Spelling suggestions: "subject:"5ource separation"" "subject:"eource separation""
171 |
Chaînes de Markov cachées et séparation non supervisée de sources / Hidden Markov chains and unsupervised source separationRafi, Selwa 11 June 2012 (has links)
Le problème de la restauration est rencontré dans domaines très variés notamment en traitement de signal et de l'image. Il correspond à la récupération des données originales à partir de données observées. Dans le cas de données multidimensionnelles, la résolution de ce problème peut se faire par différentes approches selon la nature des données, l'opérateur de transformation et la présence ou non de bruit. Dans ce travail, nous avons traité ce problème, d'une part, dans le cas des données discrètes en présence de bruit. Dans ce cas, le problème de restauration est analogue à celui de la segmentation. Nous avons alors exploité les modélisations dites chaînes de Markov couples et triplets qui généralisent les chaînes de Markov cachées. L'intérêt de ces modèles réside en la possibilité de généraliser la méthode de calcul de la probabilité à posteriori, ce qui permet une segmentation bayésienne. Nous avons considéré ces méthodes pour des observations bi-dimensionnelles et nous avons appliqué les algorithmes pour une séparation sur des documents issus de manuscrits scannés dans lesquels les textes des deux faces d'une feuille se mélangeaient. D'autre part, nous avons attaqué le problème de la restauration dans un contexte de séparation aveugle de sources. Une méthode classique en séparation aveugle de sources, connue sous l'appellation "Analyse en Composantes Indépendantes" (ACI), nécessite l'hypothèse d'indépendance statistique des sources. Dans des situations réelles, cette hypothèse n'est pas toujours vérifiée. Par conséquent, nous avons étudié une extension du modèle ACI dans le cas où les sources peuvent être statistiquement dépendantes. Pour ce faire, nous avons introduit un processus latent qui gouverne la dépendance et/ou l'indépendance des sources. Le modèle que nous proposons combine un modèle de mélange linéaire instantané tel que celui donné par ACI et un modèle probabiliste sur les sources avec variables cachées. Dans ce cadre, nous montrons comment la technique d'Estimation Conditionnelle Itérative permet d'affaiblir l'hypothèse usuelle d'indépendance en une hypothèse d'indépendance conditionnelle / The restoration problem is usually encountered in various domains and in particular in signal and image processing. It consists in retrieving original data from a set of observed ones. For multidimensional data, the problem can be solved using different approaches depending on the data structure, the transformation system and the noise. In this work, we have first tackled the problem in the case of discrete data and noisy model. In this context, the problem is similar to a segmentation problem. We have exploited Pairwise and Triplet Markov chain models, which generalize Hidden Markov chain models. The interest of these models consist in the possibility to generalize the computation procedure of the posterior probability, allowing one to perform bayesian segmentation. We have considered these methods for two-dimensional signals and we have applied the algorithms to retrieve of old hand-written document which have been scanned and are subject to show through effect. In the second part of this work, we have considered the restoration problem as a blind source separation problem. The well-known "Independent Component Analysis" (ICA) method requires the assumption that the sources be statistically independent. In practice, this condition is not always verified. Consequently, we have studied an extension of the ICA model in the case where the sources are not necessarily independent. We have introduced a latent process which controls the dependence and/or independence of the sources. The model that we propose combines a linear instantaneous mixing model similar to the one of ICA model and a probabilistic model on the sources with hidden variables. In this context, we show how the usual independence assumption can be weakened using the technique of Iterative Conditional Estimation to a conditional independence assumption
|
172 |
Porovnání úspěšnosti vícekanálových metod separace řečových signálů / Comparison of success rate of multi-channel methods of speech signal separationPřikryl, Petr January 2008 (has links)
The separation of independent sources from mixed observed data is a fundamental problem in many practical situations. A typical example is speech recordings made in an acoustic environment in the presence of background noise or other speakers. Problems of signal separation are explored by a group of methods called Blind Source Separation. Blind Source Separation (BSS) consists on estimating a set of N unknown sources from P observations resulting from the mixture of these sources and unknown background. Some existing solutions for instantaneous mixtures are reviewed and in Matlab implemented , i.e Independent Componnent Analysis (ICA) and Time-Frequency Analysis (TF). The acoustic signals recorded in real environment are not instantaneous, but convolutive mixtures. In this case, an ICA algorithm for separation of convolutive mixtures in frequency domain is introduced and in Matlab implemented. This diploma thesis examines the useability and comparisn of proposed separation algorithms.
