• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 64
  • 31
  • 14
  • 13
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Characterizing phenotypic diversity in marine populations of threespine sticklebacks

Fraser, Ainsley 26 April 2021 (has links)
The threespine stickleback (Gasterosteus aculeatus) is an important model for studying evolution. Sticklebacks are widely distributed in the northern hemisphere and inhabit freshwater, brackish, and marine waters. Anadromous and marine populations (hereafter marine) are assumed to be homogenous in space and invariant in time in their phenotypic characteristics, despite marine environments varying on regional and local scales. Recent studies suggest there is in fact genetic and phenotypic structure in marine sticklebacks, yet the ecological causes remain unclear. My goal was to assess trait variation in marine stickleback populations around Southern coastal British Columbia (BC), and to determine whether or not oceanographic and habitat characteristics explained this variation. The area around Vancouver Island was ideal because four distinct oceanographic regions surround the island with varying coastal habitat types. Between May-July 2019, I sampled ~600 sticklebacks from 15 sites. I then characterized trait variation using two-dimensional (2D) geometric morphometric analysis to compare individuals between oceanographic regions and coastal habitats. I focused on five traits: armour phenotype, head size, body size, head shape, and body shape. I chose these traits because they are ecologically important and well-studied in freshwater populations, where their ecological drivers are known. I found that marine sticklebacks did vary morphologically among and between regions and habitats, but the variation was not immediately related to environmental variation, nor obviously comparable to variation in freshwater populations. Sexual dimorphism was the largest source of variation in the data, a well-established finding. But oceanographic and habitat variables influenced differences between males and females. I concluded that marine sticklebacks offer abundant opportunities for expanding our knowledge of drivers of morphology in nature. / Graduate / 2022-04-11
52

An ecological study of cestode Schistocephalus solidus in the three-spined stickleback Gasterosteus aculeatus at Matamek Lake, Québec /

Holloway, Judith A. (Judith Anne) January 1984 (has links)
No description available.
53

Female choice and paternal care in the fifteen-spined stickleback, Spinachia spinachia

Östlund-Nilsson, Sara January 2000 (has links)
<p>In the fifteen-spined stickleback, <i>Spinachia spinachia</i>, males provide females with direct benefits by fanning, cleaning and guarding the offspring. Males announce their parental skills through intense body shakes during courtship. Females preferred to mate with more intensely shaking males. As a result, females got better fathers for their offspring, as such males achieved a higher hatching success. Not only did male behavioural cues attract females, but males also used their nests as extrabodily ornaments. The nest is held together with shiny secretional threads consisting of a glycoprotein. Females chose to spawn in nests with more secretional threads. A likely reason for this is that the threads are metabolically costly for the male to produce and the amount of secretion indicates a male's nutritional status, which is of great importance as parental duties are energetically costly. Moreover, females preferred nests built high up in the vegetation, as such nests were safer from egg predators. Competition with other males for females favoured males building higher nests than did their neighbours, probably because females preferred high nests. Male-male interactions, such as sneaking and egg stealing, caused decreased paternity among males in nature as assessed by a microsatellite analysis. Males adjusted their paternal effort according to their previous investment in the brood, but not according to paternity. Thus, female choice is based on multiple cues and results in better paternal care. Males invest in courtship, male-male competition, nest construction and paternal care, the outcome determining their success in mate attraction.</p>
54

Female choice and paternal care in the fifteen-spined stickleback, Spinachia spinachia

Östlund-Nilsson, Sara January 2000 (has links)
In the fifteen-spined stickleback, Spinachia spinachia, males provide females with direct benefits by fanning, cleaning and guarding the offspring. Males announce their parental skills through intense body shakes during courtship. Females preferred to mate with more intensely shaking males. As a result, females got better fathers for their offspring, as such males achieved a higher hatching success. Not only did male behavioural cues attract females, but males also used their nests as extrabodily ornaments. The nest is held together with shiny secretional threads consisting of a glycoprotein. Females chose to spawn in nests with more secretional threads. A likely reason for this is that the threads are metabolically costly for the male to produce and the amount of secretion indicates a male's nutritional status, which is of great importance as parental duties are energetically costly. Moreover, females preferred nests built high up in the vegetation, as such nests were safer from egg predators. Competition with other males for females favoured males building higher nests than did their neighbours, probably because females preferred high nests. Male-male interactions, such as sneaking and egg stealing, caused decreased paternity among males in nature as assessed by a microsatellite analysis. Males adjusted their paternal effort according to their previous investment in the brood, but not according to paternity. Thus, female choice is based on multiple cues and results in better paternal care. Males invest in courtship, male-male competition, nest construction and paternal care, the outcome determining their success in mate attraction.
55

