Spelling suggestions: "subject:"statistische biophysik"" "subject:"statistische geophysik""
51 |
Microscopic Chaos, Fractals, and Transport in Nonequilibrium Steady States. - (Die Veröffentlichung einer ergänzten und überarbeiteten Version bei "World Scientific Publishing" ist für 2005/06 geplant.)Klages, Rainer 28 June 2004 (has links)
A fundamental challenge is to understand nonequilibrium statistical mechanics starting from microscopic chaos in the equations of motion of a many-particle system. In this thesis we summarize recent theoretical advances along these lines. We focus on two different approaches to nonequilibrium transport: One considers Hamiltonian dynamical systems under nonequilibrium boundary conditions, another one suggests a non-Hamiltonian approach to nonequilibrium situations created by external electric fields and by temperature or velocity gradients. A surprising result related to the former approach is that in simple low-dimensional periodic models the deterministic transport coefficients are typically fractal functions of control parameters. These fractal transport coefficients yield the first central theme of this thesis. We exemplify this phenomenon by deterministic diffusion in a simple chaotic map. We then construct an arsenal of analytical and numerical methods for computing further transport coefficients such as electrical conductivities andchemical reaction rates. These methods are applied to hierarchies of chaotic dynamical systems that are successively getting more complex, starting from abstract one-dimensional maps generalizing a simple random walk on the line up to particle billiards that should be directly accessible in experiments. In all cases, the resulting transport coefficients turn out to be either strictly fractal, or at least to be profoundly irregular. The impact of random perturbations on these quantities is also investigated. We furthermore provide some access roads towards a physical understanding of these fractalities. The second central theme is formed by a critical assessment of the non-Hamiltonian approach to nonequilibrium transport. Here we consider situations where the nonequilibrium constraints pump energy into a system, hence there must be some thermal reservoir that prevents the system from heating up. For this purpose a deterministic and time-reversible modeling of thermal reservoirs was proposed in form of Gaussian and Nose-Hoover thermostats. This approach yielded simple relations between fundamental quantities of nonequilibrium statistical mechanics and of dynamical systems theory. Our goal is to critically assesses the universality of these results. As a vehicle of demonstration we employ the driven periodic Lorentz gas, a toy model for the classical dynamics of an electron in a metal under application of an electric field. Applying different types of thermal reservoirs to this system we compare the resulting nonequilibrium steady states with each other. Along the same lines we discuss an interacting many-particle system under shear and heat. Finally, we outline an unexpected relationship between deterministic thermostats and active Brownian particles modeling biophysical cell motility.
|
52 |
Statistical mechanics of time-periodic quantum systemsWustmann, Waltraut 21 May 2010 (has links)
The asymptotic state of a quantum system, which is in contact with a heat bath, is strongly disturbed by a time-periodic driving in comparison to a time-independent system. In this thesis an extensive picture of the asymptotic state of time-periodic quantum systems is drawn by relating it to the structure of the corresponding classical phase space. To this end the occupation probabilities of the Floquet states are analyzed with respect to their semiclassical property of being either regular or chaotic. The regular Floquet states are occupied with exponential weights e^{-betaeff Ereg} similar to the canonical weights e^{-beta E} of time-independent systems. The regular energies Ereg are defined by the quantization of the time-periodic system, whose classical properties also determine the effective temperature 1/betaeff. In contrast, the chaotic Floquet states acquire almost equal probabilities, irrespective of their time-averaged energy.
Beyond these semiclassical properties the existence of avoided crossings in the spectrum is an intrinsic quantum property of time-periodic systems. Avoided crossings can strongly influence the entire occupation distribution. As an impressive application a novel switching mechanism is proposed in a periodically driven double well potential coupled to a heat bath. By a weak variation of the driving amplitude its asymptotic state is switched from the ground state in one well to a state with higher average energy in the other well. / Der asymptotische Zustand eines Quantensystems, das in Kontakt mit einem Wärmebad steht, wird durch einen zeitlich periodischen Antrieb gegenüber einem zeitunabhängigen System nachhaltig verändert. In dieser Arbeit wird ein umfassendes Bild über den asymptotischen Zustand zeitlich periodischer Quantensysteme entworfen, indem es diesen zur Struktur des zugehörigen klassischen Phasenraums in Beziehung setzt. Dazu werden die Besetzungswahrscheinlichkeiten der Floquet-Zustände hinsichtlich ihrer semiklassischen Eigenschaft analysiert, nach welcher sie entweder regulär oder chaotisch sind. Die regulären Floquet-Zustände sind mit exponentiellen Gewichten e^{-betaeff Ereg} ähnlich der kanonischen Verteilung e^{-beta E} zeitunabhängiger Systeme besetzt. Dabei sind die reguläre Energien Ereg durch die Quantisierung des Systems vorgegeben, dessen klassische Eigenschaften auch die effektive Temperatur 1/betaeff bestimmen. Die chaotischen Zustände dagegen haben fast einheitliche Besetzungswahrscheinlichkeiten, welche unabhängig von ihrer mittleren Energie sind.
