Spelling suggestions: "subject:"statistique"" "subject:"qtatistique""
491 |
Méthodes de détection parcimonieuses pour signaux faibles dans du bruit : application à des données hyperspectrales de type astrophysiqueParis, Silvia 04 October 2013 (has links) (PDF)
Cette thèse contribue à la recherche de méthodes de détection de signaux inconnus à très faible Rapport Signal-à-Bruit. Ce travail se concentre sur la définition, l'étude et la mise en œuvre de méthodes efficaces capables de discerner entre observations caractérisées seulement par du bruit de celles qui au contraire contiennent l'information d'intérêt supposée parcimonieuse. Dans la partie applicative, la pertinence de ces méthodes est évaluée sur des données hyperspectrales. Dans la première partie de ce travail, les principes à la base des tests statistiques d'hypothèses et un aperçu général sur les représentations parcimonieuses, l'estimation et la détection sont introduits. Dans la deuxième partie du manuscrit deux tests d'hypothèses statistiques sont proposés et étudiés, adaptés à la détection de signaux parcimonieux. Les performances de détection des tests sont comparés à celles de méthodes fréquentistes et Bayésiennes classiques. Conformément aux données tridimensionnelles considérées dans la partie applicative, et pour se rapprocher de scénarios plus réalistes impliquant des systèmes d'acquisition de données, les méthodes de détection proposées sont adaptées de façon à exploiter un modèle plus précis basé sur des dictionnaires qui prennent en compte l'effet d'étalement spatio-spectral de l'information causée par les fonctions d'étalement du point de l'instrument. Les tests sont finalement appliqués à des données astrophysiques massives de type hyperspectral dans le contexte du Multi Unit Spectroscopic Explorer de l'Observatoire Européen Austral.
|
492 |
Contributions en morphologie mathématique pour l'analyse d'images multivariéesVelasco-Forero, Santiago 14 June 2012 (has links) (PDF)
Cette thèse contribue au domaine de la morphologie mathématique et illustre comment la statistique multivariée et les techniques d'apprentissage numérique peuvent être exploitées pour concevoir un ordre dans l'espace des vecteurs et pour inclure les résultats d'opérateurs morphologiques au processus d'analyse d'images multivariées. En particulier, nous utilisons l'apprentissage supervisé, les projections aléatoires, les représentations tensorielles et les transformations conditionnelles pour concevoir de nouveaux types d'ordres multivariés et de nouveaux filtres morphologiques pour les images multi/hyperspectrales. Nos contributions clés incluent les points suivants :* Exploration et analyse d'ordre supervisé, basé sur les méthodes à noyaux.* Proposition d'un ordre nonsupervisé, basé sur la fonction de profondeur statistique calculée par projections aléatoires. Nous commençons par explorer les propriétés nécessaires à une image pour assurer que l'ordre ainsi que les opérateurs morphologiques associés, puissent être interprétés de manière similaire au cas d'images en niveaux de gris. Cela nous amènera à la notion de décomposition en arrière plan. De plus, les propriétés d'invariance sont analysées et la convergence théorique est démontrée.* Analyse de l'ordre supervisé dans les problèmes de correspondance morphologique de patrons, qui correspond à l'extension de l'opérateur tout-ou-rien aux images multivariées grâce à l'utilisation de l'ordre supervisé.* Discussion sur différentes stratégies pour la décomposition morphologique d'images. Notamment, la décomposition morphologique additive est introduite comme alternative pour l'analyse d'images de télédétection, en particulier pour les tâches de réduction de dimension et de classification supervisée d'images hyperspectrales de télédétection.* Proposition d'un cadre unifié basé sur des opérateurs morphologiques, pour l'amélioration de contraste et pour le filtrage du bruit poivre-et-sel.* Introduction d'un nouveau cadre de modèles Booléens multivariés en utilisant une formulation en treillis complets. Cette contribution théorique est utile pour la caractérisation et la simulation de textures multivariées.
