• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 1
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 8
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Highly conductive stretchable electrically conductive composites for electronic and radio frequency devices

Agar, Joshua Carl 05 July 2011 (has links)
The electronics industry is shifting its emphasis from reducing transistor size and operational frequency to increasing device integration, reducing form factor and increasing the interface of electronics with their surroundings. This new emphasis has created increased demands on the electronic package. To accomplish the goals to increase device integration and interfaces will undoubtedly require new materials with increased functionality both electrically and mechanically. This thesis focuses on developing new interconnect and printable conductive materials capable of providing power, ground and signal transmission with enhanced electrical performance and mechanical flexibility and robustness. More specifically, we develop: 1.) A new understanding of the conduction mechanism in electrically conductive composites (ECC). 2.) Develop highly conductive stretchable silicone ECC (S-ECC) via in-situ nanoparticle formation and sintering. 3.) Fabricate and test stretchable radio frequency devices based on S-ECC. 4.) Develop techniques and processes necessary to fabricate a stretchable package for stretchable electronic and radio frequency devices. In this thesis we provide convincing evidence that conduction in ECC occurs predominantly through secondary charge transport mechanism (tunneling, hopping). Furthermore, we develop a stretchable silicone-based ECC which, through the incorporation of a special additive, can form and sinter nanoparticles on the surface of the metallic conductive fillers. This sintering process decreases the contact resistance and enhances conductivity of the composite. The conductive composite developed has the best reported conductivity, stretchability and reliability. Using this S-ECC we fabricate a stretchable microstrip line with good performance up to 6 GHz and a stretchable antenna with good return loss and bandwidth. The work presented provides a foundation to create high performance stretchable electronic packages and radio frequency devices for curvilinear spaces. Future development of these technologies will enable the fabrication of ultra-low stress large area interconnects, reconfigurable antennas and other electronic and RF devices where the ability to flex and stretch provides additional functionality impossible using conventional rigid electronics.
12

Beiträge zur additiven Herstellung biokompatibler flexibler und dehnbarer Elektronik

Schubert, Martin 13 April 2021 (has links)
Die Etablierung der Telemedizin stellt neue Herausforderungen an die Aufbau- und Verbindungstechnik der Elektronik. Neue medizintechnische Anwendungen für die breite Gesellschaft erfordern biokompatible, flexible und dehnbare Elektronik, die zugleich kostengünstig und individuell hergestellt werden kann. Einen vielversprechenden Ansatz bietet die Verwendung additiver Herstellungsverfahren. Gegenstand dieser Arbeit ist die Materialauswahl für flexible und dehnbare Mikrosysteme vor dem Hintergrund der Anforderungen für zukünftige biomedizinische Anwendungen und unter Verwendung ausschließlich additiver Verfahren. Der grundlegende Aufbau gedruckter Elektronik, bestehend aus Leiterzügen verschiedener Nanopartikeltinten und polymeren Substraten, wird hinsichtlich biologischer und mechanischer Eigenschaften untersucht. Diese Charakterisierung beinhaltet die Evaluation der Zytotoxizität, Haftfestigkeit, Biegebelastung und Dehnungsbelastung der Materialkombinationen. Im Fokus steht der Inkjetdruck von Platintinte auf flexiblen Polyimid- und dehnbaren Polyurethansubstraten. Aufgrund der Inkompatibilität zwischen der erforderlichen Sintertemperatur der Platintinte und der Erweichungstemperatur des Polyurethans, wird das photonische Sintern untersucht. Dafür kommen Lasersintern und Blitzlampensintern zum Einsatz. Die Platintinte zeigt ausgezeichnete Eigenschaften im Zytotoxizitätstest durch 98 %ige Zellvitalität im Vergleich zur biokompatiblen Referenz. Die bestimmten Haftfestigkeiten liegen zwischen 0,5N/mm2 und 2,5N/mm2 und entsprechen damit aktuellen Literaturwerten. Weiterhin zeigt das Ergebnis von Biegetests vielversprechende flexible Eigenschaften. Der Widerstand nach 180 000 Biegezyklen erhöht sich bei einem Biegeradius von 5mm um maximal 9,5% und bei 2mm um maximal 42 %. Die Dehnungstests mit Horseshoestrukturen aus Silbertinte zeigen ca. 400 Dehnungszyklen bei 10% Dehnung und ca. 400 Zyklen bei 20% Dehnung bis zur vollständiger Leiterzugunterbrechung. Zwei Demonstratoren validieren das Potential der ausschließlichen Nutzung von additiven Prozessen zur Herstellung biomedizinischer Mikrosysteme. Der erste Demonstrator ist eine Hautelektrode, welche sich durch temporären Elektroden-Hautkontakt zur Hautleitwertmessung eignet. Der zweite Demonstrator beinhaltet eine miniaturisierte, gedruckte Interdigitalelektrode, die durch die Anwendung von Nanosekundenimpulsen in der Lage ist, Zellen zu manipulieren. Die Erkenntnisse aus dieser Arbeit zeigen das große Potential der Nutzung additiver Prozesse für die Herstellung von Medizinprodukten.
13

