Spelling suggestions: "subject:"strahldiagnose"" "subject:"strahldiagnostik""
1 |
Electron Beam Diagnostic at the ELBE Free Electron Laser / Elektronen-Strahldiagnose am ELBE Freie-Elektronen-LaserEvtushenko, Pavel 08 October 2004 (has links) (PDF)
The radiation source ELBE is a scientific user facility able to generate electromagnetic radiation as well as beams of secondary particles. The figure below shows the layout of the facility. ELBE is based on a superconducting electron linac. The linac consists of two accelerating modules and uses TESLA type nine-cell niobium cavities, two cavities in each module. The cavities were developed at DESY in the framework of the TESLA linear collider project and the X-ray free electron laser (FEL) project. The ELBE linac is designed to operate with an accelerating field gradient of 10 MV/m so that the maximum design electron beam energy at the exit of the second module is 40 MeV. The essential difference of the ELBE linac from the future TESLA and X-ray FEL linacs is that ELBE operates in the continuous wave (CW) mode. ELBE delivers an electron beam with an average current of up to 1 mA. The electron source is a DC thermionic triode delivering beam with energy of 250 keV. The gun beam quality predefines the accelerated beam quality. One application of the electron beam is the generation of bremsstrahlung in the MeV energy range. The bremsstrahlung is used for nuclear spectroscopy experiments. Another application of the electron beam is the generation of quasi-monochromatic X-rays via channeling radiation in a single crystal. Thus X-rays with an energy from 10 keV through 100 keV can be generated. The channeling radiation is used for radio-biological and bio-medical experiments. In the future the ELBE electron beam will be used to produce monoenergetic positrons for material research. One more future application of the beam is the production of neutrons by bremsstrahlung via reactions. The neutrons will be used for material research oriented toward construction of future nuclear fusion reactors. In the author’s opinion, the most exciting and elegant application of the electron beam at ELBE is the infrared FEL. There are two FELs planned to run simultaneously at ELBE. The first one, with an undulator period of 27 mm, is going to operate in the wavelength range from 3 µm through 30 µm. The second one is in the design stage only but it will be built to work at longer wavelengths from 25 µm to 150 µm where the FEL has no competition from conventional quantum lasers. While an infrared FEL makes possible a great variety of experiments it is the device most sensitive to the electron beam quality. This dissertation is dedicated to the development of beam instrumentation and the measurement of electron beam parameters at ELBE. - In Chapter #1 we review fundamentals of FEL operation, discuss the importance of the electron beam quality for the FEL and lay down the requirements imposed by the FEL on the electron beam parameters. - Chapter #2 describes measurements of the transverse emittance we did at ELBE including an explanation of the experimental methods and the measurement error analysis. The transverse emittance was measured with the multislit method in the injector where the beam is space charge dominated. The transverse emittance of the accelerated beam was measured with the quadrupole scan method since the beam is emittance dominated. - Measurements of the electron bunch length, which is in the picosecond range, are described in Chapter #3. The bunch length was estimated from a frequency domain fit of a specially constructed analytical function to the measured power spectrum of the bunch. The power spectrum was obtained as a Fourier transform of the measured autocorrelation function of the coherent transition radiation (CTR). The CTR autocorrelation function was measured with the help of a Martin-Puplett interferometer. - A system of beam position monitors was designed, built, and commissioned in the framework of this effort. The design of our stripline BPM, the corresponding electronics and software is described in Chapter #4 along with the system performance as measured with the ELBE beam.