Über diese semiklassischen Eigenschaften hinaus ist das Auftreten von vermiedenen Kreuzungen im Spektrum eine intrinsisch quantenmechanische Eigenschaft zeitlich periodischer Systeme. Diese können die gesamte Besetzungsverteilung nachhaltig beeinflussen und finden eine eindrucksvolle Anwendung in Form eines neuartigen Schaltmechanismus in einem harmonisch modulierten Doppelmuldenpotential in Kontakt mit einem Wärmebad. Der asymptotische Zustand kann unter geringer Variation der Antriebsamplitude vom Grundzustand der einen Mulde in einen Zustand höherer mittlerer Energie in der anderen Mulde geschaltet werden.
|
53 |
Investigation of the emergence of thermodynamic behavior in closed quantum systems and its relation to standard stochastic descriptionsSchmidtke, Daniel 20 August 2018 (has links)
Our everyday experiences teach us that any imbalance like temperature gradients, non-uniform particle-densities etc. will approach some equilibrium state if not subjected to any external force. Phenomenological descriptions of these empirical findings reach back to the 19th century where Fourier and Fick presented descriptions of relaxation for macroscopic systems by stochastic approaches. However, one of the main goals of thermodynamics remained the derivation of these phenomenological description from basic microscopic principles. This task has gained much attraction since the foundation of quantum mechanics about 100 years ago. However, up to now no such conclusive derivation is presented. In this dissertation we will investigate whether closed quantum systems may show equilibration, and if so, to what extend such dynamics are in accordance with standard thermodynamic behavior as described by stochastic approaches. To this end we consider i.a. Markovian dynamics, Fokker-Planck and diffusion equations. Furthermore, we consider fluctuation theorems as given e.g. by the Jarzynski relation beyond strict Gibbsian initial states. After all we find indeed good agreement for selected quantum systems.
|
54 |
Aspects of Non-Equilibrium Behavior in Isolated Quantum SystemsHeveling, Robin 06 September 2022 (has links)
Based on the publications [P1–P6], the cumulative dissertation at hand addresses quite diverse
aspects of non-equilibrium behavior in isolated quantum systems. The works presented in
publications [P1, P2] concern the issue of finding generally valid upper bounds on equilibration
times, which ensure the eventual occurrence of equilibration in isolated quantum systems. Recently,
a particularly compelling bound for physically relevant observables has been proposed. Said
bound is examined analytically as well as numerically. It is found that the bound fails to give
meaningful results in a number of standard physical scenarios. Continuing, publication [P4]
examines a particular integral fluctuation theorem (IFT) for the total entropy production of a
small system coupled to a substantially larger but finite bath. While said IFT is known to hold
for canonical states, it is shown to be valid for microcanonical and even pure energy eigenstates
as well by invoking the physically natural conditions of “stiffness” and “smoothness” of transition
probabilities. The validity of the IFT and the existence of stiffness and smoothness are numerically
investigated for various lattice models. Furthermore, this dissertation puts emphasis on the issue
of the route to equilibrium, i.e., to explain the omnipresence of certain relaxation dynamics in
nature, while other, more exotic relaxation patterns are practically never observed, even though
they are a priori not disfavored by the microscopic laws of motion. Regarding this question, the
existence of stability in a larger class of dynamics consisting of exponentially damped oscillations
is corroborated in publication [P6]. In the same vein, existing theories on the ubiquity of certain
dynamics are numerically scrutinized in publication [P3]. Finally, in publication [P5], the recently
proposed “universal operator growth hypothesis”, which characterizes the complexity growth of
operators during unitary time evolution, is numerically probed for various spin-based systems in
the thermodynamic limit. The hypothesis is found to be valid within the limits of the numerical
approach.
|
55 |
Active Brownian Particles with alpha Stable Noise in the Angular Dynamics: Non Gaussian Displacements, Adiabatic Eliminations, and Local SearchersNötel, Jörg 17 January 2019 (has links)
Das Konzept von aktiven Brownschen Teilchen kann benutzt werden, um das Verhalten einfacher biologischer Organismen oder
künstlicher Objekte, welche die Möglichkeit besitzen sich von selbst fortzubewegen zu beschreiben.
