Spelling suggestions: "subject:"bistatic fandom"" "subject:"bistatic mandom""
11 |
Design of SRAM for CMOS 32nm / Conception de mémoires SRAM en technologie CMOS32 nmHamouche, Lahcen 15 December 2011 (has links)
De plus en plus d'applications spécifiques embarquées exigent de larges blocs de mémoires statiques SRAM. En particulier il y a un besoin de mémoires inconditionnellement actives pour lesquelles la consommation d'énergie est un paramètre clé. Par exemple les réseaux sans fil hétérogènes sont caractérisés par plusieurs interfaces tournées vers des réseaux différents, donc de multiples adresses IP simultanées. Une grande quantité de mémoire est mobilisée et pose un sérieux problème de consommation d'énergie vis-à-vis de l'autonomie de système mobile. La stratégie classique d'extinction des blocs mémoire momentanément non opérationnelle ne permet qu'une réduction faible en consommation et limite les performances dynamiques du système. Il y a donc un réel besoin pour une mémoire toujours opérationnelle avec un très faible bilan énergétique. Par ailleurs les technologies CMOS avancées posent le problème de la variabilité et la conception de mémoire SRAM doit aboutir à un niveau de fiabilité très grand. La thèse discute les verrous techniques et industriels concernant la mémoire embarquée SRAM très faible consommation. Le cas de la mémoire toujours opérationnelle représente un défi pertinent. Un état de l'art balaie les architectures SRAM avec plusieurs points de vue. Une discussion à propos de la modélisation analytique statistique comme moyen de simplification de la conception en 32nm a été développée. Une cellule alternative aux 6T, 7T et 8T, laquelle est appelée 5T-Portless présente des avantages et des performances qui repose sur son fonctionnement en mode courant à l'origine de la réduction significative de la consommation dynamique ajoutée à une cellule intrinsèquement peu fruiteuse. Un démonstrateur de 64kb (1024x64b) en CMOS32nm a été réalisé, les résultats de mesure confirment l'intérêt industriel de cette mémoire. / The PhD thesis focuses on the always-on low power SRAM memories (essentially low dynamic power) in thin CMOS technology node CMOS 32nm and beyond. It reviews the state of the art of the eSRAM and describes different techniques to reduce the static and dynamic power consumption with respect the variability issue. Main techniques of power reduction are reviewed with their contributions and their limitations. It presents also a discussion about a statistical variability modeling and the variability effects on the yield. An original low power architecture based on 5T-Portless bit-cell is presented, with current mode read/write operations, as an ideal candidate for the always-on SRAM memories. A test chip implementation in CMOS 32nm of the 5T-Porless is designed and a comparison with an existing 6T SRAM memory is presented based on simulation. Some test chip functionality results and power consumption are performed. Finally the conclusion highlights the major contributions of the study and discusses the various simplification assumptions to see possible limitations. It is concluded affirmatively about industrial interest of the 5T-Portless SRAM for always-on embedded applications. Perspectives concern the analytical modeling for statistical behavior of SRAM as the Monte-Carlo approach is no more practicable. The migration of the 5T-Portless SRAM may be already considered in advanced nodes.
