• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 115
  • 22
  • 15
  • 9
  • 4
  • 2
  • 1
  • Tagged with
  • 193
  • 193
  • 102
  • 44
  • 43
  • 43
  • 43
  • 32
  • 30
  • 30
  • 28
  • 28
  • 27
  • 26
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Propriedades eletrônicas dos isolantes topológicos / Electronic properties of Topological Insulators

Abdalla, Leonardo Batoni 05 February 2015 (has links)
Na busca de um melhor entendimento das propriedades eletrônicas e magnéticas dos isolantes topológicos nos deparamos com uma das suas caraterísticas mais marcantes, a existência de estados de superfície metálicos com textura helicoidal de spin os quais são protegidos de impurezas não magnéticas. Na superfície estes canais de spin possuem um potencial enorme para aplicações em dispositivos spintrônicos. Muito há para se fazer e o tratamento via cálculos de primeiros princípios por simulações permite um caráter preditivo que corrobora na elucidação de fenômenos físicos via análises experimentais. Nesse trabalho analisamos as propriedades eletrônicas de isolantes topológicos tais como: (Bi,Sb)$_2$(Te,Se)$_3$, Germaneno e Germaneno funcionalizado. Cálculos baseados em DFT evidenciam a importância das separações entre as camadas de Van der Waals nos materiais Bi$_2$Se$_3$ e Bi$_2$Te$_3$. Mostramos que devido a falhas de empilhamento, pequenas oscilações no eixo de QLs (\\textit{Quintuple Layers}) podem gerar um desacoplamento dos cones de Dirac, além de criar estados metálicos na fase \\textit{bulk} de Bi$_2$Te$_3$. Em se tratando do Bi$_2$Se$_3$ um estudo sistemático dos efeitos de impurezas de metais de transição foi realizado. Observamos que há quebra de degenerescência do cone de Dirac se houver magnetização em quaisquer dos eixos. Além disso se a magnetização permanecer no plano, além de uma pequena quebra de degenerescência, há um deslocamento do mesmo para outro ponto da rede recíproca. No entanto, se a magnetização apontar para fora do plano a quebra ocorre no próprio ponto $\\Gamma$, porém de maneira mais intensa. Importante enfatizar que além de mapear os sítios com suas orientações magnéticas de menor energia observamos que a quebra da degenerescência está diretamente relacionada com a geometria local da impureza. Isso proporciona imagens de STM distintas para cada sítio possível, permitindo que um experimental localize cada situação no laboratório. Estudamos ainda a transição topológica na liga (Bi$_x$Sb$_{1-x}$)$_2$Se$_3$, onde identificamos um isolante trivial e topológico para $x=0$ e $x=1$. Apesar de óbvia a existência de tal transição, detalhes importantes ainda não estão esclarecidos. Concluímos que a dopagem com impurezas não magnéticas proporciona uma boa técnica para manipulação e engenharia de cone nesta família de materiais, de forma que dependendo da faixa de dopagem podemos eliminar a condutividade que advém do \\textit{bulk}. Finalmente estudamos superfícies de Germaneno e Germaneno funcionalizado com halogênios. Usando uma funcionalização assimétrica e com a avalição do invariante topológico $Z_2$ notamos que o material Ge-I-H é um isolante topológico podendo ser aplicado na elaboração de dispositivos baseados em spin. / In the search of a better understanding of the electronic and magnetic properties of topological insulators we are faced with one of its most striking features, the existence of metallic surface states with helical spin texture which are protected from non-magnetic impurities. On the surface these spin channels allows a huge potential for applications in spintronic devices. There is much to do and treating calculations via \\textit{Ab initio} simulations allows us a predictive character that corroborates the elucidation of physical phenomena through experimental analysis. In this work we analyze the electronic properties of topological insulators such as: (Bi, Sb)$_2$(Te, Se)$_3$, Germanene and functionalized Germanene. Calculations based on DFT show the importance of the separation from interlayers of Van der Waals in materials like Bi$_2$Se$_3$ and Bi$_2$Te$_3$. We show that due to stacking faults, small oscillations in the QLs axis (\\textit{Quintuple Layers}) can generate a decoupling of the Dirac cones and create metal states in the bulk phase Bi$_2$Te$_3$. Regarding the Bi$_2$Se$_3$ a systematic study of the effects of transition metal impurities was performed. We observed that there is a degeneracy lift of the Dirac cone if there is any magnetization on any axis. If the magnetization remains in plane, we observe a small shift to another reciprocal lattice point. However, if the magnetization is pointing out of the plane a lifting in energy occurs at the very $ \\Gamma $ point, but in a more intense way. It is important to emphasize that in addition to mapping the sites with their magnetic orientations of lower energy we saw that the lifting in energy is directly related to the local geometry of the impurity. This provides distinct STM images for each possible site, allowing an experimental to locate each situation in the laboratory. We also studied the topological transition in the alloy (Bi$_x$Sb$_{1-x}$)$_ 2$Se$_3$, where we identify a trivial and topological insulator for $x = 0$ and $x = 1$. Despite the obvious existence of such a transition, important details remain unclear. We conclude that doping with non-magnetic impurities provides a good technique for handling and cone engineering this family of materials so that depending on the range of doping we can eliminate conductivity channels coming from the bulk. Finally we studied a Germanene and functionalized Germanene with halogens. Using an asymmetrical functionalization and with the topological invariant $Z_2$ we noted that the Ge-I-H system is a topological insulator that could be applied in the development of spin-based devices.
152