|
493 |
Approches bayésiennes pour le débruitage des images dans le domaine des transformées multi-échelles parcimonieuses orientées et non orientéesBoubchir, Larbi 04 July 2007 (has links) (PDF)
Les images issues d'une chaîne d'acquisition sont généralement dégradées par le bruit du capteur. La tâche qui consiste à restaurer une image de bonne qualité à partir de sa version bruitée est communément appelée débruitage. Celui-ci a engendré une importante littérature en pré-traitement des images. Lors de ce travail de thèse, et après avoir posé le problème du débruitage en présence d'un bruit additif gaussien, nous avons effectué un état de l'art méthodique sur ce sujet. Les méthodes présentées cherchent pour la plupart à reconstruire une solution qui présente une certaine régularité. En s'appuyant sur un cadre bayésien, la régularité de la solution, qui peut être imposée de différentes manières, a été formellement mise en place en passant dans le domaine des transformées multi-échelle. Ainsi, afin d'établir un modèle d'a priori, nous avons mené une modélisation des statistiques marginales et jointes des coefficients d'images dans le domaine des transformées multi-échelles orientées (e.g. curvelets) et non-orientées (e.g. ondelettes). Ensuite, nous avons proposé de nouveaux estimateurs bayésiens pour le débruitage. La mise en œuvre de ces estimateurs est effectuée en deux étapes, la première consistant à estimer les hyperparamètres du modèle de l'a priori en présence du bruit et la seconde à trouver une forme analytique pour l'estimateur bayésien correspondant. Dans un premier temps, nous avons mis en place des estimateurs bayésiens univariés en mettant à profit les statistiques marginales des coefficients des images dans des représentations multi-échelle comme les ondelettes. Ces lois marginales ont été analytiquement modélisées par le biais des distributions: ?-stable et les Formes K de Bessel. Dans un second temps, nous avons amélioré les performances de nos estimateurs univariés en introduisant l'information géométrique dans le voisinage des coefficients. Plus précisément, nous avons proposé un cadre statistique bayésien multivarié permettant de prendre en compte les dépendances inter- et intra-échelle des coefficients, en mettant à profit les statistiques jointes de ces derniers dans le domaine des curvelets et des ondelettes non décimées. Ensuite, nous avons mis en place l'estimateur bayésien multivarié correspondant basé sur une extension multivariée de la distribution des Formes K de Bessel. Une large étude comparative a finalement été menée afin de confronter nos algorithmes de débruitage à d'autres débruiteurs de l'état de l'art.
|
494 |
Coping with the Computational and Statistical Bipolar Nature of Machine LearningMachart, Pierre 21 December 2012 (has links) (PDF)
L'Apprentissage Automatique tire ses racines d'un large champ disciplinaire qui inclut l'Intelligence Artificielle, la Reconnaissance de Formes, les Statistiques ou l'Optimisation. Dès les origines de l'Apprentissage, les questions computationelles et les propriétés en généralisation ont toutes deux été identifiées comme centrales pour la discipline. Tandis que les premières concernent les questions de calculabilité ou de complexité (sur un plan fondamental) ou d'efficacité computationelle (d'un point de vue plus pratique) des systèmes d'apprentissage, les secondes visent a comprendre et caractériser comment les solutions qu'elles fournissent vont se comporter sur de nouvelles données non encore vues. Ces dernières années, l'émergence de jeux de données à grande échelle en Apprentissage Automatique a profondément remanié les principes de la Théorie de l'Apprentissage. En prenant en compte de potentielles contraintes sur le temps d'entraînement, il faut faire face à un compromis plus complexe que ceux qui sont classiquement traités par les Statistiques. Une conséquence directe tient en ce que la mise en place d'algorithmes efficaces (autant en théorie qu'en pratique) capables de tourner sur des jeux de données a grande échelle doivent impérativement prendre en compte les aspects statistiques et computationels de l'Apprentissage de façon conjointe. Cette thèse a pour but de mettre à jour, analyser et exploiter certaines des connections qui existent naturellement entre les aspects statistiques et computationels de l'Apprentissage. Plus précisément, dans une première partie, nous étendons l'analyse en stabilité, qui relie certaines propriétés algorithmiques aux capacités de généralisation des algorithmes d'apprentissage, la matrice de confusion, que nous suggérons comme nouvelle mesure de performance (fine). Dans une seconde partie, nous présentons un nouvelle approche pour apprendre une fonction de régression basée sur les noyaux, où le noyau appris sert directement la tâche de régression, et qui exploite la structure du problème pour offrir une procédure d'optimisation peu coûteuse. Finalement, nous étudions le compromis entre vitesse de convergence et coût computationel lorsque l'on minimise une fonction composite avec des méthodes par gradient-proximal inexact. Dans ce contexte, nous identifions des stratégies d'optimisation qui sont computationellement optimales.
|
495 |
Évaluation du potentiel éolien offshore et imagerie satellitaleFichaux, Nicolas 02 December 2003 (has links) (PDF)
L'implantation d'éoliennes en mer permet de contribuer, notamment, au respect des objectifs de Kyoto par l'Europe. Ceci constitue une étape dans la lutte contre le changement climatique global. Pour localiser précisément les futurs lieux d'implantation des parcs éoliens, il est nécessaire de connaître la répartition spatiale du potentiel éolien en zones côtières. Nous démontrons que le potentiel éolien en mer doit être représenté sous forme de cartes de paramètres statistiques à haute résolution spatiale. La télédétection permettant la mesure de phénomènes physiques spatialisés, nous évaluons son apport à l'obtention de telles cartes. Les diffusomètres spatioportés permettent l'obtention de statistiques de vent, mais au large des zones d'intérêt, et à basse résolution spatiale. Les radars à ouverture synthétique (ROS) permettent, eux, l'obtention de cartes de vent à haute résolution spatiale sur les zones d'intérêt, mais ne sont pas adaptés à l'obtention de statistiques de vent. Nous définissons alors le cadre mathématique d'une méthode statistique. Cette méthode permet de tirer parti des avantages conjugués des diffusomètres et des ROS, afin d'obtenir des cartes de paramètres statistiques de vent à haute résolution spatiale sur les zones d'intérêt. Elle permet de rendre la télédétection utilisable de manière opérationnelle pour l'évaluation du potentiel éolien maritime.