|
2 |
Monitoring the electron beam position at the TESLA Test Facility Free Electron LaserKamps, Thorsten 14 June 2000 (has links)
Der Betrieb eines Freien Elektronen Lasers (FEL), bei dem die spontan emittierte Undulatorstrahlung ueber Wechselwirkung mit dem Elektronenstrahl selbst verstaerkt wird, setzt eine praezise Ausrichtung des Elektronenstrahls mit dem Photonenstrahl voraus. Um den Ueberlapp von Elektronen-und Photonenstrahl zu gewaehrleisten, wurde ein neuartiger Typ von Wellenleiter-Strahllagemonitor entwickelt, der in eine Vakuumkammer des Undulators des FELs der TESLA Test Facility (TTF) integriert ist. Vier um das Strahlrohr verteilte Wellenleiter koppeln ueber schmale Schlitze einen Bruchteil jenes elektromagnetischen Feldes aus, welches den Strahl begleitet. Die induzierten Signale haengen von der transversalen Strahlposition und der Strahlintensitaet ab. Mit vier Schlitz-Wellenleiter Paaren laesst sich ein lineares Signal ableiten, anhand dessen die Position des Elektronenstrahls bestimmt werden kann. Die induzierten Signale werden mittels eines stegbelasteten Wellenleiters in die erste Stufe eines bei 12 GHz arbeitenden Empfaengers zugefuehrt. Die vorliegende Arbeit beschreibt Design, Tests und Implementierung dieses neuartigen Typs von Strahllagemonitor. / The operation of a free electron laser working in the Self Amplified Spontaneous Emission mode (SASE FEL) requires the electron trajectory to be aligned with very high precision in overlap with the photon beam. In order to ensure this overlap, one module of the SASE FEL undulator at the TESLA Test Facility (TTF) is equipped with a new type of waveguide beam position monitor (BPM). Four waveguides are arranged symmetrically around the beam pipe, each channel couples through a small slot to the electromagnetic beam field. The induced signal depends on the beam intensity and on the transverse beam position in terms of beam--to--slot distance. With four slot--waveguide combinations a linear position sensitive signal can be achieved, which is independent of the beam intensity. The signals transduced by the slots are transferred by ridged waveguides through an impedance matching stage into a narrowband receiver tuned to 12 GHz. The present thesis describes design, tests, and implementation of this new type of BPM.
|
3 |
Electron Beam Diagnostic at the ELBE Free Electron LaserEvtushenko, Pavel 21 October 2004 (has links)
The radiation source ELBE is a scientific user facility able to generate electromagnetic radiation as well as beams of secondary particles. The figure below shows the layout of the facility. ELBE is based on a superconducting electron linac. The linac consists of two accelerating modules and uses TESLA type nine-cell niobium cavities, two cavities in each module. The cavities were developed at DESY in the framework of the TESLA linear collider project and the X-ray free electron laser (FEL) project. The ELBE linac is designed to operate with an accelerating field gradient of 10 MV/m so that the maximum design electron beam energy at the exit of the second module is 40 MeV. The essential difference of the ELBE linac from the future TESLA and X-ray FEL linacs is that ELBE operates in the continuous wave (CW) mode. ELBE delivers an electron beam with an average current of up to 1 mA. The electron source is a DC thermionic triode delivering beam with energy of 250 keV. The gun beam quality predefines the accelerated beam quality. One application of the electron beam is the generation of bremsstrahlung in the MeV energy range. The bremsstrahlung is used for nuclear spectroscopy experiments. Another application of the electron beam is the generation of quasi-monochromatic X-rays via channeling radiation in a single crystal. Thus X-rays with an energy from 10 keV through 100 keV can be generated. The channeling radiation is used for radio-biological and bio-medical experiments. In the future the ELBE electron beam will be used to produce monoenergetic positrons for material research. One more future application of the beam is the production of neutrons by bremsstrahlung via reactions. The neutrons will be used for material research oriented toward construction of future nuclear fusion reactors. In the author’s opinion, the most exciting and elegant application of the electron beam at ELBE is the infrared FEL. There are two FELs planned to run simultaneously at ELBE. The first one, with an undulator period of 27 mm, is going to operate in the wavelength range from 3 µm through 30 µm. The second one is in the design stage only but it will be built to work at longer wavelengths from 25 µm to 150 µm where the FEL has no competition from conventional quantum lasers. While an infrared FEL makes possible a great variety of experiments it is the device most sensitive to the electron beam quality. This dissertation is dedicated to the development of beam instrumentation and the measurement of electron beam parameters at ELBE. - In Chapter #1 we review fundamentals of FEL operation, discuss the importance of the electron beam quality for the FEL and lay down the requirements imposed by the FEL on the electron beam parameters. - Chapter #2 describes measurements of the transverse emittance we did at ELBE including an explanation of the experimental methods and the measurement error analysis. The transverse emittance was measured with the multislit method in the injector where the beam is space charge dominated. The transverse emittance of the accelerated beam was measured with the quadrupole scan method since the beam is emittance dominated. - Measurements of the electron bunch length, which is in the picosecond range, are described in Chapter #3. The bunch length was estimated from a frequency domain fit of a specially constructed analytical function to the measured power spectrum of the bunch. The power spectrum was obtained as a Fourier transform of the measured autocorrelation function of the coherent transition radiation (CTR). The CTR autocorrelation function was measured with the help of a Martin-Puplett interferometer. - A system of beam position monitors was designed, built, and commissioned in the framework of this effort. The design of our stripline BPM, the corresponding electronics and software is described in Chapter #4 along with the system performance as measured with the ELBE beam.