Spin-orbit interactions for steering Bloch surface waves with the optical magnetic field and for locally controlling light polarization by swirling surface plasmons / Interactions spin-orbite pour contrôler la directivité des ondes de surface de Bloch via le champ magnétique optique et pour contrôler et sonder localement l'état de polarisation de la lumière

Wang, Mengjia 13 February 2019 (has links)
Ma thèse est consacrée aux nouveaux phénomènes nano-optiques et aux dispositifs basés sur l'interaction spin-orbite de la lumière (SOI). Tout d'abord, il a été démontré un SOI uniquement piloté par le champ magnétique de la lumière permettant de diriger avec précision les ondes de surface de Bloch, offrant ainsi une nouvelle manifestation du champ magnétique optique. Ensuite, nous avons proposé et démontré le concept de nano-antenne plasmonique hélicoïdale à ondes progressives (TW-HPA), c’est-à-dire un fil hélicoïdal en or étroit alimenté optiquement par une nano-antenne dipolaire dans une configuration « end-firing ». Une telle nano-antenne a été démontrée comme la première optique de polarisation sublongueur d’onde. L’agencement de TW-HPAs à l’échelle de quelques microns a permis de convertir « à la carte » un faisceau polarisé linéairement en une distribution de faisceaux directifs présentant des polarisations différentes définies de façon déterministe par la géométrie et les dimensions des nano-antennes. Par le biais d’un couplage en champ proche de quatre nano-antennes à hélicités opposées, nous avons obtenus une optique sublongueur d’onde permettant un degré de liberté dans le contrôle de la polarisation qui est interdit avec les composants et méthodes classiques basées sur l’exploitation de matériaux biréfringents ou dichroïques, ou de métamatériaux imitant ces propriétés. / My thesis is devoted to novel nano-optical phenomena and devices based on spin-orbit interaction (SOI) of light. First, magnetic spin-locking, i.e., an SOI solely driven by the magnetic field of light, is demonstrated with Bloch surface waves. It provides a new manifestation of the magnetic light field. Then, we propose and demonstrate the concept of traveling-wave plasmonic helical antenna (TW-HPA), consisting of a narrow helical gold-coated wire non-radiatively fed with a dipolar nano-antenna. By swirling surface plasmons, the TW-HPA combines subwavelength illumination and polarization transformation. The TW-HPA is demonstrated to radiate on the subwavelength scale almost perfectly circularly polarized optical waves upon illumination with linearly polarized light. With this subwavelength plasmonic antenna, we developed strongly integrated arrays of point-light emissions of opposite handedness and tunable intensities. Finally, by coupling two couples of TW-HPAs of opposite handedness, we obtained new polarization properties so far unattainable.
153