Ionic Liquid–Based 3D Printed Soft Pressure Sensors and Their Applications

Emon, Md Omar Faruk 25 August 2020 (has links)
No description available.
14

Comparative Life Cycle Assessment of Cardiac Monitoring Devices : A Case Study

Kokare, Samruddha January 2020 (has links)
Current cardiac monitoring devices are rigid, bulky, and integrate poorly with the human skin, obstructing health monitoring for longer periods. With the miniaturization of electronics, soft and stretchable polymer substrate-based cardiac monitoring device is being developed at Mycronic AB to overcome the aforementioned issues and replacing the traditional rigid electronics-based cardiac monitoring devices. Manufacturing of stretchable cardiac monitoring device includes new materials and manufacturing techniques as well as different end-of-life treatments. The sustainability of this kind of stretchable device is often enquired by curious customers and environment enthusiasts. Without a comprehensive scientific study on the environmental performance of this device, it is difficult for the manufacturer to answer such inquiries. Hence, this study aims to carry out a comparative Life Cycle Assessment (LCA) of rigid and stretchable cardiac monitoring devices. The LCA for both the devices was based on ISO 14044:2006 standards. The impact assessment method used was ReCiPe 2016 (Hierarchist). The LCA results showed that the stretchable cardiac monitor had significantly lower impacts than its rigid counterpart. Lower usage of Printed Circuit Board (PCB) in the stretchable device was the main reason for its better environmental performance. The PCB was identified as the major environmental hotspot in both the devices. / Nuvarande hjärtövervakningsanordningar är styva, skrymmande och dåligt integrerade med människans hud och hindrar övervakning under längre perioder. Inom ramen för det europeiska forskingsprojektet SINTEC har Mycronic bidragit till att utveckla en ny design och tillverkningsmetod för en mjuk och töjbar polymersubstratbaserad övervakningsanordning för att övervinna de ovan nämnda hindren med de traditionella alternativ. Tillverkning av töjbar hjärtövervakningsanordning inkluderar nya material och tillverkningstekniker som ger en ökad hållbarhet som ofta efterfrågas av nyfikna kunder och miljöentusiaster. Men utan en omfattande vetenskaplig studie om enhetens miljöprestanda är det dock svårt för tillverkaren att besvara sådana frågor, och därför syftar denna studie till att utföra en jämförande livscykelanalys (LCA) av styva och töjbara hjärtövervakningsanordningar. LCA för båda enheterna baseras på ISO 14044: 2006-standarder. Den konsekvensbedömning som användes var ReCiPe 2016 (Hierarchist). LCA-resultaten visade att den töjbara hjärtmonitorn hade signifikant lägre påverkan än dess styva motsvarighet. Lägre användning av kretskort (PCB) i den töjbara enheten var den främsta anledningen till dess bättre miljöprestanda och just PCB identifierades som den viktigaste miljöhotspoten i båda enheterna.
15

Semiconducting Organosilicon-based Hybrids for the Next Generation of Stretchable Electronics