Evaluation of Biomarker Responses in Fish : with Special Emphasis on Gill EROD Activity

Andersson, Carin January 2007 (has links)
Many chemicals present in the aquatic environment can interfere with physiological functions in fish. Exposure to chemicals can be revealed by the use of biomarkers. Induction of 7-ethoxyresorufin O-deethylase (EROD) activity is a commonly used biomarker for exposure to CYP1A inducers such as dioxins and polyaromatic hyrdrocarbons. Vitellogenin is a frequently used biomarker for estrogenic compounds in various fish species whereas a biomarker for androgens, spiggin, is only found in sticklebacks. The main objectives of this thesis were to evaluate gill EROD activity as a biomarker and the three-spined stickleback as a model species in ecotoxicological studies. EROD activities were measured in gill, liver and kidney in rainbow trout (Oncorhynchus mykiss) caged in urban areas in Sweden. EROD induction was most pronounced in the gill. Also in fish caged at reference sites, with an expected low level of known CYP1A inducers, a marked gill EROD induction was found. One suggested inducer in rural waters is humic substances (HS). To evaluate the EROD-inducing capacity of HS, three-spined sticklebacks (Gasterosteus aculeatus) were exposed to HS of natural or synthetic origin. Both kinds of HS caused significant EROD induction. Gill EROD activities were also induced in sticklebacks exposed to ethynylestradiol (EE2) and β-naphthoflavone (βNF), alone and in combinations. Production of vitellogenin was induced in sticklebacks exposed to ≥50 ng EE2/l and a significant decrease in spiggin production was observed in individuals exposed to 170 ng EE2/l. Results from this thesis further strengthen the contention that gill EROD activity is a very sensitive biomarker for CYP1A inducers and that the stickleback is a suitable biomonitoring species, especially for exposure to CYP1A inducers. The finding that not only classical CYP1A inducers but also HS and high EE2 concentrations stimulate gill EROD activity is of significance for the interpretation of biomonitoring data.
56

Local adaptation to parasites and selection on major histocompatibility genes in ecologically divergent populations of three-spine stickleback (Gasterosteus aculeatus)

Stutz, William Edward 25 September 2013 (has links)
As individuals and populations diverge ecologically, they become exposed to new parasites and pathogens with potentially harmful fitness consequences. Populations are therefore expected to evolve resistance, possibly at a cost of less resistance to parasites rarely encountered parasites. This trade-off in resistance should generate local adaptation to parasites in different habitats. In chapter one, I show how local adaptation can potentially evolve in response to variation in parasite exposure among eighteen ecologically variable populations of threespine stickleback (Gasterosteus aculeatus). Within populations infection appeared to reflect morphology/diet based exposure differences among individuals. Among populations, however, these patterns were absent or reversed, consistent with the evolution of local adaptation. In chapters two and three I set out to test whether variation major histocompatibility (MHC) genes can underly such local adaptation in stickleback. MHC genes are important components of vertebrate immunity; however, there is little direct empirical support for spatially divergent selection driving local adaptation on MHC loci in the wild. In chapter two I tested for the action of parasite mediated balancing and divergent selection on on MHC loci using naturally infected stickleback in three replicate lake-stream pairs. Despite consistent divergence in parasites and MHC alleles, lakes tended to show decreased parasite burdens with increased allelic richness (consistent with balancing selection), while streams showed some support for divergent selection between lake and stream types. In chapter three I use the same lake-stream pairs to investigate how divergent selection could instead be reflected in variation in the effects of individual MHC alleles among populations. When comparing parapatric populations experiencing gene flow, MHC alleles maintained at relatively high frequency in one population were more likely to be associated with reduced, rather than increased, parasite abundances in that population. Allopatric populations experiencing no gene flow showed no such general relationship between allele frequency and resistance. These results are only consistent with spatially divergent selection, and imply that gene flow and environmental heterogeneity can be important for maintaining MHC diversity. / text
57

Effects of temperature and terrestrial carbon on fish growth and pelagic food web efficiency