|
4 |
Two-Dimensional Bunch-Resolved Optical Beam Diagnostics at BESSY IIKoopmans, Marten 05 April 2022 (has links)
BESSY II ist eine Strahlungsquelle der dritten Generation, die vom Helmholtz-Zentrum Berlin für Materialien und Energie GmbH für Experimente mit Synchrotronstrahlung betrieben wird. Mehrere Betriebsmodi werden am BESSY II Speicherring angeboten bzw. entwickelt, um die Anforderungen der vielfältigen Nutzergemeinde zu erfüllen. Dazu gehören nicht nur ein komplexes Füllmuster im Standardnutzerbetrieb, sondern auch spezielle Betriebsmodi mit kurzen Pulsen oder das sogenannte Transverse Resonant Island Buckets Separationsschema. Die Komplexität des Füllmusters erfordert eine pulsaufgelöste Strahldiagnose für die Inbetriebnahme und zur Sicherstellung der langfristigen Qualität des Beschleunigerbetriebs. Ferner werden für den Kurzpulsbetrieb Pulslängenmessungen mit ps Auflösung benötigt. Im Rahmen dieser Arbeit wird zu diesem Zweck eine neue Diagnoseplattform mit mehreren Strahlrohren aufgebaut. Jeweils ein Strahlrohr ist für transversale Strahlgrößenmessungen und für longitudinale Strahldiagnose vorgesehen. Beide Strahlrohre sind mit Messapperaturen für pulsaufgelöste Messungen ausgestattet. Hauptfokus dieser Arbeit liegen auf dem Design, der Installation und den Verbesserungen dieser Strahlrohre und den zugehörigen Meßgeräten in Kombination mit spezifischen Anwendungen in der Strahldiagnose an BESSY II.
Im Allgemeinen erfordern Kopplungen zwischen Zeit- und Raumkoordinaten pulsselektive und korrelierte Detektionsmethoden mehrerer Parameter. Daher sind die longitudinale Diagnose sowie die Streak Kamera so optimiert worden, dass die direkte Abbildung des transversalen Strahlprofils möglich ist und sogar interferometrische Strahlgrößenmessungen durchführbar. Zusätzlich zur Zeitachse der Streak Kamera kann entweder die horizontale oder die vertikale Dimension des Strahls abgebildet werden und dadurch sind 2D-Messungen möglich. Mit dieser Methode wurden mehrere pulsaufgelöste 2D-Messungen durchgeführt und Analysemethoden entwickelt. / BESSY II is a third generation light source operated by the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH for experiments with synchrotron radiation. Multiple operation modes are offered or are under development at the BESSY II storage ring to serve the needs of its diverse user community. This does not only include a complex fill pattern in standard operation, but also special operation modes featuring short pulses or the new transverse resonant island buckets separation scheme. The complexity of the fill pattern requires bunch-resolved diagnostics for commissioning and to ensure the long-term quality of accelerator operation. In addition, short pulse operation demands bunch length measurements with ps resolution. For this purpose a new diagnostics platform featuring multiple beamlines is set up. One beamline is dedicated for transverse beam size measurements and one for longitudinal diagnostics. Both beamlines are equipped with fast gated devices for bunch-resolved measurements. Design, installation and improvements of these beamlines and the measuring devices are the main focus of this work, together with specific BESSY II bunch diagnostics applications.
