• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bioenergy Systems in Canada: Towards Energy Security and Climate Change Solutions

Hacatoglu, Kevork 10 December 2008 (has links)
The energy security and climate change risks of fossil fuel consumption have stimulated interest in developing renewable energy sources. Canada’s vast biomass potential is an attractive local resource but high transportation costs are a barrier to implementation. This study assesses how transformative systems can enable large-scale bioenergy production through integration with existing transportation corridors and fossil fuel infrastructure. Potential bioenergy corridors include the network of natural gas pipelines and the Great Lakes St. Lawrence Seaway (GLSLS). Sustainable lignocellulosic biomass production integrated with traditional food and fibre production was assumed to occur on 196 Mha of land within 100 km of pipelines. Conservative (81 Mt of dry biomass per year) and aggressive (209 Mt) scenarios were investigated for converting biomass to synthetic natural gas (SNG) via gasification, methanation, and upgrading, yielding enough pipeline-quality gas to meet 20% to 60% of Canada’s current needs. A systems analysis approach was used to calculate bioSNG life-cycle emissions of 15 to 18 kgCO2e GJ-1, compared to 68 or 87 for conventional or liquefied natural gas, respectively. Production costs ranged from $16 to $20 GJ-1, which were high compared to regional gas prices ($5 to $10 GJ-1). The biomass potential on 125 Mha of land area within 100 km of the Canadian portion of the GLSLS and railway lines ranged from 36 to 80 Mt(dry) per year, which was enough to displace coal-fired power in Ontario plus produce 1.6 to 11 billion L of green diesel that could offset 14% to 96% of fossil diesel in GLSLS provinces. Life-cycle emissions ranged from 110 to 130 gCO2e kWh-1 for biopower (compared to 1030 for coal) and 20 to 22 kgCO2e GJ-1 for green diesel (compared to 84 for conventional diesel). Cost estimates ranged from $130 MWh-1 for biopower (compared to an average market power price of $54 MWh-1) and $28 to $36 GJ-1 for green diesel (compared to $16 to $24 GJ-1 for diesel). The auxiliary benefits (energy security, climate change, air quality, and rural development) were seen as justification for supportive bioenergy policies. / Thesis (Master, Environmental Studies) -- Queen's University, 2008-12-09 15:24:18.389
2

An Applied Numerical Simulation of Entrained-Flow Coal Gasification with Improved Sub-models

Lu, Xijia 06 August 2013 (has links)
The United States holds the world's largest estimated reserves of coal and is also a net exporter of it. Coal gasification provides a cleaner way to utilize coal than directly burning it. Gasification is an incomplete oxidation process that converts various carbon-based feedstocks into clean synthetic gas (syngas), which can be used to produce electricity and mechanical power with significantly reduced emissions. Syngas can also be used as feedstock for making chemicals and various materials. A Computational Fluid Dynamics (CFD) scheme has been used to simulate the gasification process for many years. However, many sub-models still need to be developed and improved. The objective of this study is to use the improved CFD modeling to understand the thermal-flow behavior and the gasification process and to provide guidance in the design of more efficient and cheaper gasifiers. Fundamental research has been conducted to improve the gasification sub-models associated with the volatile thermal cracking, water-gas-shift (WGS) reaction, radiation effect, low-rank-coal gasification, coal to synthetic-natural-gas (SNG), and ash deposition mechanisms. The improved volatile thermal cracking model includes H2S and COS contents. A new empirical WGS reaction model is developed by matching the result with experimental data. A new coal demoisturization model is developed for evaporating the inherent moisture inside the coal particles during low-rank-coal gasification. An ash deposition model has also been developed. Moreover, the effect of different radiation models on the simulated result has been investigated, and the appropriate models are recommended. Some improved model tests are performed to help modify an industrial entrained-flow gasifier. A two-stage oxygen feeding scheme and a unique water quench design are investigated. For the two-stage oxygen feeding design, both experimental data and CFD predictions verify that it is feasible to reduce the peak temperature and achieve a more uniform temperature distribution in the gasifier by controlling the injection scheme without changing the composition and production rate of the syngas. Furthermore, the CFD simulation can acceptably approximate the thermal-flow and reaction behaviors in the coal gasification process, which can then be used as a preliminary screening tool for improving existing gasifiers’ performance and designing new gasifiers.
3