Lefébure, Robert January 2012 (has links)
Both temperature and terrestrial dissolved organic carbon (TDOC) have strong impacts on aquatic food web dynamics and production. Temperature affects vital rates of all organisms and terrestrial carbon has been shown to alter the dynamics of phytoplankton and bacterial production and affect the trophic structure of planktonic food webs. As climate change predictions for the Baltic Sea suggests future increases in both terrestrial carbon run-off and increases in temperature, the aim of thesis was to adopt a system-ecological approach and study effects of these abiotic variables, not only on interactions within planktonic food webs, but also on the growth and consumption rates of one of the most common zooplanktivorous fish in the Baltic Sea, the three-spined stickleback Gasterosteus aculeatus. Results showed that three-spined sticklebacks display a high degree of resilience against increasing temperatures, as both growth rates as well as consumption rates on zooplankton were high at temperatures well over 20 °C. Furthermore, it was shown that the minimal resource densities required to sustain individual and population growth, actually decreased with increasing temperatures, implying that sticklebacks around their optimum temperature for growth at 21 °C will actually have an increased scope for growth. As stickleback population densities have increased over the last decade in the Baltic Sea and are now suggested to out-compete other coastal fish species for shared zooplankton resources, the results presented in this thesis suggest that increased water temperatures would only serve to increase sticklebacks competitive advantage. As the structuring role of this small zooplanktivore on pelagic communities might be considerable, further studies investigating competitive interactions as well as patterns of population abundances are definitely warranted. TDOC was overall shown to stimulate bacterial production and the microbial food web. Because of the longer trophic pathways required to transport carbon from bacterial production to higher trophic levels, the addition of TDOC always reduced food web transfer efficiency. However, it became apparent that the full effect of TDOC additions on pelagic food webs was complex and depended heavily not only on the existing trophic structure to which the carbon was introduced, but also on ambient temperature levels. When three-spined sticklebacks were part of food webs with significant TDOC inputs, the presence of fish, indirectly, through predator release of lower trophic levels, amplified the magnitude of the effects of carbon addition on bacterial production, turning the base of the system significantly more heterotrophic, which ultimately, impacted negatively on their own production. However, when a pelagic food web containing sticklebacks was simultaneously subjected to realistic increases in temperature and TDOC concentrations, food web efficiency and fish production increased compared to present day conditions. These results were explained by a temperature dependent increased production potential of zooplankton, sustained by an increased production of heterotropic microzooplankton via TDOC additions, which lead to higher fish production. Although the increased number of trophic linkages in heterotrophic food webs should have reduced energy transfer efficiency, these negative effects seem here to have been overridden by the positive increases in zooplankton production as a result of increased temperature. These results show that heterotrophic carbon transfer can be a viable pathway to top-consumers, but also indicates that in order to understand the full effects of climate change on trophic dynamics and fish production, abiotic variables cannot be studied in isolation.
58

Interactions between threespine stickleback (Gasterosteus aculeatus linnæus) and juvenile chinook salmon (Oncorhynchus tshawytscha Walbaum) in an estuarine marsh

Sambrook, Robert Joseph January 1990 (has links)
Threespine stickleback (Gasterosteus aculeatus) and juvenile chinook salmon (Oncorhynchus tshazvytscha) co-occur during high tide in tidal channels of the Fraser River estuary. Given the high density of resident stickleback, there is the potential for strong interactions within and between the two species. Inter- and intra-specific interactions were tested by means of laboratory experiments, with support from field studies. Laboratory experiments placed stickleback and chinook in mixed and single species groups. The levels of aggressiveness were quantified, along with prey choice between surface (Drosophila), midwater (Artemia), and benthic (Tubifex) prey; microdistribution was also recorded. The experiments demonstrated that stickleback were highly aggressive towards chinook, and would drive them away from optimal feeding territories. Chinook consumed surface prey only when tested with stickleback, exploiting benthic and midwater prey when feeding alone. Stickleback demonstrated no significant difference in diet between single and mixed species trials, which is consistent with the supposition of strongly asymmetrical competition for food and space. Field data lend further support to this premise; a marked difference observed in diet suggests microhabitat partitioning between the two species, with stickleback feeding on benthos and chinook largely consuming surface prey. This thesis proposes that interactive segregation is an important process between sympatric stickleback and juvenile chinook in estuarine tidal channels and might have important implications for Fraser chinook stocks. / Science, Faculty of / Zoology, Department of / Graduate
59

Hydroxylated polybrominat­ed diphenyl ethers in Baltic Sea biota : Natural production, food web distribution and biotransformation