|
173 |
Représentations parcimonieuses et analyse multidimensionnelle : méthodes aveugles et adaptatives / Sparse multidimensional analysis using blind and adaptive processingLassami, Nacerredine 11 July 2019 (has links)
Au cours de la dernière décennie, l’étude mathématique et statistique des représentations parcimonieuses de signaux et de leurs applications en traitement du signal audio, en traitement d’image, en vidéo et en séparation de sources a connu une activité intensive. Cependant, l'exploitation de la parcimonie dans des contextes de traitement multidimensionnel comme les communications numériques reste largement ouverte. Au même temps, les méthodes aveugles semblent être la réponse à énormément de problèmes rencontrés récemment par la communauté du traitement du signal et des communications numériques tels que l'efficacité spectrale. Aussi, dans un contexte de mobilité et de non-stationnarité, il est important de pouvoir mettre en oeuvre des solutions de traitement adaptatives de faible complexité algorithmique en vue d'assurer une consommation réduite des appareils. L'objectif de cette thèse est d'aborder ces challenges de traitement multidimensionnel en proposant des solutions aveugles de faible coût de calcul en utilisant l'à priori de parcimonie. Notre travail s'articule autour de trois axes principaux : la poursuite de sous-espace principal parcimonieux, la séparation adaptative aveugle de sources parcimonieuses et l'identification aveugle des systèmes parcimonieux. Dans chaque problème, nous avons proposé de nouvelles solutions adaptatives en intégrant l'information de parcimonie aux méthodes classiques de manière à améliorer leurs performances. Des simulations numériques ont été effectuées pour confirmer l’intérêt des méthodes proposées par rapport à l'état de l'art en termes de qualité d’estimation et de complexité calculatoire. / During the last decade, the mathematical and statistical study of sparse signal representations and their applications in audio, image, video processing and source separation has been intensively active. However, exploiting sparsity in multidimensional processing contexts such as digital communications remains a largely open problem. At the same time, the blind methods seem to be the answer to a lot of problems recently encountered by the signal processing and the communications communities such as the spectral efficiency. Furthermore, in a context of mobility and non-stationarity, it is important to be able to implement adaptive processing solutions of low algorithmic complexity to ensure reduced consumption of devices. The objective of this thesis is to address these challenges of multidimensional processing by proposing blind solutions of low computational cost by using the sparsity a priori. Our work revolves around three main axes: sparse principal subspace tracking, adaptive sparse source separation and identification of sparse systems. For each problem, we propose new adaptive solutions by integrating the sparsity information to the classical methods in order to improve their performance. Numerical simulations have been conducted to confirm the superiority of the proposed methods compared to the state of the art.
|
174 |
Human locomotion analysis : exploitation of cyclostationarity properties of signals / Analyse de la locomotion humaine : exploitation des propriétés de cyclostationnarité des signauxZakaria, Firas 21 December 2015 (has links)
Les travaux présentés dans cette mémoire visent à développer de nouvelles méthodes qui exploitent les propriétés de cyclostationnarité pour traiter des signaux de force de réaction du sol enregistrées au cours de la marche et la course à pied. Nous nous intéressons à l’analyse de la locomotion humaine dans trois domaines d´études: une étude liée à la pathologie, une deuxième liée directement à l’âge et une troisième relative à la fatigue. En effet, la détection du risque de chute chez les personnes âgées pour fin de prévention contre la chute constitue un enjeu majeur, car cette chute entraine d’une part un nombre de décès important et d’autres part se traduit par un cout élevée de la santé publique. Par ailleurs, l’étude de la fatigue musculaire en particulier pour l’amélioration des performances des sportifs de haut niveau a fait l’objet de nombreux travaux de recherche & développement. La recherche et le développement de nouvelles méthodes et d’indicateurs dans le domaine de traitement de signal dans le but de caractériser la locomotive humaine, permettrait des avancées intéressantes dans les enjeux évoqués ci-dessus. La complexité des signaux GRF est définie par le système neuromusculaire qui génère ce signal. Une meilleure connaissance de ce système nécessite le développement des méthodes de séparation de sources et des outils avancés de traitement du signal pour mieux décrire le système considéré. En effet, nous montrons dans cette thèse que les signaux GRF peuvent être modélisés dans un cadre cyclostationnaire élargi. Les composantes de signal GRF (contribution active et passive) sont séparées par de nouvelles techniques de séparation de sources. Cette modélisation ouvre de nouvelles perspectives pour la décomposition et identification des sources individuelles. D'autre part, on exploite les caractères cyclostationnaire des signaux dans le cadre de la méthode d'analyse en composantes morphologique (MCA). Cet algorithme nous permet de séparer avec succès les composantes d’ordre 1 et d’ordre 2 des signaux considérés. Finalement, nous nous proposons un nouveau modèle utile pour l'étude et la