Analyse de cycle de vie émergétique de système de valorisation de biomasse / Emergetic life cycle assesment of biomass system valorisation

Khila, Zouhour 16 December 2014 (has links)
Au regard de la croissance constante de la demande énergétique mondiale et de l'épuisement des ressources fossiles et des problèmes environnementaux, le recours à des sources d'énergie renouvelables est incontournable. La filière biomasse parait une voie prometteuse pour la production d’énergie propre et durable. La production du Gaz Naturel Synthétique (SNG) à partir de biomasse lignocellulosique est en plein essor. L’objectif de ce travail est la comparaison, par le biais d’indicateurs de développement durable, de systèmes de production de SNG à partir des résidus forestiers et des déchets des palmiers dattiers. L’Analyse de Cycle de Vie Emergétique a été choisie comme l’outil le plus judicieux pour cette étude. Elle permet de comparer les deux systèmes afin de déterminer lequel est le plus efficace et le plus durable, et de localiser leurs possibilités d’améliorations environnementales. Les résultats montrent que l'augmentation de la teneur en eau dans le gaz de synthèse peut éviter le dépôt de carbone au cours de la méthanation. Le rendement « Cold Gaz Efficiency » du procédé SNG est de 52%. Les résultats de l'évaluation environnementale montrent de fortes réductions des gaz à effet de serre pour chaque système. La transformité de SNG français est inférieure à celle du SNG tunisien. Par ailleurs, le système tunisien a la plus grande valeur du pourcentage de renouvelabilité et d'indice de durabilité. Le profil environnemental et la durabilité des deux systèmes étudiés peuvent être encore plus intéressants en installant l'unité de SNG à proximité d’oasis ou de forêts. Dans l'ensemble, le SNG devrait contribuer favorablement à l'avenir du mix d'énergie renouvelable / Actually biomass-based energy supply is a promising route for renewable energy system and sustainable development strategy. Methane rich gas from biomass can be obtained from gasification (Synthetic Natural Gas, SNG). SNG is very suitable, as it could be an important energy carrier. It could replace natural gas for electricity generation and heating systems and use the existing gas infrastructure. The main objective of this work is to investigate the syngas methanation, and to compare the environmental performance and sustainability for different SNG production systems. The French system (valorization of forest residue) and the Tunisian system (valorization of date palm waste) are analyzed and compared by using the Emergetic Life Cycle Assessment method. The inventory data are obtained mainly through process simulation by Aspen PlusTM software. The results show that increasing the steam ratio in syngas can avoid the carbon deposit during methanation process. The cold gas efficiency of the SNG process is 52%.The environmental analysis results show that high greenhouse gas savings can be obtained for each system. The transformity of the French SNG is lower than the one of the Tunisian SNG. On the other hand, the Tunisian system has the highest percentage of renewability and index of sustainability. The environmental performance and the sustainability of the two systems can be made even more attractive by installing the SNG production units near forests or oasis. Overall, the SNG is expected to contribute favorably to the future renewable energy system
4