Lindqvist, Dennis January 2016 (has links)
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) are naturally produced in aquatic ecosystems e.g. by algae. Many OH-PBDEs have been observed to be highly bioactive and to cause adverse effects through several pathways, e.g. via disrupting oxidative phosphorylation (OXPHOS). The levels of some OH-PBDEs have increased in Baltic biota over the past decades. This may be associated with the nutrient enrichment of the Baltic Sea, which has favored growth of some of the OH-PBDE producers. Ceramium tenuicorne has been suggested to be a producer of OH-PBDEs in the Baltic Sea, which is supported by the results presented in this thesis. The levels of OH-PBDEs were observed to fluctuate greatly in C. tenuicorne over the summer season, and to correlate with the levels of pigments in the algae. However, the observed congener pattern in C. tenuicorne questioned theories regarding the mechanism of their biosynthesis. The results indicate a much more selective pathway for biosynthesis than previously suggested for the production of OH-PBDEs. One of the most abundant OH-PBDEs in C. tenuicorne, 6-OH-BDE137, has previously been observed to be toxic to bacteria, fungi, and crustaceans. Furthermore, Baltic gammarids seemed to change their feeding preferences towards less grazing on C. tenuicorne during the production peek of OH-PBDEs in the alga. This suggests that OH-PBDEs may serve as allelochemical defense agents for C. tenuicorne. The transport and fate of OH-PBDEs through a Baltic food chain was also studied, including C. tenuicorne, Gammarus spp., three-spined stickleback (Gasterosteus aculeatus), and perch (Perca fluviatilis). A small portion of the OH-PBDEs were observed to be methylated in the alga, or by associated bacteria. The methylated OH-PBDEs biomagnified in the food chain up to perch, in which they were converted back to the OH-PBDEs via demethylation. The OH-PBDEs and their methylated counterparts were also partially debrominated in the food chain, which resulted in high concentration of 6-OH-BDE47 in the perch. This congener is the most toxic OH-PBDE with regards to OXPHOS disruption. Another biotransformation of OH-PBDEs was identified in Baltic Sea blue mussels (Mytilus edulis). High concentrations of OH-PBDEs were conjugated with lipophilic moieties, e.g. fatty acids. This increases the residence time of the OH-PBDEs in the mussels. Mussels have been suggested to conjugate steroids with fatty acids as a means to regulate hormone levels. The conjugation of OH-PBDEs to fatty acids may occur due to intrusion into this pathway. Methods were developed to include quantification of conjugated OH-PBDEs in the analysis of mussels. OH-PBDEs were also quantified in blood from Baltic Sea grey seals (Halichoerus grypus). Seals originating from the Baltic proper were observed to be more highly exposed to 6-OH-BDE47 than seals from the Gulf of Bothnia. However, the levels of OH-PBDEs were generally low. A major effort was invested into securing these results, including development of a new analytical method. Blood obtained from dead seals is a difficult matrix for quantification of OH-PBDEs, and previous attempts using an established method yielded unsatisfactory results. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.</p>
60

Selective serotonin re-uptake inhibitors in the environment : Effects of citalopram on fish behaviour