caractérisation de cyclostationnarité. Il présente l'effet de la variation aléatoire de la pente sur le spectre du signal cyclique. Nous appelons ce modèle (modèle cyclostationnaire à pente aléatoire). Nous appliquons ce modèle pour l'étude des signaux biomécaniques où nous considérons la pente comme une mesure spécifique extraite des forces de réaction du sol. Les résultats montrent que la pente et les polynômes à coefficients aléatoires du pic passive peuvent jouer un rôle important et fournir des informations intéressantes concernant la fatigue et concernant la performance de marche et course à pied / The research work presented in this dissertation, involves the development of novel methodologies and methods, for the exploitation of cyclostationarity properties and for the treatment of ground reaction force signals, recorded during walking and running. We are especially interested in the analysis of human locomotion in three fields of interest: a study relating to pathology, a study directly related to age, and a study of muscle fatigue. Indeed, the detection of risk of falling among the elderly for the prevention of falls is of major concern. This is because falling on the one hand leads to a large number of deaths and secondly, resulting in higher costs of public health.Study the muscle fatigue in particular has occupied taken a big share out of this research due to the importance of such events like strenuous level of sports. Research and development of new methods and indicators in the field of signal processing for better characterizing the human locomotion, would allow interesting advances in the aforementioned issues. The complexity of GRF signals is defined by the neuromuscular system which generates this signal. Improved knowledge of this system requires developing source separation methods and advanced signal processing tools to better describe the system under consideration. Indeed, we will endeavor to show in this dissertation that GRF signals can be modeled within an enlarged cyclostationary framework. The GRF signal components (active and passive contribution) are separated by means of new source separation techniques. This modeling opens new perspectives for the decomposition and identification of individual sources. On the other hand, we exploit the cyclostationary characters of signals in the context of Morphological component analysis (MCA) method. Such algorithm enables us to successfully separate the first and second order components of the signals under consideration. Finally, we provide a new model useful for studying and characterizing cyclostationarity. It presents the impact of random slope variation on the cyclic spectrum of the signal. We call this model the random slope modulation (RSM). We apply this model for studying biomechanical signals where we consider the slope as a specic measure extracted from the vertical ground reaction forces. The results show that the slope and polynomial random coefficients of passive peaks can play important role and provide interesting information concerning fatigue and concerning running / walking performance
|
175 |
Blind Source Separation for the Processing of Contact-Less BiosignalsWedekind, Daniel 08 July 2021 (has links)
(Spatio-temporale) Blind Source Separation (BSS) eignet sich für die Verarbeitung von Multikanal-Messungen im Bereich der kontaktlosen Biosignalerfassung. Ziel der BSS ist dabei die Trennung von (z.B. kardialen) Nutzsignalen und Störsignalen typisch für die kontaktlosen Messtechniken. Das Potential der BSS kann praktisch nur ausgeschöpft werden, wenn (1) ein geeignetes BSS-Modell verwendet wird, welches der Komplexität der Multikanal-Messung gerecht wird und (2) die unbestimmte Permutation unter den BSS-Ausgangssignalen gelöst wird, d.h. das Nutzsignal praktisch automatisiert identifiziert werden kann. Die vorliegende Arbeit entwirft ein Framework, mit dessen Hilfe die Effizienz von BSS-Algorithmen im Kontext des kamera-basierten Photoplethysmogramms bewertet werden kann. Empfehlungen zur Auswahl bestimmter Algorithmen im Zusammenhang mit spezifischen Signal-Charakteristiken werden abgeleitet. Außerdem werden im Rahmen der Arbeit Konzepte für die automatisierte Kanalauswahl nach BSS im Bereich der kontaktlosen Messung des Elektrokardiogramms entwickelt und bewertet. Neuartige Algorithmen basierend auf Sparse Coding erwiesen sich dabei als besonders effizient im Vergleich zu Standard-Methoden. / (Spatio-temporal) Blind Source Separation (BSS) provides a large potential to process distorted multichannel biosignal measurements in the context of novel contact-less recording techniques for separating distortions from the cardiac signal of interest. This potential can only be practically utilized (1) if a BSS model is applied that matches the complexity of the measurement, i.e. the signal mixture and (2) if permutation indeterminacy is solved among the BSS output components, i.e the component of interest can be practically selected. The present work, first, designs a framework to assess the efficacy of BSS algorithms in the context of the camera-based photoplethysmogram (cbPPG) and characterizes multiple BSS algorithms, accordingly. Algorithm selection recommendations for certain mixture characteristics are derived. Second, the present work develops and evaluates concepts to solve permutation indeterminacy for BSS outputs of contact-less electrocardiogram (ECG) recordings. The novel approach based on sparse coding is shown to outperform the existing concepts of higher order moments and frequency-domain features.