Improved Energy Efficiency and Fuel Substitution in the Iron and Steel Industry

Johansson, Maria January 2014 (has links)
IPCC reported in its climate change report 2013 that the atmospheric concentrations of the greenhouse gases (GHG) carbon dioxide (CO2), methane, and nitrous oxide now have reached the highest levels in the past 800,000 years. CO2 concentration has increased by 40% since pre-industrial times and the primary source is fossil fuel combustion. It is vital to reduce anthropogenic emissions of GHGs in order to combat climate change. Industry accounts for 20% of global anthropogenic CO2 emissions and the iron and steel industry accounts for 30% of industrial emissions. The iron and steel industry is at date highly dependent on fossil fuels and electricity. Energy efficiency measures and substitution of fossil fuels with renewable energy would make an important contribution to the efforts to reduce emissions of GHGs. This thesis studies energy efficiency measures and fuel substitution in the iron and steel industry and focuses on recovery and utilisation of excess energy and substitution of fossil fuels with biomass. Energy systems analysis has been used to investigate how changes in the iron and steel industry’s energy system would affect the steel plant’s economy and global CO2 emissions. The thesis also studies energy management practices in the Swedish iron and steel industry with the focus on how energy managers think about why energy efficiency measures are implemented or why they are not implemented. In-depth interviews with energy managers at eleven Swedish steel plants were conducted to analyse energy management practices. In order to show some of the large untapped heat flows in industry, excess heat recovery potential in the industrial sector in Gävleborg County in Sweden was analysed. Under the assumptions made in this thesis, the recovery output would be more than three times higher if the excess heat is used in a district heating system than if electricity is generated. An economic evaluation was performed for three electricity generation technologies for the conversion of low-temperature industrial excess heat. The results show that electricity generation with organic Rankine cycles and phase change material engines could be profitable, but that thermoelectric generation of electricity from low-temperature industrial excess heat would not be profitable at the present stage of technology development. With regard to fossil fuels substituted with biomass, there are opportunities to substitute fossil coal with charcoal in the blast furnace and to substitute liquefied petroleum gas (LPG) with bio-syngas or bio synthetic natural gas (bio-SNG) as fuel in the steel industry’s reheating furnaces. However, in the energy market scenarios studied, substituting LPG with bio-SNG as fuel in reheating furnaces at the studied scrap-based steel plant would not be profitable without economic policy support. The development of the energy market is shown to play a vital role for the outcome of how different measures would affect global CO2 emissions. Results from the interviews show that Swedish steel companies regard improved energy efficiency as important. However, the majority of the interviewed energy managers only worked part-time with energy issues and they experienced that lack of time often was a barrier for successful energy management. More efforts could also be put into engaging and educating employees in order to introduce a common practice of improving energy efficiency at the company. / Halterna av växthusgaserna koldioxid (CO2), metan och kväveoxider har under de senaste 800 000 åren aldrig varit högre i atmosfären än vad de är idag. Detta resultat redovisades i IPCCs klimatrapport år 2013. CO2-koncentrationen har ökat med 40 % sedan förindustriell tid och denna ökning beror till största delen på förbränning av fossila bränslen. Ökade koncentrationer av växthusgaser leder till högre global medeltemperatur vilket i sin tur resulterar i klimatförändringar.  För att bromsa klimatförändringarna är det viktigt att vi arbetar för att minska utsläppen av växthusgaser. Industrin står för 20 % av de globala utsläppen av CO2 och järn- och stålindustrin står för 30 % av industrins utsläpp. Järn- och stålindustrin är i dag till stor del beroende av fossila bränslen och el för sin energiförsörjning. Energieffektiviseringsåtgärder och byte av fossila bränslen mot förnybar energi i järn- och stålindustrin skulle kunna bidra till minskade utsläpp av växthusgaser. Denna avhandling studerar åtgärder för effektivare energianvändning och möjligheter för bränslebyte i järn- och stålindustrin. Avhandlingen fokuserar på återvinning och utnyttjande av överskottsenergier och ersättning av fossila bränslen med biomassa. Energisystemanalys har använts för att undersöka hur förändringar i järn- och stålindustrins energisystem skulle påverka ekonomin och de globala utsläppen av CO2. Avhandlingen studerar också betydelsen av energiledning och nätverkande för att uppnå en effektivare energianvändning. Fokus har här varit på att studera hur energiansvariga resonerar kring varför energieffektiviseringsåtgärder genomförs eller varför de inte genomförs. Djupintervjuer med energiansvariga vid elva svenska stålverk genomfördes för att analysera denna fråga. För att ge ett exempel på den stora outnyttjade potentialen av överskottsvärme från industrin analyserades potentialen i Gävleborgs län. Möjligheterna att använda överskottsvärmen som fjärrvärme eller för att producera el analyserades. Här visar resultaten att fjärrvärmeproduktionen skulle bli mer än tre gånger så stor som elproduktionen. En ekonomisk utvärdering gjordes där tre tekniker för produktion av el från lågtempererad industriell överskottsvärme jämfördes. Resultaten visar att elproduktion med organisk Rankine-cykel eller en så kallad fasändringsmaterialmotor kan vara lönsam, men att termoelektrisk elproduktion inte är lönsam med dagens teknik och prisnivåer. Det är möjligt att ersätta en del av det fossila kolet i masugnen med träkol och på detta sätt introducera förnybar energi i stålindustrin. Man kan också ersätta gasol som används som bränsle i stålindustrins värmningsugnar med syntesgas eller syntetisk naturgas (SNG) som produceras genom förgasning av biomassa. Under de antaganden som gjorts i avhandlingen skulle det dock inte vara lönsamt för det skrotbaserade stålverk som studerats att ersätta gasolen med bio-SNG. För att uppnå lönsamhet behövs i detta fall ekonomiska styrmedel. Hur olika åtgärder påverkar de globala utsläppen av CO2 beror till stor del på hur framtidens energimarknad ser ut. Elproduktion från industriell överskottsvärme skulle minska de globala CO2-utsläppen i alla scenarier som studerats, men för de andra åtgärderna varierar resultaten beroende på vilka antaganden som gjorts. Resultaten från intervjustudien visar att svensk stålindustri anser att energifrågan är viktig, men det finns fortfarande mycket att göra för att effektivisera energianvändningen i denna sektor. Flera av de intervjuade arbetade bara deltid med energifrågor och de upplevde att tidsbrist hindrade dem från ett effektivt energiledningsarbete. En rekommendation till företagen är därför att anställa en energiansvarig på heltid och/eller fler personer som kan arbeta med energifrågor. Det bör också läggas mer resurser på att engagera och utbilda anställda för att på så sätt introducera en företagskultur som främjar effektiv energianvändning.
5