Relativistic Density Functional Treatment of Magnetic Anisotropy

Zhang, Hongbin 23 November 2009 (has links) (PDF)
Spin-orbit coupling (SOC) reduces the spatial symmetry of ferromagnetic solids. That is, the physical properties of ferromagnetic materials are anisotropic, depending on the magnetization direction. In this thesis, by means of numerical calculations with full-relativistic density functional theory, we studied two kinds of physical properties: surface magnetic anisotropy energy (MAE) and anisotropic thermoelectric power due to Lifshitz transitions. After a short introduction to the full-relativistic density functional theory in Chapter 2, the MAE of ferromagnetic thin films is studied in Chapter 3. For such systems, separation of different contributions, such as bulk magnetocrystalline anisotropy (MCA) energy, shape anisotropy energy, and surface/interface anisotropy energy, is crucial to gain better understanding of experiments. By fitting our calculating results for thick slabs to a phenomenological model, reliable surface MAE could be obtained. Following this idea, we have studied the MAE of Co slabs with different geometries, focusing on the effects of orbital polarization correction (OPC). We found that the surface anisotropy is mainly determined by the geometry. While OPC gives better results of orbital moments, it overestimates the MAE. In the second part of Chapter3, the effects of electric fields on the MAE of L10 ferromagnetic thin films are studied. Using a simple model to simulate the electric field, our calculations are in good agreement with previous experimental results. We predicted that for CoPt, even larger effects exist. Moreover, we found that it is the amount of screening charge that determines the magnetoelectric coupling effects. This gives us some clue about how to achieve electric field control of magnetization direction. In Chapter 4, Lifshitz transitions in L10 FePt caused by a canted magnetic field are studied. We found several Lifshitz transitions in ordered FePt with tiny features in DOS. Using a two-band model, it is demonstrated that at such transitions, the singular behaviour of kinetic properties is due to the interband scattering, and the singularity itself is proportional to the derivative of the singular DOS. For FePt, such singularity will be smeared into anomaly by chemical disorder. Using CPA, we studied the effects of energy level broadening for the critical bands in FePt. We found that for experimentally available FePt thin films, Lifshitz transitions would induce up to a 3% increase of thermopower as the magnetization is rotated from the easy axis to the hard axis. / Spin-Bahn-Kopplung reduziert die Symmetrie ferromagnetischer Festkörper. Das bedeutet, dass die physikalischen Eigenschaften ferromagnetischer Stoffe anisotrop bezüglich der Magnetisierungsrichtung sind. In dieser Dissertation werden mittels numerischer voll-relativistischer Dichtefunktional-Rechnungen zwei Arten physikalischer Eigenschaften untersucht: magnetische Oberflächen-Anisotropieenergie (MAE) und anisotrope Thermokraft durch Lifshitz-Übergänge. Nach einer kurzen Einführung in die relativistische Dichtefunktional-Theorie in Kapitel 2 wird in Kapitel 3 die MAE ferromagnetischer dünner Filme untersucht. In diesen Systemen ist es für ein Verständnis experimenteller Ergebnisse wichtig, verschiedene Beiträge zu separieren: Volumenanteil der magnetokristallinen Anisotropie (MCA), Formanistropie und Oberflächen bzw. Grenzflächenanisotropie. Durch Anpassen berechneter Daten für dicke Schichten an ein phänomenologisches Modell konnten verlässliche Oberflächen Anisotropien erhalten werden. In dieser Weise wurde die MAE von Co- Schichten mit unterschiedlichen Geometrien untersucht, wobei der Einfluss von Orbitalpolarisations-Korrekturen (OPC) im Vordergrund stand. Es wurde gefunden, dass die Oberflächenanisotropie hauptsächlich von der Geometrie bestimmt wird. Während OPC bessere Ergebnisse für die Orbitalmomente liefert, wird die MAE überschätzt. Im zweiten Teil von Kapitel 3 wird der Einfluss elektrischer Felder auf die MAE von dünnen ferromagnetischen Filmen mit L10-Struktur untersucht. Unter Verwendung eines einfachen Modells zur Simulation des elektrischen Feldes liefern die Rechnungen gute Übereinstimmung mit vorliegenden experimentellen Ergebnissen. Es wird vorhergesagt, dass für CoPt ein noch größerer Effekt existiert. Weiterhin wurde gefunden, dass die magnetoelektrische Kopplung von der Größe der Abschirmladung bestimmt wird. Dies ist eine wichtige Einsicht, um die Magnetisierungsrichtung durch ein elektrisches Feld kontrollieren zu können. In Kapitel 4 werden Lifshitz-Übergänge untersucht, die ein gekantetes Magnetfeld hervorruft. Es wurden mehrere Lifshitz-Übergänge in geordnetem FePt gefunden, welche kleine Anomalien in der Zustandsdichte hervorrufen. Mit Hilfe eines Zweiband-Modells wird gezeigt, dass an solchen Übergängen das singuläre Verhalten kinetischer Eigenschaften durch Interband- Streuung verursacht wird und dass die Singularität proportional zur Ableitung der singulären Zustandsdichte ist. In FePt wird durch chemische Unordnung diese Singularität zu einer Anomalie verschmiert. Der Einfluss einer Verbreiterung der Energieniveaus der kritischen Bänder in FePt wurde mittels CPA untersucht. Es wurde gefunden, dass in experimentell verfügbaren dünnen FePt-Filmen Lifshitz-Übergänge bis zu 3% Erhöhung der Thermokraft erzeugen, wenn die Magnetisierung von der leichten in die harte Richtung gedreht wird.
154