Ditte, Kristina 12 May 2023 (has links)
During past years, organic-based electronic devices revealed high promise to supplement the ubiquitous silicon-based electronic devices and enable new fields of applications. At the center of this development is the considerable progress regarding π-conjugated polymer semiconductors (PSCs): Due to their processability from solution, light-weight, as well as low-cost, PSCs are now evolving towards production-scale of new technologies, e.g., in organic solar cells (OSCs), organic field-effect transistors (OFETs), and organic light emitting diodes (OLEDs). Especially OFETs are of fundamental importance, as they constitute the switching units in all logic circuits and display technologies. However, the future world is expected to be full with smart electronics and communication devices integrated in clothes, tools and even interacting with the human body, e.g., as on-skin wearable sensors. For this the electrically-active material, just as a human tissue, requires to combine several properties in addition to being charge conducting: They need to show (i) mechanical softness, (ii) capacity to repair, (iii) multimodal sensitivity, as well as (iv) biodegradability. Here, PSCs still face challenges as they are brittle and break upon applying a mechanical stress. When trying to address this issue, the existing knowledge on mechanical properties of well-established polymeric plastics, e.g., polystyrene, cannot be directly applied for several reasons, e.g., (i) the bulkiness of monomers (including long side-chains), (ii) the rigid π-conjugated backbone, (iii) the low degree of polymerization, (iv) the small quantities in which PSCs are available, etc. Moreover, these kinds of materials should not only be mechanically compliant and stretchable, but furthermore retain their charge mobility upon stretching, and withstand numerous of mechanical stretching cycles. Considering this complex problem, researchers have been developing and investigating several approaches to combine good electrical properties and mechanical compliance within one material. These approaches include (i) stress-accommodating engineering, (ii) blending of PSCs into elastic matrix, as well as (iii) molecular engineering approach. The latter seeks to interlink mechanical and electrical properties on the molecular level, i.e., synthesize polymers that are charge conducting and stretchable. Different strategies were tested, from the modification of side chains, to the introduction of conjugation breakings spacers into the backbone. Selected works sought to incorporate stretchability and conductivity by utilizing block copolymers, i.e., covalently linking a conjugated and a non-conjugated polymer chain, resulting in a phase separation of both constituents and preserving their respective properties. The ultimate goal of this work is to achieve an intrinsically stretchable and electrically high-performing PSC via the block copolymer approach. This is done by connecting organosilicone, namely the polydimethylsiloxane (PDMS) elastomer – possessing outstanding mechanical properties, as well as good environmental and air stability – with a conjugated diketopyrrolopyrrole (DPP)-based donor-acceptor copolymer. The final obtained structure of this polymer is a tri-block copolymer (TBC) consisting of an inner DPP-based polymer block and two outer soft PDMS polymer blocks. The content of PDMS block can be controlled and be very high (up to 67 wt%), and easy processing, e.g., via shear coating, is possible. Relatively high charge carrier mobilities – in the same range as the reference DPP-based copolymer (i.e., without outer PDMS blocks) – are retained, and the block copolymers withstands numerous stretching cycles (up to 1500 cycles) without losing electrical functionality. Finally, one of the block copolymers was successfully incorporated into a biosensor for COVID-19 antibodies and antigens detection. Overall, the findings of this work show that the block copolymer is a highly versatile approach to obtain functional and stretchable semiconductors with high charge carrier mobilities. Block copolymers consisting of a high-performing donor-acceptor PSC and a biocompatible elastomer could contribute towards one of the long-term goals of organic electronics – the realization of mechanically compliant materials for applications in stretchable electronics (e.g., wearable sensors, electronic skin, etc.).
16

Conception de nouveaux matériaux conducteurs extensibles à base de multicouches de polyélectrolytes sur support silicone / Conception of new stretchable conducting materials based on polyelectrolyte multilayers on silicon substrate