|
176 |
Reconstruction de phase par modèles de signaux : application à la séparation de sources audio / Phase recovery based on signal modeling : application to audio source separationMagron, Paul 02 December 2016 (has links)
De nombreux traitements appliqués aux signaux audio travaillent sur une représentation Temps-Fréquence (TF) des données. Lorsque le résultat de ces algorithmes est un champ spectral d’amplitude, la question se pose, pour reconstituer un signal temporel, d’estimer le champ de phase correspondant. C’est par exemple le cas dans les applications de séparation de sources, qui estiment les spectrogrammes des sources individuelles à partir du mélange ; la méthode dite de filtrage de Wiener, largement utilisée en pratique, fournit des résultats satisfaisants mais est mise en défaut lorsque les sources se recouvrent dans le plan TF. Cette thèse aborde le problème de la reconstruction de phase de signaux dans le domaine TF appliquée à la séparation de sources audio. Une étude préliminaire révèle la nécessité de mettre au point de nouvelles techniques de reconstruction de phase pour améliorer la qualité de la séparation de sources. Nous proposons de baser celles-ci sur des modèles de signaux. Notre approche consiste à exploiter des informations issues de modèles sous-jacents aux données comme les mélanges de sinusoïdes. La prise en compte de ces informations permet de préserver certaines propriétés intéressantes, comme la continuité temporelle ou la précision des attaques. Nous intégrons ces contraintes dans des modèles de mélanges pour la séparation de sources, où la phase du mélange est exploitée. Les amplitudes des sources pourront être supposées connues, ou bien estimées conjointement dans un modèle inspiré de la factorisation en matrices non-négatives complexe. Enfin, un modèle probabiliste de sources à phase non-uniforme est mis au point. Il permet d’exploiter les à priori provenant de la modélisation de signaux et de tenir compte d’une incertitude sur ceux-ci. Ces méthodes sont testées sur de nombreuses bases de données de signaux de musique réalistes. Leurs performances, en termes de qualité des signaux estimés et de temps de calcul, sont supérieures à celles des méthodes traditionnelles. En particulier, nous observons une diminution des interférences entre sources estimées, et une réduction des artéfacts dans les basses fréquences, ce qui confirme l’intérêt des modèles de signaux pour la reconstruction de phase. / A variety of audio signal processing techniques act on a Time-Frequency (TF) representation of the data. When the result of those algorithms is a magnitude spectrum, it is necessary to reconstruct the corresponding phase field in order to resynthesize time-domain signals. For instance, in the source separation framework the spectrograms of the individual sources are estimated from the mixture ; the widely used Wiener filtering technique then provides satisfactory results, but its performance decreases when the sources overlap in the TF domain. This thesis addresses the problem of phase reconstruction in the TF domain for audio source separation. From a preliminary study we highlight the need for novel phase recovery methods. We therefore introduce new phase reconstruction techniques that are based on music signal modeling : our approach consists inexploiting phase information that originates from signal models such as mixtures of sinusoids. Taking those constraints into account enables us to preserve desirable properties such as temporal continuity or transient precision. We integrate these into several mixture models where the mixture phase is exploited ; the magnitudes of the sources are either assumed to be known, or jointly estimated in a complex nonnegative matrix factorization framework. Finally we design a phase-dependent probabilistic mixture model that accounts for model-based phase priors. Those methods are tested on a variety of realistic music signals. They compare favorably or outperform traditional source separation techniques in terms of signal reconstruction quality and computational cost. In particular, we observe a decrease in interferences between the estimated sources and a reduction of artifacts in the low-frequency components, which confirms the benefit of signal model-based phase reconstruction methods.