Spin-orbit interaction in quantum dots and quantum wires of correlated electrons - A way to spintronics? / Spin-Bahn-Wechselwirkung in Quantenpunkten und Quantendrähten korrelierter Elektronen - Ein Weg Richtung Spintronik?

Birkholz, Jens Eiko 06 October 2008 (has links)
No description available.
155

Theory of the Anomalous Hall Effect in the Insulating Regime

Liu, Xiongjun 2011 August 1900 (has links)
The Hall resistivity in ferromagnetic materials has an anomalous contribution proportional to the magnetization, which is defined as the anomalous Hall effect (AHE). Being a central topic in the study of ferromagnetic materials for many decades, the AHE was revived in recent years by generating many new understandings and phenomena, e.g. spin-Hall effect, topological insulators. The phase diagram of the AHE was shown recently to exhibit three distinct regions: a skew scattering region in the high conductivity regime, a scattering-independent normal metal regime, and an insulating regime. While the origin of the metallic regime scaling has been understood for many decades through the expected dependence of each contribution, the origin of the surprising scaling in the insulating regime was completely unexplained, leaving the primary challenge to the last step to understand fully the AHE. In this dissertation work we developed a theory to study the AHE in the disordered insulating regime, whose scaling relation is observed to be omega_xy^AH is proportional to omega_xx^(1.40∼1.75) in a large range of materials. This scaling is qualitatively different from the ones observed in metals. In the metallic regime where kFl > > 1, the linear response theory predicts that omega_xx is proportional to the quasi-particle lifetime tau, while omega_xy^AH scales as alpha*tau beta*tau^0, indicating that the upper limit of the scaling exponent is 1.0. Basing our theory on the phonon-assisted hopping mechanism and percolation theory, we derived a general formula for the anomalous Hall conductivity (AHC), and showed that the AHC scales with the longitudinal conductivity as omega_xy^AH ~ omega_xx^gamma with gamma predicted to be 1.33 <= gamma <= 1.76, quantitatively in agreement with the experimental observations. This scaling remains similar regardless of whether the hopping process is long range type (varible range hopping) or short range type (activation E3 hopping), or is influenced by interactions, i.e. Efros-Shklovskii (E-S) regime. Our theory completes the understanding of the AHE phase diagram in the insulating regime.
156

[en] MAGNETIC, TRANSPORT AND EMERGENT PROPERTIES IN NANOSCOPIC AND STRONGLY CORRELATED SYSTEMS / [pt] PROPRIEDADES MAGNÉTICAS, DE TRANSPORTE E EMERGENTES EM SISTEMAS NANOSCÓPICOS FORTEMENTE CORRELACIONADOS

