Spelling suggestions: "subject:"superspace"" "subject:"superespace""
1 |
Higher order contributions to the effective action of N = 2 and 4 supersymmetric Yang-Mills theories from heat kernel techniques in superspaceGrasso, Darren Trevor January 2007 (has links)
The one-loop effective action for N = 2 and N = 4 supersymmetric Yang-Mills theories are computed to order F5; and F6 respectively by the use of heat kernel techniques in N = 1 superspace. The computations are carried out via the introduction of a new method for computing DeWitt-Seeley coefficients in the coincidence limit. To order F5, the bosonic components of both N = 2 and N = 4 supersymmetric Yang-Mills theories are extracted and compared with the existing literature. For N = 4 super Yang-Mills theories the F5 terms are found to be consistent with the non-Abelian Born-Infeld action computed to this order by superstring methods and various other means of computing deformations of supersymmetric Yang-Mills theory. The result proved to be the final piece of a puzzle, leaving little doubt that there exists a unique deformation of maximally symmetric super Yang-Mills theories at this order. The F6 terms will be of importance for comparison with superstring calculations, including direct tests of the AdS/CFT conjecture. The bosonic components of N = 2 supersymmetric Yang-Mills are also shown to be consistent with existing literature, and will be of importance for testing of generalizations of the AdS/CFT conjecture.
|
2 |
HIGHER DERIVATIVE CORRECTIONS TO EXTENDED SUPERSYMMETRIC THEORIESBRAUN, GREGORY ALBERT 07 October 2004 (has links)
No description available.
|
3 |
Caractérisations structurales, phases modulées et transitions de phases: le cas des phases d'AurivilliusBoullay, P. 11 September 2008 (has links) (PDF)
Bien que mon activité de recherche a été principalement axée sur la caractérisation structurale des phases d'Aurivillius en relation avec leurs propriétés ferroélectriques, je me suis aussi intéréssé à divers aspects liés à la synthèse de ces phases que ce soit sous forme de monocristaux, de poudres ou encore de films (voie chimique). Une première section consacrée à la synthèse ouvrira donc cette deuxième partie. Dès mon arrivée au SPCTS, une part importante de mon activité a été consacrée à l'étude des intercroissances à longues périodes qui ont pu être observées dans divers systèmes mais dont les caractéristiques structurales restaient inconnues. Sur la base de nos observations expérimentales, un modèle cristallographique généralisé utilisant le formalisme des groupes de super-espace a été développé pour les stuctures de type Aurivillius. Ce travail est issu d'une collaboration étroite avec l'équipe du Prof. J.M. Perez-Mato de l'Université de Bilbao. Cette nouvelle approche cristallographique et son utilisation constitueront la deuxième section. L'étude des relations structure/propriétés dans ces composés a constitué une autre part importante de mes recherches au SPCTS avec, notamment, le co-encadrement de la thèse de Jenny Tellier. Les divers aspects de la transition ferroélectrique-paraélectrique (FE-PE) rencontrés dans les composés de type Aurivillius ont été abordés que ce soit dans le cas des termes simples, des composés d'intercroissances que dans le cas, moins classique, des composés présentant un comportement ressemblant à celui de "relaxeurs" tel que Pb(Mg1/3Nb2/3)O3. Ce travail visant à décrire les mécanismes structuraux associés à la transition FE-PE fera l'objet de la troisième et dernière section.
|
4 |
It's pretty super! : A Mathematical Study of Superspace in Fourdimensional, Unextended SupersymmetryFriden, Eric January 2012 (has links)
Superspace is a fundamental tool in the study of supersymmetry, one that while often used is seldom defined with a proper amount of mathematical rigor. This paper examines superspace and presents three different constructions of it; the original by Abdus Salam and J. Strathdee as well as two modern methods by Alice Rogers and Buchbinder-Kuzenko.Though the structures arrived at are the same the two modern constructions differ in methods, elucidating different important aspects of super-space. Rogers focuses on the underlying structure through the study of supermanifolds, and Buchbinder-Kuzenko the direct correlation with the Poincare superalgebra, and the parametrisation in terms of exponents.