|
177 |
Independent component analysis and slow feature analysisBlaschke, Tobias 25 May 2005 (has links)
Der Fokus dieser Dissertation liegt auf den Verbindungen zwischen ICA (Independent Component Analysis - Unabhängige Komponenten Analyse) und SFA (Slow Feature Analysis - Langsame Eigenschaften Analyse). Um einen Vergleich zwischen beiden Methoden zu ermöglichen wird CuBICA2, ein ICA Algorithmus basierend nur auf Statistik zweiter Ordnung, d.h. Kreuzkorrelationen, vorgestellt. Dieses Verfahren minimiert zeitverzögerte Korrelationen zwischen Signalkomponenten, um die statistische Abhängigkeit zwischen denselben zu reduzieren. Zusätzlich wird eine alternative SFA-Formulierung vorgestellt, die mit CuBICA2 verglichen werden kann. Im Falle linearer Gemische sind beide Methoden äquivalent falls nur eine einzige Zeitverzögerung berücksichtigt wird. Dieser Vergleich kann allerdings nicht auf mehrere Zeitverzögerungen erweitert werden. Für ICA lässt sich zwar eine einfache Erweiterung herleiten, aber ein ähnliche SFA-Erweiterung kann nicht im originären SFA-Sinne (SFA extrahiert die am langsamsten variierenden Signalkomponenten aus einem gegebenen Eingangssignal) interpretiert werden. Allerdings kann eine im SFA-Sinne sinnvolle Erweiterung hergeleitet werden, welche die enge Verbindung zwischen der Langsamkeit eines Signales (SFA) und der zeitlichen Vorhersehbarkeit desselben verdeutlich. Im Weiteren wird CuBICA2 und SFA kombiniert. Das Resultat kann aus zwei Perspektiven interpretiert werden. Vom ICA-Standpunkt aus führt die Kombination von CuBICA2 und SFA zu einem Algorithmus, der das Problem der nichtlinearen blinden Signalquellentrennung löst. Vom SFA-Standpunkt aus ist die Kombination eine Erweiterung der standard SFA. Die standard SFA extrahiert langsam variierende Signalkomponenten die untereinander unkorreliert sind, dass heißt statistisch unabhängig bis zur zweiten Ordnung. Die Integration von ICA führt nun zu Signalkomponenten die mehr oder weniger statistisch unabhängig sind. / Within this thesis, we focus on the relation between independent component analysis (ICA) and slow feature analysis (SFA). To allow a comparison between both methods we introduce CuBICA2, an ICA algorithm based on second-order statistics only, i.e.\ cross-correlations. In contrast to algorithms based on higher-order statistics not only instantaneous cross-correlations but also time-delayed cross correlations are considered for minimization. CuBICA2 requires signal components with auto-correlation like in SFA, and has the ability to separate source signal components that have a Gaussian distribution. Furthermore, we derive an alternative formulation of the SFA objective function and compare it with that of CuBICA2. In the case of a linear mixture the two methods are equivalent if a single time delay is taken into account. The comparison can not be extended to the case of several time delays. For ICA a straightforward extension can be derived, but a similar extension to SFA yields an objective function that can not be interpreted in the sense of SFA. However, a useful extension in the sense of SFA to more than one time delay can be derived. This extended SFA reveals the close connection between the slowness objective of SFA and temporal predictability. Furthermore, we combine CuBICA2 and SFA. The result can be interpreted from two perspectives. From the ICA point of view the combination leads to an algorithm that solves the nonlinear blind source separation problem. From the SFA point of view the combination of ICA and SFA is an extension to SFA in terms of statistical independence. Standard SFA extracts slowly varying signal components that are uncorrelated meaning they are statistically independent up to second-order. The integration of ICA leads to signal components that are more or less statistically independent.