VICTOR LOPES DA SILVA 10 January 2019 (has links)
[pt] Esta tese investiga as propriedades eletrônicas de sistemas nanoscópicos com interações de muitos corpos, dando origem ao efeito Kondo. Primeiramente estudamos a transição SU(4)-SU(2) devido a um campo magnético externo e as propriedades de filtro de spin de um nanossistema de dois pontos quânticos capacitivamente acoplados. A transição é caracterizada pela diferença entre as polarizações de spin da ocupação eletrônica nos dois pontos quânticos, como uma função do potencial de porta aplicado sobre os pontos quânticos. Apesar do fato de que o campo magnético externo quebra a simetria SU(4) do Hamiltoniano, o estado fundamental a preserva, como uma propriedade emergente, na região do espaço de parâmetros onde os elétrons não estão polarizados. As propriedades de filtro de spin devido à população eletrônica spin polarizada nos pontos quânticos também é discutida. Estas propriedades são estudadas usando o formalismo dos operadores de projeção, que descreve de forma muito acurada a física associada ao estado fundamental dos sistemas Kondo. No capítulo subsequente, analisamos os efeitos da interação spin-órbita num ponto quântico conectado a contatos, representados pelo modelo da impureza de Anderson no efeito Kondo. Contrariamente ao resultado prévio de vários outros autores, nós mostramos que a interação spin-órbita reduz exponencialmente a temperatura Kondo enquanto a ação da interação no próprio ponto quântico pode ser um mecanismo de destruição do regime Kondo, conforme quebra a simetria SU(2). Usando o modelo de Anderson com acoplamento spin-órbita nós propomos um transistor de spin feito de um ponto quântico conectado a uma nanofaixa submetida à interação spin-órbita Rashba, depositada sobre um substrato ferromagnético. O ponto quântico também é conectado a dois contatos metálicos laterais, através do qual a corrente flui ao longo do sistema. A interação spin-órbita Rashba cria um mecanismo de inversão do spin no ponto quântico. Nós mostramos que o sistema é capaz de operar como um transistor de spin. / [en] This thesis investigates the electronic properties of nanoscopic systems under the presence of many body interactions, given rise to the Kondo effect. Firstly we studied the SU(4)-SU(2) crossover driven by an external magnetic field and the spin-filter properties of a capacitively coupled double quantum dot nanosystem. The crossover is characterized by the difference between the spin polarization of the electronic occupation at the double quantum dot, as a function of the gate potential applied to the quantum dots. Despite the fact that the external magnetic field breaks the SU(4) symmetry of the Hamiltonian, the ground state preserves it, as an emergent property, in a region in the parameter space where the electron are not polarized. The spinfilter properties due the spin polarized electronic population at the dots is also discussed. These properties are studied using the projector projection operator approach, which describes very accurately the physics associated to the ground state of Kondo systems. In a subsequent chapter, we analyze the effect of the spin-orbit interaction in a quantum dot connected to leads, represented by the Anderson impurity model on the Kondo effect. Contrary to several other authors previous results, we show that the Rashba spin-orbit interaction exponentially reduces the Kondo temperature while the action of the interaction on the quantum dot itself could be a mechanism of destroying the Kondo regime, as it breaks SU(2) symmetry. Using the Anderson model with spin-orbit coupling we propose a spin transistor device made of a quantum dot connected to a Rashba spinorbit interacting nanoribbon, deposited on a ferromagnetic substrate. The quantum dot is also connected to two lateral metallic contacts, through which the current flows along the system. The Rashba spin-orbit interaction creates a spin-flip mechanism at the quantum dot. We show that the system is capable of operating as a spin-transistor.
157

Spin-orbit Coupling and Strong Interactions in the Quantum Hall Regime / Couplage spin-orbite et interactions fortes dans le régime de l'effet Hall quantique