Saint-Aubin, Christine de 20 September 2013 (has links)
Cette thèse propose tout d’abord une méthode originale, appelée 2 en 1, de construction contrôlée, couche-par-couche, de films de polyélectrolytes, basée sur le dépôt d’un unique complexe polycation-polyanion. Détaillée dans le cas du poly(éthylènedioxythiophène)-poly(styrènesulfonate) PEDOT-PSS, la méthode est ensuite étendue avec le même succès à d’autres complexes (poly(éthylèneimine) branché-poly(4 styrènesulfonate), poly(diallyldiméthylammonium)-poly(4 styrènesulfonate) et poly(allylamonium)-poly(4 styrènesulfonate)).Les films 2 en 1 de PEDOT PSS sont robustes vis-à-vis d’un recuit thermique et possèdent une conductivité électronique indépendante de leur épaisseur. Cette conductivité peut être améliorée en utilisant un composite contenant des nanoparticules d’or Au Np PEDOT PSS. Des superstructures alternant dépôts de PEDOT PSS et de composite ont, en outre, pu être construites.La construction est contrôlée non seulement sur des substrats rigides (verre, wafer de silicium) mais également sur des substrats élastomère de type silicone (polydiméthylsiloxane PDMS). Le traitement du PDMS par polymérisation plasma d’EDOT sous vide permet le dépôt subséquent de films 2 en 1 de PEDOT PSS. Par ailleurs, la pulvérisation cathodique d’or sur le PDMS permet d’obtenir des conducteurs étirables, de surcroît utilisables comme substrats de films 2 en 1 de PEDOT PSS.Enfin, de nouveaux complexes aqueux synthétisés par voie chimique à partir d’EDOT et d’un polysaccharide (sulfate de chondroïtine A) ont conduit à des films présentant une très bonne conduction qui peut être augmentée par inclusion de nanoparticules d’or. Ces nouveaux composés sont porteurs d’un potentiel très prometteur. / This thesis proposes firstly an original method, called 2 in 1 method, for controlled, layer-by-layer, polyelectrolytes film buildup, based on the deposition of a sole polycation-polyanion complex. Detailed on the case of poly(ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS), the method was then extended with the same success to other complexes (branched poly(ethyleneimine)-poly(4 styrenesulfonate), poly(diallyldimethylammonium)-poly(4 styrenesulfonate) and poly(allylamonium)-poly(4 styrenesulfonate)).The 2 in 1 PEDOT PSS films are robust regarding thermal annealing and have an electronic conductivity independent of their thickness. This conductivity can be improved by using a composite containing gold nanoparticles Au Np PEDOT PSS. Superstructures alternating PEDOT PSS and composite depositions were also obtained.Film buildup is controlled not only on rigid substrates (glass, silicon wafer) but also on elastomeric substrates of the silicon type (polydimethylsiloxane PDMS). The treatment of PDMS by vacuum plasma enhanced chemical vapor deposition (PECVD) of EDOT allows subsequent deposition of 2 in 1 PEDOT-PSS films. Besides, gold sputter deposition on PDMS reaches stretchable conductors. Gold sputtered PDMS can further act as a substrate for 2 in 1 PEDOT-PSS films.Finally, new aqueous complexes, chemically synthesized from EDOT and a polysaccharide (chondroitin sulfate A), lead to films which exhibit a very good conduction, which can be improved by the inclusion of gold nanoparticles. These new complexes are very promising in the field of conductive biomaterials.
17

Development and 3D Printing of Intrinsically Stretchable Materials for Microsupercapacitors

Engman, Alexander January 2020 (has links)
The purpose of this thesis is to develop a simple Direct Ink Writing (DIW) method for fabricating intrinsically stretchable microsupercapacitors as ef- fective on-chip energy storage devices for the emerging stretchable electron- ics. Using the printing method for fabricating intrinsically stretchable elec- tronic components remains a novel approach. In this thesis, interdigitated structures of intrinsically stretchable electrodes were printed on a stretchable thermoplastic polyurethane (TPU) substrate using a formulated ink based on Poly(3,4-ethylenedioxythiophene):Polystyrene Sulfonate. Formulated elec- trolytes based on Poly(4-styrene Sulfonic Acid) and Phosphoric Acid were applied to the electrodes to complete the fabrication of microsupercapacitors. Cyclic Voltammetry (CV), Galvanostatic Charge-Discharge (GCD) and Elec- trochemical Impedance Spectroscopy (EIS) were used to characterize the per- formance of the devices. The stretchability of the electrodes was also mea- sured. Results from CV-measurements revealed a maximum capacitance of740 µF cm−2 at a scan rate of 5 mV s−1. GCD-measurements showed a capaci- tance of 952 µF cm−2 for the same device and an equivalent series resistance of approximately 7 kΩ. The printed electrodes exhibited a stretchability of 80%. The results show the feasibility of fabricating intrinsically stretchable energystorage devices using commercially available materials and a simple 3D print- ing technique. This method could be used as a high-throughput and low-cost method for stretchable electronics applications. / Syftet med detta arbete är att utveckla en simpel Direct Ink Writing (DIW) metod för framställning av intrinsiskt sträckbara mikrosuperkondensatorer som effektiva on-chip energilagrinsenheter i kommande sträckbar elektronik. Användandet av DIW för att tillverka intrinsiskt sträckbara elektroniska kom- ponenter är ett nytt tillvägagångssätt. I detta arbete trycktes interdigiterade strukturer av intrinsiskt sträckbara elektroder på ett sträckbart termoplastiskt polyuretan (TPU) substrat genom att använda ett formulerat bläck baserat på Poly(3,4-etylendioxitiofen):Polystyren Sulfonat (PEDOT:PSS). Formuler- ade elektrolyter baserade på Poly(4-styrensulfonsyra) och Fosforsyra applicer- ades på elektroderna för att färdigställa tillverkningen av mikrosuperkonden- satorer. Cyklisk Voltammetri (CV), Galvanostatisk uppladdning-urladdning (eng. GCD) och Elektrokemisk Impedansspektroskopi (EIS) användes för att karaktärisera enheternas prestanda. Bläckets sträckbarhet uppmättes också. Resultaten från CV-mätningar visade att den maximala kapacitansen var 742µF cm−2 vid skanningsfrekvensen 5 mV s−1. Kapacitansen från GCD-mätningar var 952 µF cm−2 för samma enhet och den ekvivalenta serieresistansen var cirka 7 kΩ. Sträckbarheten som de tryckta elektroderna uppvisade var 80%. . Re- sultaten påvisar möjligheten att kunna framställa intrinsiskt sträckbara en-ergilagringsenheter genom att använda kommersiellt tillgängliga material och en simpel metod för friformsframställning. Denna metod skulle kunna använ- das för att framställa sträckbara elektroniska komponenter till låg kostnad och med hög produktionstakt.
18