|
178 |
Reverse audio engineering for active listening and other applications / Rétroingénierie du son pour l’écoute active et autres applicationsGorlow, Stasnislaw 16 December 2013 (has links)
Ce travail s’intéresse au problème de la rétroingénierie du son pour l’écoute active. Le format considéré correspond au CD audio. Le contenu musical est vu comme le résultat d’un enchaînement de la composition, l’enregistrement, le mixage et le mastering. L’inversion des deux dernières étapes constitue le fond du problème présent. Le signal audio est traité comme un mélange post-non-linéaire. Ainsi, le mélange est « décompressé » avant d'être « décomposé » en pistes audio. Le problème est abordé dans un contexte informé : l’inversion est accompagnée d'une information qui est spécifique à la production du contenu. De cette manière, la qualité de l’inversion est significativement améliorée. L’information est réduite de taille en se servant des méthodes de quantification, codage, et des faits sur la psychoacoustique. Les méthodes proposées s’appliquent en temps réel et montrent une complexité basse. Les résultats obtenus améliorent l’état de l’art et contribuent aux nouvelles connaissances. / This work deals with the problem of reverse audio engineering for active listening. The format under consideration corresponds to the audio CD. The musical content is viewed as the result of a concatenation of the composition, the recording, the mixing, and the mastering. The inversion of the two latter stages constitutes the core of the problem at hand. The audio signal is treated as a post-nonlinear mixture. Thus, the mixture is “decompressed” before being “decomposed” into audio tracks. The problem is tackled in an informed context: The inversion is accompanied by information which is specific to the content production. In this manner, the quality of the inversion is significantly improved. The information is reduced in size by the use of quantification and coding methods, and some facts on psychoacoustics. The proposed methods are applicable in real time and have a low complexity. The obtained results advance the state of the art and contribute new insights.
|
179 |
Restauration et séparation de signaux polynômiaux par morceaux. Application à la microscopie de force atomique / Restoration and separation of piecewise polynomial signals. Application to Atomic Force MicroscopyDuan, Junbo 15 November 2010 (has links)
Cette thèse s'inscrit dans le domaine des problèmes inverses en traitement du signal. Elle est consacrée à la conception d'algorithmes de restauration et de séparation de signaux parcimonieux et à leur application à l'approximation de courbes de forces en microscopie de force atomique (AFM), où la notion de parcimonie est liée au nombre de points de discontinuité dans le signal (sauts, changements de pente, changements de courbure). Du point de vue méthodologique, des algorithmes sous-optimaux sont proposés pour le problème de l'approximation parcimonieuse basée sur la pseudo-norme l0 : l'algorithme Single Best Replacement (SBR) est un algorithme itératif de type « ajout-retrait » inspiré d'algorithmes existants pour la restauration de signaux Bernoulli-Gaussiens. L'algorithme Continuation Single Best Replacement (CSBR) est un algorithme permettant de fournir des approximations à des degrés de parcimonie variables. Nous proposons aussi un algorithme de séparation de sources parcimonieuses à partir de mélanges avec retards, basé sur l'application préalable de l'algorithme CSBR sur chacun des mélanges, puis sur une procédure d'appariement des pics présents dans les différents mélanges. La microscopie de force atomique est une technologie récente permettant de mesurer des forces d'interaction entre nano-objets. L'analyse de courbes de forces repose sur des modèles paramétriques par morceaux. Nous proposons un algorithme permettant de détecter les régions d'intérêt (les morceaux) où chaque modèle s'applique puis d'estimer par moindres carrés les paramètres physiques (élasticité, force d'adhésion, topographie, etc.) dans chaque région. Nous proposons finalement une autre approche qui modélise une courbe de force comme un mélange de signaux sources parcimonieux retardées. La recherche des signaux sources dans une image force-volume s'effectue à partir d'un grand nombre de mélanges car il y autant de mélanges que de pixels dans l'image / This thesis handles several inverse problems occurring in sparse signal processing. The main contributions include the conception of algorithms dedicated to the restoration and the separation of sparse signals, and their application to force curve approximation in Atomic Force Microscopy (AFM), where the notion of sparsity is related to the number of discontinuity points in the signal (jumps, change of slope, change of curvature).In the signal processing viewpoint, we propose sub-optimal algorithms dedicated to the sparse signal approximation problem based on the l0 pseudo-norm : the Single Best Replacement algorithm (SBR) is an iterative "forward-backward" algorithm inspired from existing Bernoulli-Gaussian signal restoration algorithms. The Continuation Single Best Replacement algorithm (CSBR) is an extension providing approximations at various sparsity levels. We also address the problem of sparse source separation from delayed mixtures. The proposed algorithm is based on the prior