Hernangomez Perez, Daniel 20 November 2014 (has links)
L'effet Hall quantique, qui apparaît dans les gaz d'électrons bidimensionnels soumis à un champ magnétique perpendiculaire et à basses températures, a été un sujet de recherche intense pendant les derniers trente ans, en particulier, à cause des manifestations spectaculaires de la mécanique quantique dans les propriétés de transport à l'échelle macroscopique. Dans cette thèse, on étend l'horizon de la recherche au niveau théorique sur ce sujet en considérant les effets du couplage spin-orbite et l'interaction électron-électron de façon analytique dans ce régime.Dans la première partie de ce manuscrit, on considère l'effet simultané du couplage spin-orbite de type Rashba et l'interaction Zeeman dans le régime de l'effet Hall quantique entier. Pour cela, on étend un formalisme de fonctions de Green basé sur des états de vortex cohérents avec l'objectif d'inclure le couplage entre les degrés de liberté orbitaux et de spin dans les états de dérive électroniques. Puis, comme première application, on montre comment obtenir analytiquement, nonperturbativement et de manière contrôlée des fonctionnelles quantiques (spectre et densité d'états locale) pour des potentiels électrostatiques arbitraires et localement plats. Les fonctionnelles sont ensuite analysées dans différents régimes de températures et comparées aux données expérimentales obtenues à partir des sondes de spectroscopie locales. Comme seconde mise en pratique du formalisme, on étudie en profondeur les propriétés de transport de charge et de spin dans un régime hydrodynamique d'équilibre local (ou quasi-équilibre) et dérive des expressions analytiques qui incorporent les caractères non-relativiste et relativiste des gaz d'électrons avec couplage spin-orbite de type Rashba.Dans la deuxième partie de cette thèse, on s'occupe du problème de traiter analytiquement les fortes interactions électron-électron dans le régime de l'effet Hall quantique fractionnaire. A cette fin, on étudie un problème à deux corps généralisé avec du désordre et des corrélations électroniques, en utilisant une nouvelle représentation d'états de vortex cohérents. Des corrélations à longue portée entre les particules sont incorporées de manière topologique à travers la présence d'une métrique non-Euclidienne. Subséquemment, on montre que ces états de vortex forment bien une base d'un espace de Hilbert élargi, puis on dérive l'équation du mouvement pour la fonction de Green. Enfin, on vérifie la consistance de notre théorie pour tout niveau de Landau de paire et on discute la nécessité d'aller au-delà de la limite semiclassique (à champ magnétique infinie) pour obtenir des gaps dans chaque niveau de énergie. / The quantum Hall effect, appearing in disordered two-dimensional electron gases under strong perpendicular magnetic fields and low temperatures, has been a subject of intense research during the last thirty years due to its very spectacular macroscopic quantum transport properties. In this thesis, we expand the theoretical horizon by analytically considering the effects of spin-orbit coupling and strong electron-electron interaction in these systems.In the first part of the manuscript, we examine the simultaneous effect of Rashba spin-orbit and Zeeman interaction in the integer quantum Hall regime. Under these conditions, we extend a coherent-state vortex Green's function formalism to take into account the coupling between orbital and spin degrees of freedom within the electronic drift states. As a first application of this framework, we analytically compute controlled microscopic nonperturbative quantum functionals, such as the energy spectrum and the local density of states, in arbitrary locally flat electrostatic potential landscapes, which are then analyzed in detail in different temperature regimes and compared to scanning tunnelling experimental data. As a second application, we thoroughly study local equilibrium charge and spin transport properties and derive analytical useful formulas which incorporate the mixed non-relativistic and relativistic character of Rashba-coupled electron gases.In the second part of this thesis, we deal with the problem of analytically incorporating strong electron-electron interactions in the fractional quantum Hall regime. To this purpose, we consider a generalized two-body problem where both disorder and correlations are combined and introduce a new vortex coherent-state representation of the two-body states that naturally include long-range correlations between the electrons. The novelty of this theory is that correlations are topologically built in through the non-Euclidean metric of the Hilbert space. Next, we show that this kind of vortex states form a basis of an enlarged Hilbert space and derive the equation of motion for the Green's function in this representation. Finally, we check the consistency of our approach for any Landau level of the pair and discuss the necessity of going beyond the semiclassical (infinite magnetic field) approximation to obtain energy gaps within each energy level.
158

Synthèse et transport électronique dans des nanotubes de carbone ultra-propres / Synthesis and electrical transport of ultra-clean carbon nanotubes

Nguyen, Ngoc Viet 25 October 2012 (has links)
Cette thèse décrit des expériences sur la synthèse de nanotubes de carbone (CNT) mono-paroi, leur intégration dans des dispositifs ultra-propres, ainsi que l'étude de leurs propriétés électroniques par des mesures de transport à très basse température. La première partie de ce travail décrit l'optimisation des paramètres de synthèse par déposition chimique en phase vapeur (CVD) tels que les précurseurs de carbone, les flux de gaz, la température, ou le catalyseur pour la croissance de CNT de très bonne qualité. Parmis tous ces paramètres, la composition du catalyseur joue un rôle decisif pour permettre une croissance sélective en mono-paroi ansi qu'une distribution de faible diamètre. Dans la deuxième partie nous développons la nanofabrication de boites quantiques ultra-propres à base de CNT ainsi que les mesures de transport de ces échantillons à basse température (40 mK). Le spectre de la première couche électronique du nanotube est mesuré par spectroscopie de cotunneling inélastique sous champ magnétique, montrant alors un fort couplage spin-orbite négatif, dans ce système. Nous montrons que la séquence de remplissage d'électrons dans notre cas (ΔSO < 0) est différente de celle que l'on obtiendrait en régime Kondo SU (4) (ΔSO = 0). En effet, un effet Kondo purement orbital est observé pour N =2e à champ magnétique fini. Dans la dernière partie de cette thèse, nous décrivons la mise en œuvre expérimentale d'un évaporateur thermique à aimants à molécule unique (SMM) pour la fabrication future de dispositifs hybrides CNT-SMM ultra-propres. / This thesis describes experiments on the synthesis of single wall carbon nanotubes (SWNTs), fabrication of ultra-clean CNT devices, and study of electronic properties of CNTs with transport measurements. The first part of this work describes the optimization of the synthesis parameters (by chemical vapor deposition - CVD) such as carbon precursor, gas flows, temperature, catalyst for the growth of high quality SWNTs. In all these parameters, the catalyst composition plays a very important role on the high selective growth of SWNTs with a narrow diameter distribution. The second part deals with the nanofabrication of ultra-clean CNT devices and the low temperature (40 mK) transport measurements of these CNT quantum dots. The level spectra of the electrons in the first shell are investigated using inelastic cotunneling spectroscopy in an axial magnetic field, which shows a strong negative spin-orbit coupling of electron. We find that the sequence of electron shell filling in our case (ΔSO < 0) is different from which would be obtained in the pure SU(4) Kondo regime (ΔSO = 0). Indeed, a pure orbital Kondo effect is observed in N=2e at a finite magnetic field. In the last part of this thesis, we describe the experimental implementation of the thermal evaporation of single-molecule magnet (SMM) for the future fabrication of ultra-clean CNT-SMM hybrid devices.
159