|
496 |
Utilisation d'information auxiliaire en théorie des sondages à l'étape de l'échantillonnage et à l'étape de l'estimationLesage, Éric 31 October 2013 (has links) (PDF)
Cette thèse est consacrée à l'utilisation d'information auxiliaire en théorie des sondages à l'étape de l'échantillonnage et à l'étape de l'estimation. Dans le chapitre 2, on donne une présentation des principales notions de la théorie des sondages. Au chapitre 3, on propose une extension de la famille des estimateurs par calage reposant sur l'emploi de paramètres de calage complexes. Au chapitre 4 et 5, on s'intéresse à la correction simultanée des erreurs d'échantillonnage et de non-réponse au moyen d'un calage unique. On montre qu'en dépit du fait que le calage n'utilise pas explicitement les probabilités de réponse, il est nécessaire d'écrire le modèle de réponse afin de choisir correctement la fonction de calage. A défaut, on s'expose à des estimateurs biaisés dont le biais peut dépasser le biais de l'estimateur non-ajusté. En particulier, dans le cas du calage généralisé, la variance et le biais sont amplifiés pour des variables de calage faiblement corrélées aux variables instrumentales. Au chapitre 6, on montre qu'une approche conditionnelle, par rapport au plan de sondage, permet de construire des estimateurs plus robustes aux valeurs extrêmes et aux "sauteurs de strates". Au chapitre 7, on met en évidence que la méthode du tirage réjectif de Fuller conduit un estimateur par la régression qui peut être biaisé lorsque la variable d'intérêt ne suit pas un modèle de régression linéaire en fonction des variables d'équilibrage.
|
497 |
Apprentissage statistique relationnel : apprentissage de structures de réseaux de Markov logiquesDinh, Quang-Thang 28 November 2011 (has links) (PDF)
Un réseau logique de Markov est formé de clauses en logique du premier ordre auxquelles sont associés des poids. Cette thèse propose plusieurs méthodes pour l'apprentissage de la structure de réseaux logiques de Markov (MLN) à partir de données relationnelles. Ces méthodes sont de deux types, un premier groupe reposant sur les techniques de propositionnalisation et un second groupe reposant sur la notion de Graphe des Prédicats. L'idée sous-jacente aux méthodes à base de propositionnalisation consiste à construire un jeu de clauses candidates à partir de jeux de littéraux dépendants. Pour trouver de tels jeux, nous utilisons une méthode de propositionnalisation afin de reporter les informations relationnelles dans des tableaux booléens, qui serviront comme tables de contingence pour des test de dépendance. Nous avons proposé deux méthodes de propositionnalisation, pour lesquelles trois algorithmes ont été développés, qui couvrent les problèmes d'appprentissage génératif et discriminant. Nous avons ensuite défini le concept de Graphe des Prédicats qui synthétise les relations binaires entre les prédicats d'un domaine. Des clauses candidates peuvent être rapidement et facilement produites en suivant des chemins dans le graphe puis en les variabilisant. Nous avons développé deux algorithmes reposant sur les Graphes des Prédicats, qui couvrent les problèmes d'appprentissage génératif et discriminant.
|
498 |
Statistique(s) et génocide au Rwanda : sur la genèse d'un système de catégorisation "génocidaire"Tesfaye Bedada, Facil 08 1900 (has links) (PDF)
Quand on pense aux liens possibles entre le génocide rwandais de 1994 et les statistiques, la première chose qui vient à l'esprit c'est le débat entre les divers groupes concernant le nombre de victimes. Un débat qui laisse vaciller le nombre de morts entre 800.000 et 1,5 million. La majeure partie de la littérature qui traite ce sujet se limite, la plupart du temps, à reprendre et à reproduire ces chiffres. Très peu de chercheurs se sont demandé si le recensement, qui est une activité statistique majeure, pouvait être lié, d'une façon ou d'une autre, avec le génocide. On peut compter sur les doigts les rares qui se sont particulièrement intéressés à cette question. Cependant, ils ne se sont pas demandés quels autres effets (autre que les objectifs administratifs coloniaux) ces pratiques statistiques pouvaient bien avoir dans la société rwandaise. Ce travail tentera donc de combler ce « vide » dans la littérature en montrant les liens non causaux mais tangibles, entre les pratiques statistiques (introduites au Rwanda par les puissances coloniales au début du XXe siècle) et le génocide de 1994.
______________________________________________________________________________
MOTS-CLÉS DE L’AUTEUR : Rwanda, génocide, statistiques, recensement, catégorisation ethnique
|
499 |
Techniques for the allocation of resources under uncertaintyPlamondon, Pierrick. January 1900 (has links) (PDF)
Thèse (Ph. D.)--Université Laval, 2007. / Titre de l'écran-titre (visionné le 5 mai 2008). Bibliogr.
|
500 |
Relation between the degree of implementation of the quality system and the degree of customer satisfaction /Dahab, Reda. January 1991 (has links)
Mémoire (M.P.M.O.)--Université du Québec à Chicoutimi, 1991. / Document électronique également accessible en format PDF. CaQCU
|
Page generated in 0.0942 seconds