|
5 |
Topics in nonlinear self-dual supersymmetric theoriesMcCarthy, Shane A. January 2006 (has links)
[Truncated abstract. Formulae and special characters can only be approximated. See PDF version for accurate reproduction.] Theories of self-dual supersymmetric nonlinear electrodynamics are generalized to a curved superspace of 4D N = 1 supergravity, for both the old-minimal and the newminimal versions of N = 1 supergravity. We derive the self-duality equation, which has to be satisfied by the action functional of any U(1) duality invariant model of a massless vector multiplet, and show that such models are invariant under a superfield Legendre transformation. We construct a family of self-dual nonlinear models, which includes a minimal curved superspace extension of the N = 1 supersymmetric Born- Infeld action. The supercurrent and supertrace of such models are explicitly derived and proved to be duality invariant. The requirement of nonlinear self-duality turns out to yield nontrivial couplings of the vector multiplet to Kähler sigma models. We explicitly construct such couplings in the case when the matter chiral multiplets are inert under the duality rotations, and more specifically to the dilaton-axion chiral multiplet when the group of duality rotations is enhanced to SL(2,R). The component structure of the nonlinear dynamical systems introduced proves to be more complicated, especially in the presence of supergravity, as compared with well-studied effective supersymmetric theories containing at most two derivatives (including nonlinear Kähler sigma-models). As a result, when deriving their canonically normalized component actions, the traditional approach becomes impractical and cumbersome. We find it more efficient to follow the Kugo-Uehara scheme which consists of (i) extending the superfield theory to a super-Weyl invariant system; and then (ii) applying a plain component reduction along with imposing a suitable super-Weyl gauge condition. This scheme is implemented in order to derive the bosonic action of the SL(2,R) duality invariant coupling to the dilaton-axion chiral multiplet and a Kähler sigma-model.
|
6 |
Fonctions de corrélation en théories supersymétriques / Correlation functions in N=4 super-Yang-Mills theoryChicherin, Dmitry 13 September 2016 (has links)
Dans cette thèse on étudie les (super)fonctions de corrélation à plusieurs points et à plusieursboucle du multiplets demi-BPS en théorie N = 4 super-Yang-Mills. Les fonctions de corrélationsont des objets dynamiques naturels à considérer dans toutes les théories conformes des champs.Elles sont des quantités finies et leur symétrie (super)conforme n’est pas brisée par des divergences.Elles contiennent des informations sur de nombreuses autres intéressantes quantités dynamiques dela théorie. Le produit opératoire engendre les règles de somme pour les fonctions à trois points et lesdimensions anormales. Dans la limite du cône de lumière, elles coïncident avec les boucles de Wilsonde lumière et avec des superamplitudes de diffusion. Cette dualité tient tant au niveau des intégralesdivergentes régularisés que au niveau de leurs intégrandes rationnels finis.La partie principale de la thèse est consacrée aux super-corrélateurs à plusieurs points au niveau Born du supermultiplet du tenseur de stress. Pour les étudier on utilise les règles de Feynman qui préservent une quantité de la supersymétrie. Donc, on reformule la théorie N = 4 SYM dans le superespace harmonique de Lorentz. On s’occupe de l’espace euclidien et on harmonise la moitié du groupe de Lorentz SU(2) × SU(2). La théorie est formulée en termes de deux demi-superchamps chiraux-analytique. L’action de la théorie est une somme de deux termes : l’action de Chern-Simons et une action non-polynomiale qui prend en compte les interactions. Puisque la formulation de l’action est chiral, la Ǭ-supersymétrie est réalisée d’un façon non-linéaire sur la paire de champs. L’action se simplifie considérablement dans la jauge axiale. On obtient les propagateurs correspondants et on formule les règles de Feynman en superspace harmonique de Lorentz. Afin d’étudier super-corrélateurs non-chiraux du supermultiplet de tenseur de stress on formule l’opérateur composite pertinent en termes de demi-superchamps chiraux-analytique ainsi. Au niveau chiral, on propose la construction par R-vertex du super-corrélateur chiral. Afin d’élucider la structure du super-corrélateur on réorganise les règles de Feynman harmoniques qui introduisent une nouvelle classe des invariants hors-shell nilpotent analytique qui sont des blocs de construction élémentaires de la super-corrélateur. Ensuite, on procède au secteur non-chiral et on constate que la dépendance de Ɵ̅ est pris en compte par une légère modification du R-vertex qui consiste à une modification des variables