Electronic structure of two dimensional systems with spin-orbit interaction / Estrutura eletrônica de sistemas em duas dimensões com interação spin-orbita

Pezo Lopez, Armando Arquimedes [UNESP] 02 August 2016 (has links)
Submitted by ARMANDO ARQUIMEDES PEZO LOPEZ (armandopezo333@gmail.com) on 2017-09-15T18:49:05Z No. of bitstreams: 1 pezo_a_ms_ift.pdf: 7486652 bytes, checksum: 7101195a7ca026fe9e98885ba89961f1 (MD5) / Approved for entry into archive by Monique Sasaki (sayumi_sasaki@hotmail.com) on 2017-09-19T17:23:53Z (GMT) No. of bitstreams: 1 pezolopez_aa_me_ift.pdf: 7486652 bytes, checksum: 7101195a7ca026fe9e98885ba89961f1 (MD5) / Made available in DSpace on 2017-09-19T17:23:53Z (GMT). No. of bitstreams: 1 pezolopez_aa_me_ift.pdf: 7486652 bytes, checksum: 7101195a7ca026fe9e98885ba89961f1 (MD5) Previous issue date: 2016-08-02 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / A realização experimental do grafeno em 2004 abriu as portas para os estudos de uma nova geração de materiais, estes chamados materiais bidimensionais são a expressão final do que poderíamos pensar em material plano (monocamada) que, eventualmente, podem ser empilhados para formar o bulk. O grafeno oferece uma grande variedade de propriedades físicas, em grande parte, como o resultado da dimensionalidade de sua estrutura, e pelas mesmas razões, materiais como Fosforeno (P), Siliceno (S), Nitreto de Boro hexagonal (hBN), dicalcogenos de metais de transição (TMDC), etc. São muito interessantes para fins teóricos, como para futuras aplicações tecnológicas que podem-se desenvolver a partir deles, como dispositivos de spintrônica e armazenamento. Neste trabalho o estudo desenvolvido são as propriedades eletrônicas dos materiais apresentados acima (grafeno, fosforeno e MoTe 2 ), e além disso, ja que o acoplamento spin-órbita aumenta à medida que o número atômico tambem aumenta, espera-se que este parâmetro desempenhe um papel na estrutura eletrônica, particularmente para os TMDC’s. Começamos descrevendo genéricamente esses três sistemas, isto é, para o grafeno, podemos usar uma abordagem tipo tight binding, a fim de encontrar a dispersão de energia para as quase-particulas perto do nível de Fermi (Equação de Dirac). Usando cálculos DFT estudou-se de forma geral as propriedades desses sistemas com a inclusão do espin órbita. Abordou-se cálculos para descrever os efeitos do acoplo spin órbita sobre os materiais isolados, tambem nas heterostruturas (duas camadas formadas por eles). Finalmente, tambem estudou-se a possibilidade de defeitos e sua possível influência sobre a estrutura eletrônica das heterostruturas. / The experimental realization of graphene in 2004 opened the gates to the studies of a new generation of materials, these so-called 2 dimensional materials are the final expression of what we could think of a plane material (monolayer) that eventually can be stacked to form a bulk. Graphene, the wonder material, offers a large variety of physical properties, in great part, as the result of the dimensionality of its structure, and for the same reasons, materials like phosphorene(P), silicene(S), hexagonal Boron Nitride (hBN), transition metal dichalcogenides(TMDC), etc. are very interesting for theoretical purposes, as for the future technological applications that we can develope from them, such as Spintronics and Storage devices. In this dissertation we theoretically study the electronic properties of the materials presented above (graphene, Phosphorene and MoTe2), and besides that, since the spin-orbit coupling strength increases as the atomic number does, we expect that this paremeter plays a role in the electronic structure, particularly for the TMDC. We start describing generically those three systems using density functional theory including the effect of spin orbit. We address calculations to describe the effects of spin orbit on the isolated materials as well as the heterostructures. Finally we also include the possibility of defects in graphene and their possible influence on the electronic structure of heterostructures.
160