Stretchable Magnetoelectronics / Dehnbare Magnetoelektronik

Melzer, Michael 22 December 2015 (has links) (PDF)
In this work, stretchable magnetic sensorics is successfully established by combining metallic thin films revealing a giant magnetoresistance effect with elastomeric materials. Stretchability of the magnetic nanomembranes is achieved by specific morphologic features (e.g. wrinkles), which accommodate the applied tensile deformation while maintaining the electrical and magnetic integrity of the sensor device. The entire development, from the demonstration of the world-wide first elastically stretchable magnetic sensor to the realization of a technology platform for robust, ready-to-use elastic magnetoelectronics with fully strain invariant properties, is described. The prepared soft giant magnetoresistive devices exhibit the same sensing performance as on conventional rigid supports, but can be stretched uniaxially or biaxially reaching strains of up to 270% and endure over 1,000 stretching cycles without fatigue. The comprehensive magnetoelectrical characterization upon tensile deformation is correlated with in-depth structural investigations of the sensor morphology transitions during stretching. With their unique mechanical properties, the elastic magnetoresistive sensor elements readily conform to ubiquitous objects of arbitrary shapes including the human skin. This feature leads electronic skin systems beyond imitating the characteristics of its natural archetype and extends their cognition to static and dynamic magnetic fields that by no means can be perceived by human beings naturally. Various application fields of stretchable magnetoelectronics are proposed and realized throughout this work. The developed sensor platform can equip soft electronic systems with navigation, orientation, motion tracking and touchless control capabilities. A variety of novel technologies, like smart textiles, soft robotics and actuators, active medical implants and soft consumer electronics will benefit from these new magnetic functionalities.
19