application of CSBR on every mixture followed by a matching procedure which attributes a label for each peak occurring in each mixture.Atomic Force Microscopy (AFM) is a recent technology enabling to measure interaction forces between nano-objects. The force-curve analysis relies on piecewise parametric models. We address the detection of the regions of interest (the pieces) where each model holds and the subsequent estimation of physical parameters (elasticity, adhesion forces, topography, etc.) in each region by least-squares optimization. We finally propose an alternative approach in which a force curve is modeled as a mixture of delayed sparse sources. The research of the source signals and the delays from a force-volume image is done based on a large number of mixtures since there are as many mixtures as the number of image pixels
|
180 |
Estimation and separation of linear frequency- modulated signals in wireless communications using time - frequency signal processing.Nguyen, Linh- Trung January 2004 (has links)
Signal processing has been playing a key role in providing solutions to key problems encountered in communications, in general, and in wireless communications, in particular. Time-Frequency Signal Processing (TFSP) provides eective tools for analyzing nonstationary signals where the frequency content of signals varies in time as well as for analyzing linear time-varying systems. This research aimed at exploiting the advantages of TFSP, in dealing with nonstationary signals, into the fundamental issues of signal processing, namely the signal estimation and signal separation. In particular, it has investigated the problems of (i) the Instantaneous Frequency (IF) estimation of Linear Frequency-Modulated (LFM) signals corrupted in complex-valued zero-mean Multiplicative Noise (MN), and (ii) the Underdetermined Blind Source Separation (UBSS) of LFM signals, while focusing onto the fast-growing area of Wireless Communications (WCom). A common problem in the issue of signal estimation is the estimation of the frequency of Frequency-Modulated signals which are seen in many engineering and real-life applications. Accurate frequency estimation leads to accurate recovery of the true information. In some applications, the random amplitude modulation shows up when the medium is dispersive and/or when the assumption of point target is not valid; the original signal is considered to be corrupted by an MN process thus seriously aecting the recovery of the information-bearing frequency. The IF estimation of nonstationary signals corrupted by complex-valued zero-mean MN was investigated in this research. We have proposed a Second-Order Statistics approach, rather than a Higher-Order Statistics approach, for IF estimation using Time-Frequency Distributions (TFDs). The main assumption was that the autocorrelation function of the MN is real-valued but not necessarily positive (i.e. the spectrum of the MN is symmetric but does not necessary has the highest peak at zero frequency). The estimation performance was analyzed in terms of bias and variance, and compared between four dierent TFDs: Wigner-Ville Distribution, Spectrogram, Choi-Williams Distribution and Modified B Distribution. To further improve the estimation, we proposed to use the Multiple Signal Classification algorithm and showed its better performance. It was shown that the Modified B Distribution performance was the best for Signal-to-Noise Ratio less than 10dB. In the issue of signal separation, a new research direction called Blind Source Separation (BSS) has emerged over the last decade. BSS is a fundamental technique in array signal processing aiming at recovering unobserved signals or sources from observed mixtures exploiting only the assumption of mutual independence between the signals. The term "blind" indicates that neither the structure of the mixtures nor the source signals are known to the receivers. Applications of BSS are seen in, for example, radar and sonar, communications, speech processing, biomedical signal processing. In the case of nonstationary signals, a TF structure forcing approach was introduced by Belouchrani and Amin by defining the Spatial Time- Frequency Distribution (STFD), which combines both TF diversity and spatial diversity. The benefit of STFD in an environment of nonstationary signals is the direct exploitation of the information brought by the nonstationarity of the signals. A drawback of most BSS algorithms is that they fail to separate sources in situations where there are more sources than sensors, referred to as UBSS. The UBSS of nonstationary signals was investigated in this research. We have presented a new approach for blind separation of nonstationary sources using their TFDs. The separation algorithm is based on a vector clustering procedure that estimates the source TFDs by grouping together the TF points corresponding to "closely spaced" spatial directions. Simulations illustrate the performances of the proposed method for the underdetermined blind separation of FM signals. The method developed in this research represents a new research direction for solving the UBSS problem. The successful results obtained in the research development of the above two problems has led to a conclusion that TFSP is useful for WCom. Future research directions were also proposed.
|
Page generated in 0.0762 seconds