Interplay of Strong Correlation, Spin-Orbit Coupling and Electron-Phonon Interactions in Quasi-2D Iridium Oxides

Paerschke, Ekaterina 30 May 2018 (has links) (PDF)
In the last decade, a large number of studies have been devoted to the peculiarities of correlated physics found in the quasi-two-dimensional square lattice iridium oxides. It was shown that this 5d family of transition metal oxides has strong structural and electronic similarities to the famous 3d family of copper oxides. Moreover, a delicate interplay of on-site spin-orbit coupling, Coulomb repulsion and crystalline electric field interactions is expected to drive various exotic quantum states. Many theoretical proposals were made in the last decade including the prediction of possible superconductivity in square-lattice iridates emerging as a sister system to high-Tc cuprates, which however met only limited experimental confirmation. One can, therefore, raise a general question: To what extent is the low-energy physics of the quasi-two-dimensional square-lattice iridium oxides different from other transition metal oxides including cuprates? In this thesis we investigate some of the effects which are usually neglected in studies on iridates, focusing on quasi-two-dimensional square-lattice iridates such as Sr2IrO4 or Ba2IrO4. In particular, we discuss the role of the electron-phonon coupling in the form of Jahn-Teller interaction, electron-hole asymmetry introduced by the strong correlations and some effects of coupling scheme chosen to calculate multiplet structure for materials with strong on-site spin-orbit coupling. Thus, firstly, we study the role of phonons, which is almost always neglected in Sr2IrO4, and discuss the manifestation of Jahn-Teller effect in the recent data obtained on Sr2IrO4 with the help of resonant inelastic x-ray scattering. When strong spin-orbit coupling removes orbital degeneracy, it would at the same time appear to render the Jahn-Teller mechanism ineffective. We show that, while the Jahn-Teller effect does indeed not affect the antiferromagnetically ordered ground state, it leads to distinctive signatures in the spin-orbit exciton. Second, we focus on charge excitations and determine the motion of a charge (hole or electron) added to the Mott insulating, antiferromagnetic ground-state of square-lattice iridates. We show that correlation effects, calculated within the self-consistent Born approximation, render the hole and electron case very different. An added electron forms a spin-polaron, which closely resembles the well-known cuprates, but the situation of a removed electron is far more complex. Many-body configurations form that can be either singlets and triplets, which strongly affects the hole motion. This not only has important ramifications for the interpretation of angle-resolved photoemission spectroscopy and inverse photoemission spectroscopy experiments of square lattice iridates, but also demonstrates that the correlation physics in electron- and hole-doped iridates is fundamentally different. We then discuss the application of this model to the calculation of scanning tunneling spectroscopy data. We show that using scanning tunneling spectroscopy one can directly probe the quasiparticle excitations in Sr2IrO4: ladder spectrum on the positive bias side and multiplet structure of the polaron on the negative bias side. We discuss in detail the ladder spectrum and show its relevance for Sr2IrO4 which is in general described by more complicated extended t-J -like model. Theoretical calculation reveals that on the negative bias side the internal degree of freedom of the charge excitation introduces strong dispersive hopping channels encaving ladder-like features. Finally, we discuss how the choice of the coupling scheme to calculate multiplet structure can affect the theoretical calculation of angle-resolved photoemission spectroscopy and scanning tunnelling spectroscopy spectral functions.

Page generated in 0.4464 seconds