In general, coupling between time- and space-coordinates do call for bunch-selective and correlated multi-parameter detection methods. Thus, the longitudinal diagnostics beamline and the streak camera have been made capable of direct transverse beam-profile imaging and even interferometric beam size measurements are feasible. Either the horizontal or vertical beam dimension can be imaged in addition to the time axis of the streak camera and 2D measurements are possible. Taking advantage of these capabilities, multiple bunch-resolved 2D measurements have been performed and analysis methods have been developed.
|
5 |
Entwicklung eines Multi-Leaf Faraday Cups zur Strahldiagnose in der AugentumortherapieKunert, Christoph 11 March 2015 (has links)
Die Protonentherapie von Aderhautmelanomen wird vor allem für die Behandlung von Tumoren nahe kritischer Strukturen (Sehnerv) und bei großen Tumoren angewandt. Dabei ist die begrenzte Reichweite der Protonen vorteilhaft, die scharf begrenzte Dosisfelder im Auge ermöglicht, und das an den Tumor grenzende gesunde Gewebe bestmöglich schont. Daher erfolgt die Positionierung der Patienten und der Strahlenfelder in der Augentumortherapie, wie auch die regelmäßigen Konstanzprüfungen, mit einer Reichweitengenauigkeit in Wasser von 0,1 mm. Mit einem Multi-Leaf Faraday Cup (MLFC) kann die Reichweite der Protonen in kurzer Zeit sehr genau gemessen werden. Dabei misst der MLFC die differentielle Fluenz der Protonenstrahlen, also das Reichweitenprofil. Er besteht aus einem Stapel Folien, abwechselnd leitend und isolierend. Eindringende Protonen deponieren eine zusätzliche Ladung in der Folie in der sie stoppen. Durch eine gleichzeitige Strommessung an allen Folien misst der MLFC relativ schnell die Reichweite der Protonen. Aufgabe dieser Arbeit ist es, einen MLFC entsprechend den Anforderungen der Augentumortherapie zu entwickeln, aufzubauen und mögliche Anwendungspotentiale zu untersuchen. Dafür wurden Monte-Carlo-Rechnungen mit MCNPX 2.6 und SRIM durchgeführt, verschiedene Folienstapel an Luft und im Vakuum untersucht, verschiedene Messelektroniken zur gleichzeitigen Messung von Strömen im pA-Bereich in vielen Kanälen getestet, ein Absorbersystem für einen variablen Messbereich von 30 MeV bis 70 MeV aufgebaut und die entsprechende Mess- und Steuersoftware in LabVIEW 2011 entwickelt. Es wurde die Genauigkeit der Reichweitenmessungen untersucht und gezeigt, dass der MLFC durch seine Mobilität eine schnelle Energiebestimmung an unterschiedlichen Experimentierplätzen erlaubt. In der Therapie ist neben der einfachen Bestimmung der maximalen Reichweite der Protonen auch die regelmäßige Kontrolle der Modulation der ausgedehnten Bragg-Kurven möglich. / Proton therapy of uveal melanomas is primarily used for the treatment of tumors near critical structures (optic nerve) and in large tumors. The great advantage of protons is their sharply limited range in tissue, which leads to sharp defined dose fields in the eye and the dose absorbed by the healthy tissue around the tumor can be reduced. Therefore, the positioning of the patient and the radiation fields, as well as the regular control measurements in the eye tumor therapy requires an accuracy of 0.1 mm in water. A Multi-Leaf Faraday Cup (MLFC) gives the opportunity to measure the proton range relatively fast and accurate. The MLFC measures the differential fluence, which means the range profile of the proton beam. It consists of a stack of sheets, alternating conductive and insulating, and the penetrating protons bring their additional charge into the sheet in which they stop. By measuring the corresponding current in each conducting sheet at the same time, the MLFC can quickly measure the range of the protons. The task of this work is to develop a MLFC with respect to the requirements of the eye tumor therapy and to explore possible application potentials. Therefore, Monte Carlo calculations with MCNPX 2.6 and SRIM were conducted, various foil stacks were studied in air and in vacuum, different measurement electronics for measuring currents in the pA range in many channels simultaneously were tested, a system of degraders for a variable measuring range from 30 MeV to 70 MeV was developed and the corresponding measurement and control software was written in LabVIEW 2011. The accuracy of the range measurements was examined and it was shown that a quick energy measurement at different target stations can be made by the MLFC due to its mobility. In therapy, in addition to the determination of the maximum range of the proton beam, the regular monitoring of the modulation of the extended Bragg-curves is in principle possible.