|
12 |
A comprehensive study of 3D nano structures characteristics and novel devicesZaman, Rownak Jyoti 10 April 2012 (has links)
Silicon based 3D fin structure is believed to be the potential future of current semiconductor technology. However, there are significant challenges still exist in realizing a manufacturable fin based process. In this work, we have studied the effects of hydrogen anneal on the structural and electrical characteristics of silicon fin based devices: tri-gate, finFET to name a few. H₂ anneal is shown to play a major role in structural integrity and manufacturability of 3D fin structure which is the most critical feature for these types of devices. Both the temperature and the pressure of H₂ anneal can result in significant alteration of fin height and shape as well as electrical characteristics. Optimum H₂ anneal is required in order to improve carrier mobility and device reliability as shown in this work. A new hard-mask based process was developed to retain H₂ anneal related benefit while eliminating detrimental effects such as reduction of device drive current due to fin height reduction. We have also demonstrated a novel 1T-1C pseudo Static Random Access Memory (1T-1C pseudo SRAM) memory cell using low cost conventional tri-gate process by utilizing selective H₂ anneal and other clever process techniques. TCAD-based simulation was also provided to show its competitive advantage over other types of static and dynamic memories in 45nm and beyond technologies. A high gain bipolar based on silicon fin process flow was proposed for the first time that can be used in BiCMOS technology suitable for low cost mixed signal and RF products. TCAD-based simulation results proved the concept with gain as high 100 for a NPN device using single additional mask. Overall, this work has shown that several novel process techniques and selective use of optimum H₂ anneal can lead to various high performance and low cost devices and memory cells those are much better than the devices using current conventional 3D fin based process techniques. / text
|
13 |
Conception d’une mémoire SRAM en tension sous le seuil pour des applications biomédicales et les nœuds de capteurs sans fils en technologies CMOS avancées / Solutions of subthreshold SRAM in ultra-wide-voltage range in advanced CMOS technologies for biomedical and wireless sensor applicationsFeki, Anis 29 May 2015 (has links)
L’émergence des circuits complexes numériques, ou System-On-Chip (SOC), pose notamment la problématique de la consommation énergétique. Parmi les blocs fonctionnels significatifs à ce titre, apparaissent les mémoires et en particulier les mémoires statiques (SRAM). La maîtrise de la consommation énergétique d’une mémoire SRAM inclue la capacité à rendre la mémoire fonctionnelle sous très faible tension d’alimentation, avec un objectif agressif de 300 mV (inférieur à la tension de seuil des transistors standard CMOS). Dans ce contexte, les travaux de thèse ont concerné la proposition d’un point mémoire SRAM suffisamment performant sous très faible tension d’alimentation et pour les nœuds technologiques avancés (CMOS bulk 28nm et FDSOI 28nm). Une analyse comparative des architectures proposées dans l’état de l’art a permis d’élaborer deux points mémoire à 10 transistors avec de très faibles impacts de courant de fuite. Outre une segmentation des ports de lecture, les propositions reposent sur l’utilisation de périphéries adaptées synchrones avec notamment une solution nouvelle de réplication, un amplificateur de lecture de données en mode tension et l’utilisation d’une polarisation dynamique arrière du caisson SOI (Body Bias). Des validations expérimentales s’appuient sur des circuits en technologies avancées. Enfin, une mémoire complète de 32kb (1024x32) a été soumise à fabrication en 28 FDSOI. Ce circuit embarque une solution de test (BIST) capable de fonctionner sous 300mV d’alimentation. Après une introduction générale, le 2ème chapitre du manuscrit décrit l’état de l’art. Le chapitre 3 présente les nouveaux points mémoire. Le 4ème chapitre décrit l’amplificateur de lecture avec la solution de réplication. Le chapitre 5 présente l’architecture d’une mémoire ultra basse tension ainsi que le circuit de test embarqué. Les travaux ont donné lieu au dépôt de 4 propositions de brevet, deux conférences internationales, un article de journal international est accepté et un autre vient d’être soumis. / Emergence of large Systems-On-Chip introduces the challenge of power management. Of the various embedded blocks, static random access memories (SRAM) constitute the angrier contributors to power consumption. Scaling down the power supply is one way to act positively on power consumption. One aggressive target is to enable the operation of SRAMs at Ultra-Low-Voltage, i.e. as low as 300 mV (lower than the threshold voltage of standard CMOS transistors). The present work concerned the proposal of SRAM bitcells able to operate at ULV and for advanced technology nodes (either CMOS bulk 28 nm or FDSOI 28 nm). The benchmarking of published architectures as state-of-the-art has led to propose two flavors of 10-transitor bitcells, solving the limitations due to leakage current and parasitic power consumption. Segmented read-ports have been used along with the required synchronous peripheral circuitry including original replica assistance, a dedicated unbalanced sense amplifier for ULV operation and dynamic forward back-biasing of SOI boxes. Experimental test chips are provided in previously mentioned technologies. A complete memory cut of 32 kbits (1024x32) has been designed with an embedded BIST block, able to operate at ULV. After a general introduction, the manuscript proposes the state-of-the-art in chapter two. The new 10T bitcells are presented in chapter 3. The sense amplifier along with the replica assistance is the core of chapter 4. The memory cut in FDSOI 28 nm is detailed in chapter 5. Results of the PhD have been disseminated with 4 patent proposals, 2 papers in international conferences, a first paper accepted in an international journal and a second but only submitted paper in an international journal.
|
Page generated in 0.0385 seconds