) with unbounded, singular or decaying radial potentials and involving nonlinearities with exponential critical growth of Trudinger-Moser type. / Este trabalho aborda uma classe de desigualdades do tipo Trudinger-Moser em espaços de Sobolev com peso em R2. Como aplicação destas desigualdades e usando métodos variacionais, estabeleceremos condições suficientes para a existência, multiplicidade e não-existência de soluções para algumas classes de equações (e sistemas de equações) de Schrödinger elípticas não-lineares com potenciais radiais ilimitados, singulares na origem ou decaindo a zero no infinito e envolvendo não-linearidades com crescimento crítico exponencial do tipo Trudinger-Moser.

Page generated in 0.0435 seconds