|
6 |
Development of a compact test facility for SRF Photoelectron injectorsVölker, Jens 09 August 2018 (has links)
SHF Photoelektroneninjektoren sind eine vielversprechende Elektronquelle für hochbrillante Teichenbeschleuniger mit hohem mittlerem Strom und kurzen Teilchenpulsen, wie FELs und ERLs. Für das ERL Projekt bERLinPro wurde einer unabhängige Testanlage GunLab entwickelt um die Leistungsfähigkeit der Injektoren und die Strahlparameter zu überprüfen. Darüber hinaus können neue Komponenten zur Strahldiagnose getestet werden. Die Hauptaufgabe von GunLab ist die Beschreibung des vollständigen sechsdimensionalen Phasenraums der Elektronen in Abhängigkeit aller Injektorparameter. Die Anlage besteht aus einer kompakten Diagnosestrahlführungan dem SHF Photoelektroneninjektoren und einem Kathodenlasersystem. Im Rahmen dieser Arbeit wurden analytische und numerische Studien zu den SHF Photoelektroneninjektoren durchgeführt, um zu erwartende Strahlparameter zu detektieren und die Anforderungen an die Strahldiagnose festzulegen. Darüber hinaus wurden verschiedene Emittanzbeiträge der einzelnen Injektorkomponenten untersucht. Diesbezüglich wurde das Magnetfeld des aktuellen Solenoiden kartiert und auf Asymmetrien getestet, die ebenfalls zu Emittanzvergrößerungen beitragen können.
Eine der wesentlichen Komponenten der Diagnosestrahlführung ist das (transversale) Phasenraummesssystem, für das eine besondere Magnetgeometrie entwickelt wurde.
Weitere Diagnose Komponenten sind ein optimierter Spektrometerdipol und eine transversal ablenkende Kavität, durch die sich zusammen mit zwei Quadrupolmagneten die Scheibenemittanz bestimmen lässt. Für GunLab wurden unterschiedliche optische Messsysteme entwickelt und optimiert. Der herausforderndste Aufbau ist dabei das Strahl-Halo Messsystem. Es ermöglicht die Beobachtung der transversalen Ladungsverteilung über einen Dynamikbereich von bis zu 6 Größenordnungen.
Die Leistungsfähigkeit und die Auflösung aller Messsysteme und Messroutinen wurden bestimmt, um die Visualisierung des kompletten Phasenraums durch GunLab sicher zu stellen. / SRF photoelectron injectors are promising electron sources for high brightness accelerators with high average current and short pulse duration like FELs and ERLs. For the ERL project bERLinPro an independent test facility called GunLab was developed and set up to optimize the operation performance of SRF photoinjectors and the electron beam parameters.
Furthermore, GunLab allows to investigate the operation of different kinds of
photocathodes in the environment of an SRF accelerator and to study new beam diagnostic concepts.
Of outmost importance is the characterization of the full six dimensional phase space as
a function of all injector parameters. GunLab consists of the compact
diagnostic beam line, connected to the SRF photoinjetor module, and a drive laser.
In the context of this thesis, analytical and numerical investigations of the SRF photoinjector were performed to estimate beam parameter ranges and to determine the diagnostics requirements. Furthermore, various emittance contributors of the injector were determined. Thereby the magnetic field of the final designed
solenoid was measured to determine field asymmetries, which are one major source of emittance growth.
One of the central diagnostic components of the beamline is the (horizontal) phase space scanner system. For this purpose, a dedicated air-coil magnet design was developed.
Additional diagnostic components include an optimized spectrometer system, a transverse deflecting cavity (TCav) and two quadrupole magnets, to determine longitudinal and sliced emittance. For GunLab different optical measurement systems were developed and optimized, the most challenging setup is a beam halo measurement system. This device is able to observe the transverse charge density with a dynamic range of up to 6 orders of magnitude.
The performance and the resolution of all measurement systems and routines for GunLab were determined to ensure the visualization of the electron beam phase space.
|
Page generated in 0.0361 seconds