spatio-temporelles de la base chirale à la base analytique. Ainsi, le corrélateur non-chiral est exprimée en termes d’une classe assez particulière des invariants nilpotents non-chiraux. Dans la dernière partie de la thèse, on étudie les fonctions de corrélation à quatre points des opérateurs demi-BPS dans l’approximation de trois boucle dans la limite planaire. Cette étude est motivée par une conjecture basée sur intégrabilité pour les constantes de structure. A l’ordre de trois boucles toutes les approches de graphes de Feynman connus sont extrêmement inefficaces. Le principal obstacle est un grand nombre de diagrammes de Feynman pertinents. Cependant, le corrélateur est presque complètement fixé par ses propriétés élémentaires comme symétries, singularités et planairité. La structure de pôle et la symétrie super-conforme spécifient les intégrandes rationnelles des corrélateurs à un nombre de coefficients numériques. Les coefficients sont fixés par la planairité, la symétrie de croisement et le produit opératoire en cône de lumière des intégrandes avec diverses configurations de poids dans la limite par rapport à une paire de points. / In the present thesis we study the multi-point multi-loop (super)correlation functions of half-BPSmultiplets in N = 4 super-Yang-Mills theory. Correlation functions are natural dynamical objectsto consider in any Conformal Field Theory. They are finite quantities and their (super)conformalsymmetry is not broken by divergences. They contain information about many others interestingdynamical quantities of the theory. The Operator Product Expansion being applied to them producessum rules for three-point functions and anomalous dimensions. In the light-cone limit they coincidewith the light-like Wilson loops and scattering superamplitudes. This duality holds both at the levelof the regularized divergent integrals and at the level of their finite rational integrands.The main part of the thesis is devoted to multi-point Born level super-correlators of the stress-tensor supermultiplet. There exists a number of hints that such super-correlators are remarkable dynamicalquantities in N = 4 SYM. Studying the supercorrelators it is convenient to use the Feynman rulespreserving an amount of the supersymmetry. So, we reformulate the N = 4 SYM in the Lorentzharmonic superspace. We deal with Euclidean space and harmonize one half of the Lorentz groupSU(2) x SU(2). The theory is formulated in terms of two chiral-analytic semi-superfields one ofwhich is scalar and the other one is spinor. The action of the theory is a sum of two terms: theChern-Simons action describing the self-dual N = 4 SYM theory and a non-polynomial action whichtakes into account interactions. Since the formulation of the action is chiral the Ǭ-supersymmetry isnon-linearly realized on the pair of fields. The action considerably simplifies in the axial gauge. Wework out corresponding propagators and formulate Lorentz harmonic superspace Feynman rules. Inorder to study nonchiral supercorrelators of the stress-tensor supermultiplet we formulate the relevant composite operator in terms of the chiral-analytic semi-superfields as well.At the chiral level we propose the R-vertex construction of the chiral supercorrelator which turnsout to be rational at the Born level by construction. In order to elucidate the structure of thesupercorrelator we rearrange harmonic Feynman rules introducing a new class of off-shell analyticnilpotent (Grassmann degree two). They are simple building blocks of the super-correlator. Thenwe proceeded to the nonchiral sector and and that the dependence on Ɵ̅ is taken into account by aslight modification of the R-vertices. This modification of the R-vertices is equivalent to a change of the space-time variables from the chiral to analytic bases. So the non-chiral correlator is expressed in terms of a rather special class of non-chiral nilpotent invariants.In the last part of the thesis we study four-point correlation functions of half-BPS operators inthe three-loop approximation in the planar limit. This study is motivated by an integrability basedconjecture for the structure constants. At the three-loop order all known Feynman graph approachesare extremely inefficient. The main obstacle is a huge number of relevant Feynman diagrams andthe complexity of the corresponding loop integrals. However the correlator is almost completely fixedby its elementary properties like symmetries, singularities and planarity. The pole structure andthe super-conformal symmetry specify the rational integrands of the correlators up to a number ofnumerical coefficients. We fix these coefficients using planarity, the crossing symmetry and comparingthe light-cone OPE of the correlator integrands with various weight configurations in the light-likelimit with respect to a pair of points.