Stretchable Magnetoelectronics

Melzer, Michael 19 November 2015 (has links)
In this work, stretchable magnetic sensorics is successfully established by combining metallic thin films revealing a giant magnetoresistance effect with elastomeric materials. Stretchability of the magnetic nanomembranes is achieved by specific morphologic features (e.g. wrinkles), which accommodate the applied tensile deformation while maintaining the electrical and magnetic integrity of the sensor device. The entire development, from the demonstration of the world-wide first elastically stretchable magnetic sensor to the realization of a technology platform for robust, ready-to-use elastic magnetoelectronics with fully strain invariant properties, is described. The prepared soft giant magnetoresistive devices exhibit the same sensing performance as on conventional rigid supports, but can be stretched uniaxially or biaxially reaching strains of up to 270% and endure over 1,000 stretching cycles without fatigue. The comprehensive magnetoelectrical characterization upon tensile deformation is correlated with in-depth structural investigations of the sensor morphology transitions during stretching. With their unique mechanical properties, the elastic magnetoresistive sensor elements readily conform to ubiquitous objects of arbitrary shapes including the human skin. This feature leads electronic skin systems beyond imitating the characteristics of its natural archetype and extends their cognition to static and dynamic magnetic fields that by no means can be perceived by human beings naturally. Various application fields of stretchable magnetoelectronics are proposed and realized throughout this work. The developed sensor platform can equip soft electronic systems with navigation, orientation, motion tracking and touchless control capabilities. A variety of novel technologies, like smart textiles, soft robotics and actuators, active medical implants and soft consumer electronics will benefit from these new magnetic functionalities.:Outline List of abbreviations 7 1. INTRODUCTION 1.1 Motivation and scope of this work 8 1.1.1 A brief review on stretchable electronics 8 1.1.2 Stretchable magnetic sensorics 10 1.2 Technological approach 11 1.3 State-of-the-art 12 2. THEORETICAL BACKGROUND 2.1 Magnetic coupling phenomena in layered structures 14 2.1.1 Magnetic interlayer exchange coupling 14 2.1.2 Exchange bias 15 2.1.3 Orange peel coupling 16 2.2 Giant magnetoresistance 17 2.2.1 Electronic transport through ferromagnets 17 2.2.2 The GMR effect 19 2.2.3 GMR multilayers 20 2.2.4 Spin valves 21 2.3 Theory of elasticity 22 2.3.1 Elastomeric materials 22 2.3.2 Stress and strain 23 2.3.3 Rubber elasticity 25 2.3.4 The Poisson effect 26 2.3.5 Viscoelasticity 27 2.3.6 Bending strain in a stiff film on a flexible support 27 2.4 Approaches to stretchable electronic systems 28 2.4.1 Microcrack formation 28 2.4.2 Meanders and compliant patterns 29 2.4.3 Surface wrinkling 30 2.4.4 Rigid islands 32 3. METHODS & MATERIALS 3.1 Sample fabrication 34 3.1.1 Polydimethylsiloxane (PDMS) 34 3.1.2 PDMS film preparation 35 3.1.3 Lithographic structuring on the PDMS surface. 36 3.1.4 Magnetic thin film deposition 38 3.1.5 GMR layer stacks 40 3.1.6 Mechanically induced pre-strain 43 3.1.7 Methods and materials for the direct transfer of GMR sensors 45 3.1.8 Materials used for imperceptible GMR sensors 47 3.2 Characterization 48 3.2.1 GMR characterization setup with in situ stretching capability 48 3.2.2 Sample mounting 50 3.2.3 Electrical contacting of stretchable sensor devices 51 3.2.4 Customized demonstrator electronics 52 3.2.5 Microscopic investigation techniques 53 4. RESULTS & DISCUSSION 4.1 GMR multilayer structures on PDMS 54 4.1.1 Pre-characterization 54 4.1.2 Thermally induced wrinkling 55 4.1.3 Self-healing effect 57 4.1.4 Demonstrator: Magnetic detection on a curved surface 60 4.1.5 Sensitivity enhancement 61 4.1.6 GMR sensors in circumferential geometry 64 4.1.7 Stretchability test 67 4.2 Stretchable spin valves 69 4.2.1 Random wrinkles and periodic fracture 70 4.2.2 GMR characterization 73 4.2.3 Stretching of spin valves 74 4.2.4 Microcrack formation mechanism 76 4.3 Direct transfer printing of GMR sensorics 81 4.3.1 The direct transfer printing process 82 4.3.2 Direct transfer of GMR microsensor arrays 84 4.3.3 Direct transfer of compliant meander shaped GMR sensors 86 4.4 Imperceptible magnetoelectronics 89 4.4.1 GMR multilayers on ultra-thin PET membranes 89 4.4.2 Imperceptible GMR sensor skin 92 4.4.3 Demonstrator: Fingertip magnetic proximity sensor 93 4.4.4 Ultra-stretchable GMR sensors 94 4.4.5 Biaxial stretchability 99 4.4.6 Demonstrator: Dynamic detection of diaphragm inflation 101 5. CONCLUSIONS & OUTLOOK 5.1 Achievements 102 5.2 Outlook 104 5.2.1 Further development steps 104 5.2.2 Prospective applications. 105 5.3 Technological impact: flexible Bi Hall sensorics 106 5.3.1 Application potential 106 5.3.2 Thin and flexible Hall probes 107 5.3.3 Continuative works and improvements 108 5.4 Activities on technology transfer and public relations 108 Appendix References 110 Selbständigkeitserklärung 119 Acknowledgements 120 Curriculum Vitae 121 Scientific publications, contributions, patents, grants & prizes 122

Page generated in 0.051 seconds