Als Bewegungsgleichungen für aktive Brownsche Teilchen kommen Langevin Gleichungen zum Einsatz.
In dieser Arbeit werden aktive Teilchen mit konstanter Geschwindigkeit diskutiert. Im ersten Teil der Arbeit wirkt auf die Bewegungsrichtung
des Teilchen weißes alpha-stabiles Rauschen. Es werden die mittlere quadratische Verschiebung und der effektive Diffusionskoeffizient bestimmt.
Eine überdampfte Beschreibung, gültig für Zeiten groß gegenüber der Relaxationszeit wird hergleitet. Als experimentell zugängliche Meßgröße,
welche als Unterscheidungsmerkmal für die unterschiedlichen Rauscharten herangezogen werden kann, wird die Kurtose berechnet. Neben weißem Rauschen
wird noch der Fall eines Ornstein-Uhlenbeck Prozesses angetrieben von Cauchy verteiltem Rauschen diskutiert. Während eine normale Diffusion
mit zu weißem Rauschen identischem Diffusionskoeffizienten bestimmt wird, kann die beobachtete Verteilung der Verschiebungen Nicht-Gaußförmig
sein. Die Zeit für den Übergang zur Gaußverteilung kann deutlich größer als die Zeitskale Relaxationszeit und die Zeitskale des Ornstein-Uhlenbeck
Prozesses sein. Eine Grenze der benötigten Zeit wird durch eine Näherung der Kurtosis ermittelt.
Weiterhin werden die Grundlagen eines stochastischen Modells für lokale Suche gelegt. Lokale Suche ist die Suche in der näheren Umgebung
eines bestimmten Punktes, welcher Haus genannt wird. Abermals diskutieren wir ein aktives Teilchen mit unveränderlichem Absolutbetrag der
Geschwindigkeit und weißen alpha-stabilem Rauschen in der Bewegungsrichtungsdynamik. Die deterministische Bewegung des Teilchens wird
analysiert bevor die Situation mit Rauschen betrachtet wird. Die stationäre Aufenthaltswahrscheinlichkeitsdichtefunktion wird bestimmt. Es wird
eine optimale Rauschstärke für die lokale Suche, das heißt für das Auffinden eines neuen Ortes in kleinstmöglicher Zeit festgestellt. Die
kleinstmögliche Zeit wird kaum von der Rauschart abhängen. Wir werden jedoch feststellen, dass die Rauschart deutlichen Einfluß auf die
Rückkehrwahrscheinlichkeit zum Haus hat, wenn die Richtung des zu Hauses fehlerbehaftet ist. Weiterhin wird das Model durch eine
an das Haus abstandsabhängige Kopplung
erweitert werden. Zum Abschluß betrachten wir eine Gruppe von Suchern. / Active Brownian particles described by Langevin equations are used to model the behavior of simple biological organisms or
artificial objects that are able to perform self propulsion. In this thesis we discuss active particles with constant speed.
In the first part, we consider angular driving by white Levy-stable noise and
we discuss the mean squared displacement and diffusion coefficients. We derive an overdamped description for those particles
that is valid at time scales larger the relaxation time. In order to provide an experimentally accessible property that distinguishes
between the considered noise types, we derive an analytical expression for the kurtosis. Afterwards, we consider an Ornstein-Uhlenbeck process
driven by Cauchy noise in the angular dynamics of the particle. While, we find normal diffusion with the diffusion coefficient identical
to the white noise case we observe a Non-Gaussian displacement at time scales that can be considerable larger than the relaxation time and
the time scale provided by the Ornstein-Uhlenbeck process. In order to provide a limit for the time needed for the
transition to a Gaussian displacement, we approximate the kurtosis.