|
7 |
Electric-Magnetic Duality-Symmetric Effective Actions in Harmonic SuperspaceAhmadain, Amr 10 October 2014 (has links)
No description available.
|
8 |
Supergravities in Superspace / Supergravités en SuperespaceSouères, Bertrand 17 September 2018 (has links)
Les corrections d’ordre supérieur en dérivées applicables à la théorie de supergravité à onze dimensions constituent un puissant outil pour étudier la structure miscroscopique de la théorie M. Plus partculièrement, l’invariant supersymétrique à l’ordre huit en en dérivées est nécessaire à la cohérence quantique de la théorie, mais il n’en existe à ce jour aucune expression complète. Dans cette thèse, après une introduction formelle aux théories de supergravité, nous présentons une technique appelée principe d’action (en superespace), dont le but est de générer le superinvariant complet associé au terme de Chern-Simons d’ordre huit. Bien que ce résultat ne soit pas encore atteint, nous en déterminons certaines caratérisiques, et ouvrons la voie à une résolution systématiques des étapes de calcul à venir. Dans le chapitre suivant, nous présentons les principales fonctionnalités du programme informatique crée pour gérer les imposants calculs liés au principe d’action. Ce programme est particulièrement adapté au traitement des matrices gamma, des tenseurs et des spineurs tels qu’ils surviennent en superespace. Enfin, à l’aide de ce programme, nous abordons un autre sujet calculatoire : la condensation fermionique en supergravité IIA massive. En utilisant la formulation en superespace des supergravités IIA, nous dérivons les termes de l’action quartiques en fermions, puis en imposant une valeur moyenne dans le vide non-nulle, nous montrons qu’il est possible de construire une solution de géométrie de Sitter dans deux cas simples / High order derivative terms in eleven dimensional supergravity are a powerful tool to probe the microscopic structure of M-theory. In particular, the superinvariant at order eight in number of derivatives is required for quantum consistency, but has not been completely constructed to this day. In this thesis, after a formal introduction to supergravity, we focus on a technique called the actions principle, in superspace, with the aim of generating the full superinvariant associated to the Chern-Simons term at order eight. Although we do not construct the superinvariant, we determine some of its characteristics, and pave the way for a systematic treatment of the computations leading to the correction. Then we present the main features of the computer program we built for dealing with the computations encountered in the action principle. It is specifically designed to deal with gamma matrices, tensors and spinors as they appear in superspace. Finally, with the help of this program, we tackle another computationally intensive subject : the fermionic condensation in IIA massive superspace. We use the superspace formulations of IIA supergravitites to find the quartic fermion term of the action, and by imposing a non-vanishing vacuum expectation value for this term, we realize a de Sitter solution in two simple cases
|
9 |
Systèmes intégrables intervenant en géométrie différentielle et en physique mathématiqueKhemar, Idrisse 01 March 2006 (has links) (PDF)
Notre thèse est divisée en 2 chapitres indépendants correspondant chacun à un article. Dans le premier chapitre, nous définissons une notion de surfaces isotropes dans les octonions, i.e. sur lesquelles certaines formes symplectiques canoniques s'annulent. En utilisant le produit vectoriel dans O, nous définissons une application rho de la grassmanienne des plans de O dans la sphère de dimension 6. Cela nous permet d'associer à chaque surface Sigma de O une fonction rho_Sigma de la surface sur la sphère. Alors, nous montrons que les surfaces isotropes de O telles que cette fonction est harmonique sont solutions d'un système complètement intégrable. En utilisant les groupes de lacets, nous construisons une représentation de type Weierstrass de ces surfaces. Par restriction au corps des quaternions, nous retrouvons comme cas particulier les surfaces lagrangiennes hamiltoniennes stationnaires de R^4. Par restriction à Im(H), nous retrouvons les surfaces CMC de R^3. Dans le second chapitre, nous étudions les applications supersymétriques harmoniques