Kellner, Martin January 2017 (has links)
Selective serotonin re-uptake inhibitors (SSRIs) are a class of anxiolytic and anti-depressant drugs. SSRIs act on the evolutionarily ancient serotonergic system which is virtually identical throughout the vertebrate phylum. Serotonin is involved in a wide range of processes ranging from neuronal and craniofacial embryonic development to regulation of behaviour. However, SSRIs are also emerging pollutants, mainly entering the environment via sewage treatment plants. Since the serotonergic system is virtually identical in humans and other animals, exposed animals will be affected in similar ways as humans and suspicions are rising that ecologically important behaviours may be affected in subtle ways. Using the three-spined stickleback (Gasterosteus aculeatus) and zebrafish (Danio rerio) as model organisms, this thesis focuses on the behavioural effects of SSRIs in fish. The SSRI used throughout this thesis is citalopram, which has been found in fish in coastal areas of the Baltic Sea and other parts of the world. Effects on behaviour were investigated using several different tests measuring stress response, feeding behaviour, aggression and locomotor activity. Anxiolytic effects of 0.1 μg/l, 1.5 μg/l 15 μg/l were investigated as well as effects of 0.15 μg/l and 1.5 μg/l on feeding behaviour. Because serotonin is involved in the development of the nervous system, the effects of developmental exposure to 1.5 μg/l was studied after 100 days of remediation. Finally, because SSRIs rarely occur alone in natural waters, the effects on zebrafish of citalopram in a cocktail scenario, with the anxiogenic compound 17α-ethinyl estradiol (EE2 ) was also investigated. Citalopram was found to have anxiolytic effects on the three-spined stickleback at 0.1 μg/l, 1.5 μg/l and 15 μg/l. Citalopram also suppressed feeding behaviour within a week of exposure and at concentrations as low as 0.15 μg/l. Developmental exposure to 1.5 μg/l for 30 days was found to increase aggression and feeding behaviour and to reduce locomotor activity. The changes were persistent and remained in adult fish. In the cocktail scenario, citalopram in single-substance exposure had anxiolytic effects on one parameter in the novel tank test at 0.1 μg/l. Citalopram enhanced the anxiogenic effects of EE2 in the novel tank test, but in the scototaxis test citalopram appeared to counteract the effects of EE2. It is concluded that citalopram has the potential to affect behaviour in fish at concentrations that have been found in close proximity of sewage treatment plants. / Det serotonerga systemet är i stort sett identiskt hos människor och övriga vertebrater. Serotonin är inblandat i ett stort antal kroppsliga funktioner, bland annat stressreaktioner, reglering av födobeteende och aggression. Vidare är serotonin med och reglerar nervsystemets tillväxt under embryonalutvecklingen. Selektiva serotoninåterupptagshämmare (SSRI) är en grupp antidepressiva och lugnande läkemedel vars användning har ökat snabbt på senare år då de är effektiva och har få allvarliga bieffekter. SSRI verkar på det serotonerga systemet, genom att blockera återupptaget av serotonin i den presynaptiska nervänden. SSRI har tilldragit sig en viss uppmärksamhet som potentiella miljöhot då de visats kunna påverka ekologiskt relevanta beteenden hos fisk och andra akvatiska organismer vid relativt låga koncentrationer i miljön samtidigt som de bryts ned dåligt i avloppsreningsverk. Avhandlingen fokuserar på ekologiskt relevanta beteendeeffekter av SSRI på fisk, med storspigg (Gasterosteus aculeatus) och zebrafisk (Danio rerio) som modellorganismer. Citalopram har använts som försökssubstans då det anses vara den SSRI som har minst antal sidoeffekter på till exempel det dopaminerga systemet. Citalopram förekommer i utloppsvatten från reningsverk i alla industrialiserade länder och har även hittats i abborre i Östersjön. Effekter av exponering för SSRI har påvisats med hjälp av olika beteendetest. Skototaxi-test och novel tank diving test mäter stressresponsen genom att kvantifiera preferensen för närhet till botten och mörka omgivningar. Ätbeteende har mätts som antal utfall mot en matbit under en given tidsperiod och aggression har mätts genom att räkna antal bett mot en spegel. Anxiolytiska effekter undersöktes vid koncentrationer på 0,1 µg/l, 15 µg/l och 1,5 µg/l. Effekter på ätbeteende undersöktes vid 0,15 µg/l och 1,5 µg/l. Eftersom serotonin är inblandat i embryonalutvecklingen testades de beteendemässiga effekterna av exponering för 1,5 µg/l under utvecklingen. Då citalopram sällan förekommer ensamt i miljön testades ett cocktailscenario där zebrafisk samtidigt exponerades för citalopram och den anxiogena substansen 17α-etinylestradiol (EE2). Citalopram befanns ha anxiolytisk verkan på storspigg samt undertrycka ätbeteendet. Effekter på ätbeteendet uppstod inom en vecka efter exponering och vid den minsta testade dosen vilken var 0,15 µg/l. Storspigg som exponerats under embryonalutvecklingen var mer aggressiva, hade lägre lokomotoraktivitetoch gjorde fler utfall mot mat då de testades 100 dagar efter att exponeringen avslutats. Samtidigt exponering för citalopram och den anxiogena substansen 17α-etinylestradiol (EE2) gav tvetydiga resultat. Citalopram ensamt hade ingen signifikant påverkan på beteendet i detta försök. I skototaxitestet motverkade citalopram den anxiogena effekten av EE2 medan det förstärkte den anxiogena effekten i novel tank. Sammanfattningsvis har citalopram effekter på ekologiskt relevanta beteenden hos fisk i koncentrationer som förekommer i ytvatten. Det har också permanenta effekter på beteende om exponeringen sker under embryonalutvecklingen. Dessa resultat gör det sannolikt att citalopram och andra SSRI har ekologiska effekter i påverkade vattendrag.

Page generated in 0.0689 seconds