Alternative energy concepts for Swedish wastewater treatment plants to meet demands of a sustainable society

Brundin, Carl January 2018 (has links)
This report travels through multiple disciplines to seek innovative and sustainable energy solutions for wastewater treatment plants. The first subject is a report about increased global temperatures and an over-exploitation of natural resources that threatens ecosystems worldwide. The situation is urgent where the current trend is a 2°C increase of global temperatures already in 2040. Furthermore, the energy-land nexus becomes increasingly apparent where the world is going from a dependence on easily accessible fossil resources to renewables limited by land allocation. A direction of the required transition is suggested where all actors of the society must contribute to quickly construct a new carbon-neutral resource and energy system. Wastewater treatment is as required today as it is in the future, but it may move towards a more emphasized role where resource management and energy recovery will be increasingly important. This report is a master’s thesis in energy engineering with an ambition to provide some clues, with a focus on energy, to how wastewater treatment plants can be successfully integrated within the future society. A background check is conducted in the cross section between science, society, politics and wastewater treatment. Above this, a layer of technological insights is applied, from where accessible energy pathways can be identified and evaluated. A not so distant step for wastewater treatment plants would be to absorb surplus renewable electricity and store it in chemical storage mediums, since biogas is already commonly produced and many times also refined to vehicle fuel. Such extra steps could be excellent ways of improving the integration of wastewater treatment plants into the society. New and innovative electric grid-connected energy storage technologies are required when large synchronous electric generators are being replaced by ‘smaller’ wind turbines and solar cells which are intermittent (variable) by nature. A transition of the society requires energy storages, balancing of electric grids, waste-resource utilization, energy efficiency measures etcetera… This interdisciplinary approach aims to identify relevant energy technologies for wastewater treatment plants that could represent decisive steps towards sustainability.

Page generated in 0.0941 seconds