définies sur R^{2|2} et à valeurs dans un espace symétrique, du point de vue des systèmes intégrables. Il est bien connu que les applications harmoniques de R^2 à valeurs dans un espace symétrique sont solutions d'un système intégrable. Nous montrons que les applications superharmoniques de R^{2|2} dans un espace symétrique sont solutions d'un système intégrable, et que l'on a une représentation de type Weierstrass en termes de potentiels holomorphes (ainsi qu'en termes de potentiels méromorphes). Nous montrons également que les applications supersymétriques primitives de R^{2|2} dans un espace 4-symétrique donnent lieu, par restriction à R^2, à des solutions du système elliptique du second ordre associé à l'espace 4-symétrique considéré (au sens de C.L. Terng).Ceci nous permet d'obtenir, de manière conceptuelle, une sorte d'interprétation supersymétrique de tous les systèmes elliptiques du second ordre associés à un espace 4-symétrique, en particulier du système intégrable construit au chapitre 1 (et plus particulièrement des surfaces lagrangiennes hamiltoniennes stationnaires dans un espace symétrique).
|
10 |
Field Theoretic Lagrangian From Off-shell Supermultiplet Gauge QuotientsKatona, Gregory 01 January 2013 (has links)
Recent efforts to classify off-shell representations of supersymmetry without a central charge have focused upon directed, supermultiplet graphs of hypercubic topology known as Adinkras. These encodings of Super Poincare algebras, depict every generator of a chosen supersymmetry as a node-pair transformtion between fermionic bosonic component fields. This research thesis is a culmination of investigating novel diagrammatic sums of gauge-quotients by supersymmetric images of other Adinkras, and the correlated building of field theoretic worldline Lagrangians to accommodate both classical and quantum venues. We find Ref [40], that such gauge quotients do not yield other stand alone or "proper" Adinkras as afore sighted, nor can they be decomposed into supermultiplet sums, but are rather a connected "Adinkraic network". Their iteration, analogous to Weyl's construction for producing all finite-dimensional unitary representations in Lie algebras, sets off chains of algebraic paradigms in discrete-graph and continuous-field variables, the links of which feature distinct, supersymmetric Lagrangian templates. Collectively, these Adiankraic series air new symbolic genera for equation to phase moments in Feynman path integrals. Guided in this light, we proceed by constructing Lagrangians actions for the N = 3 supermultiplet YI /(iDI X) for I = 1, 2, 3, where YI and X are standard, Salam-Strathdee superfields: YI fermionic and X bosonic. The system, bilinear in the component fields exhibits a total of thirteen free parameters, seven of which specify Zeeman-like coupling to external background (magnetic) fluxes. All but special subsets of this parameter space describe aperiodic oscillatory responses, some of which are found to be surprisingly controlled by the golden ratio, [phi] = 1.61803, Ref [52]. It is further determined that these Lagrangians allow an N = 3 - > 4 supersymmetric extension to the Chiral-Chiral and Chiral-twistedChiral multiplet, while a subset admits two inequivalent such extensions. In a natural proiii gression, a continuum of observably and usefully inequivalent, finite-dimensional off-shell representations of worldline N = 4 extended supersymmetry are explored, that are variate from one another but in the value of a tuning parameter, Ref [53]. Their dynamics turns out to be nontrivial already when restricting to just bilinear Lagrangians. In particular, we find a 34-parameter family of bilinear Lagrangians that couple two differently tuned supermultiplets to each other and to external magnetic fluxes, where the explicit parameter dependence is unremovable by any field redefinition and is therefore observable. This offers the evaluation of X-phase sensitive, off-shell path integrals with promising correlations to group product decompositions and to deriving source emergences of higher-order background flux-forms on 2-dimensional manifolds, the stacks of which comprise space-time volumes. Application to nonlinear sigma models would naturally follow, having potential use in M- and F- string theories.
|
Page generated in 0.0322 seconds