Afterwards, we lay the foundation for a stochastic model for local search. Local search is concerned with the neighborhood of a given spot
called home.
We consider an active particle with constant speed and alpha-stable noise in the dynamics of the direction of motion.
The deterministic motion will be discussed before considering the noise to be present. An analytical result for the
steady state spatial density will be given. We will find an optimal noise strength for the local search
and only a weak dependence on the considered noise types.
Several extensions to the introduced model will then be considered. One extension includes a distance dependent
coupling towards the home and thus the model becomes more general. Another extension concerned with an erroneous
understanding by the particle of the direction of the home leads to the result that the return probability to the home depends
on the noise type. Finally we consider a group of searchers.
|
56 |
Transition Matrix Monte Carlo Methods for Density of States PredictionHaber, René 20 June 2014 (has links)
Ziel dieser Arbeit ist zunächst die Entwicklung einer Vergleichsgrundlage, auf Basis derer Algorithmen zur Berechnung der Zustandsdichte verglichen werden können. Darauf aufbauend wird ein bestehendes übergangsmatrixbasiertes Verfahren für das großkanonisch Ensemble um ein neues Auswerteverfahren erweitert. Dazu werden numerische Untersuchungen verschiedener Monte-Carlo-Algorithmen zur Berechnung der Zustandsdichte durchgeführt. Das Hauptaugenmerk liegt dabei auf Verfahren, die auf Übergangsmatrizen basieren, sowie auf dem Verfahren von Wang und Landau.
Im ersten Teil der Forschungsarbeit wird ein umfassender Überblick über Monte-Carlo-Methoden und Auswerteverfahren zur Bestimmung der Zustandsdichte sowie über verwandte Verfahren gegeben. Außerdem werden verschiedene Methoden zur Berechnung der Zustandsdichte aus Übergangsmatrizen vorgestellt und diskutiert.
Im zweiten Teil der Arbeit wird eine neue Vergleichsgrundlage für Algorithmen zur Bestimmung der Zustandsdichte erarbeitet. Dazu wird ein neues Modellsystem entwickelt, an dem verschiedene Parameter frei gewählt werden können und für das die exakte Zustandsdichte sowie die exakte Übergangsmatrix bekannt sind. Anschließend werden zwei weitere Systeme diskutiert für welche zumindest die exakte Zustandsdichte bekannt ist: das Ising Modell und das Lennard-Jones System.
Der dritte Teil der Arbeit beschäftigt sich mit numerischen Untersuchungen an einer Auswahl der vorgestellten Verfahren. Auf Basis der entwickelten Vergleichsgrundlage wird der Einfluss verschiedener Parameter auf die Qualität der berechneten Zustandsdichte quantitativ bestimmt. Es wird gezeigt, dass Übergangsmatrizen in Simulationen mit Wang-Landau-Verfahren eine wesentlich bessere Zustandsdichte liefern als das Verfahren selbst.
Anschließend werden die gewonnenen Erkenntnisse genutzt um ein neues Verfahren zu entwickeln mit welchem die Zustandsdichte mittels Minimierung der Abweichungen des detaillierten Gleichgewichts aus großen, dünnbesetzten Übergangsmatrizen gewonnen werden kann. Im Anschluss wird ein Lennard-Jones-System im großkanonischen Ensemble untersucht. Es wird gezeigt, dass durch das neue Verfahren Zustandsdichte und Dampfdruckkurve bestimmt werden können, welche qualitativ mit Referenzdaten übereinstimmen.
|
57 |
Transport, disorder and reaction in spreading phenomena / Transport, Unordnung und Reaktion in AusbreitungsphänomenenVitaly, Belik 17 December 2008 (has links)
No description available.
|
58 |
Random Block Copolymer Melts in the Bulk and at Selective Substrates / Zufallsblockkopolymerschmelzen im Volumen und an selektiven SubstratenSteinmüller, Birger 12 December 2011 (has links)
No description available.
|
59 |
Einfache Modelle für komplexe Biomembranen / Simple Models For Complex BiomembranesSchultze, Hergen 06 October 2003 (has links)
No description available.
|
60 |
Orientational order and glassy states in networks of semiflexible polymers / Orientierungsordnung und Glas-Zustände in Netzwerken aus semiflexiblen PolymerenKiemes, Martin 23 November 2010 (has links)
No description available.
|
Page generated in 0.0608 seconds