Spelling suggestions: "subject:"deforma"" "subject:"abnorma""
1 |
Contribució a l'estudi dels morfismes entre operadors d'indistingibilitat. Aplicació al raonament aproximatBoixader, Dionís 01 July 1997 (has links)
Aquesta memòria s'ha escrit amb l'ànim d'exposar els punts de vista i els resultats nous que l'autor ha pogut obtenir. No s'hi troba, per tant, una descripció detallada de tots els temes que conformen la teoria dels operadors de T-indistingibilitat, el Raonament Aproximat ni, per descomptat, la Lògica Difusa. S'ha glossat només els aspectes necessaris per fer la memòria autocontinguda, i s'ha reforçat l'exposició amb un conjunt ampli de referències bibliogràfiques. L'excel·lència de moltes d'elles fa absolutament innecesari i pretenciós l'intent de l'autor de reescriure sobre els mateixos temes amb l'ànim de fer-los entenedors. La memòria està dividida en dues parts: 1) Operadors de T-indistingibilitat (Capítols 1, 2 i 3) 2) Aplicacions al Raonament Aproximat (Capítols 4 i 5) En la primera part s'estudia qüestions relatives a l'estructura dels operadors de T-indistingibilitat. El Capítol 1 tracta dels aspectes previs: les t-normes i, sobre tot, les seves quasi-inverses. Són les operacions bàsiques sobre les que es construeixen els operadors de T-indistingibilitat. En el Capítol 2 s'estudia l'estructura del conjunt HE dels generadors d'una T-indistingibilitat E1, des del punt de vista reticular i dimensional. Finalment, el Capítol 3 està dedicat als morfismes entre operadors de T-indistingibilitat i a l'estructura dual. A la segona part es proposa un principi general de Raonament Aproximat que es basa en els operadors de T-indistingibilitat. En el Capítol 4, s'analitza les diferents formes de CRI a través d'aquest principi, i es proposa nous mecanismes d'inferència diferents de CRI (Operador Natural d'Inferència), mentre que en el Capítol 5 s'estudia l'estructura dels nous mecanismes introduïts i el seu comportament en interpolació, en presència de múltiples regles.Cada capítol s'encapçala amb una introducció en forma de sumari i amb un llistat de les aportacions de la memòria (resultats nous).
|
2 |
Contribució a l'estudi de les uninormes en el marc de les equacions funcionals. Aplicacions a la morfologia matemàticaRuiz Aguilera, Daniel 04 June 2007 (has links)
Les uninormes són uns operadors d'agregació que, per la seva definició, es poden considerar com a conjuncions o disjuncions, i que han estat aplicades a camps molt diversos. En aquest treball s'estudien algunes equacions funcionals que tenen com a incògnites les uninormes, o operadors definits a partir d'elles. Una d'elles és la distributivitat, que és resolta per les classes d'uninormes conegudes, solucionant, en particular, un problema obert en la teoria de l'anàlisi no-estàndard. També s'estudien les implicacions residuals i fortes definides a partir d'uninormes, trobant solució a la distributivitat d'aquestes implicacions sobre uninormes. Com a aplicació d'aquests estudis, es revisa i s'amplia la morfologia matemàtica borrosa basada en uninormes, que proporciona un marc inicial favorable per a un nou enfocament en l'anàlisi d'imatges, que haurà de ser estudiat en més profunditat. / Las uninormas son unos operadores de agregación que, por su definición se pueden considerar como conjunciones o disjunciones y que han sido aplicados a campos muy diversos. En este trabajo se estudian algunas ecuaciones funcionales que tienen como incógnitas las uninormas, o operadores definidos a partir de ellas.Una de ellas es la distributividad, que se resuelve para las classes de uninormas conocidas, solucionando, en particular, un problema abierto en la teoría del análisis no estándar. También se estudian las implicaciones residuales y fuertes definidas a partir de uninormas, encontrando solución a la distributividad de estas implicaciones sobre uninormas. Como aplicación de estos estudios, se revisa y amplía la morfología matemática borrosa basada en uninormas, que proporciona un marco inicial favorable para un nuevo enfoque en el análisis de imágenes, que tendrá que ser estudiado en más profundidad. / Uninorms are aggregation operators that, due to its definition, can be considered as conjunctions or disjunctions, and they have been applied to very different fields. In this work, some functional equations are studied, involving uninorms, or operators defined from them as unknowns. One of them is the distributivity equation, that is solved for all the known classes of uninorms, finding solution, in particular, to one open problem in the non-standard analysis theory. Residual implications, as well as strong ones defined from uninorms are studied, obtaining solution to the distributivity equation of this implications over uninorms. As an application of all these studies, the fuzzy mathematical morphology based on uninorms is revised and deeply studied, getting a new framework in image processing, that it will have to be studied in more detail.
|
3 |
Distributivnost operacija agregacije i njihova primena u teoriji korisnosti / Distributivity of aggregation operators and their application in utilitytheoryJočić Dragan 28 February 2015 (has links)
<p>Disertacija je posvećena rešavanju jednačina distributivnosti gde nepoznate funkcije pripadaju nekim poznatim klasama operacija agregacije i primeni dobijenih rešenja u teoriji korisnosti. Dobijeni rezultati se generalno mogu podeliti u tri grupe. Prvu grupu čine rezultati iz Glave 2 dobijeni rešavanjem jednačina distributivnosti između GM-operacija agregacije i oslabljenih uninormi, GM-operacija agregacije i oslabljenih nulanormi, kao i GM-operacija agregacije i operacija agregacije bez neutralnog i absorbujućeg elementa. Druga grupa rezultata, takođe iz Glave 2, je dobijena rešavanjem jednačina uslovne (oslabljene) distributivnosi neprekidne nulanorme u odnosu na neprekidnu t-konormu, i neprekidne nulanonorme u odnosu na uninorme iz <br />klasa U<sub>min</sub> ∪U<sub>max</sub>. Treća grupa rezultata (Glava 3) je proistekla iz primene dobijenih rezultata o uslovoj distributivnosti nulanorme u odnosu na t-konormu u teoriji korisnosti.</p> / <p>This dissertation is devoted to solving distributivity equations involving some well-known classes of aggregation operators, and application the obtained results to utility theory. In general, the obtained results can be divided into three groups. The first group are results from Chapter 2 obtained by solving distributivity equations between GM-aggregation operators and relaxed nullnorm, GM-aggregation operators and relaxed uninorms, as well as GM-aggregation operators and aggregation operators without neutral and absorbing element. The second group are results, also from Chapter 2, obtained by solving conditional (relaxed) distributivity of continuous nullnorm with respect to continuous t-conorm, as well as continuous nullnorm with respect to uninorms from the classes U<sub>min</sub> ∪ U<sub>max</sub>. The third group are results (Chapter 3) arising from the application results on conditional distributivity of nullnorm with respect to t-conorm in utility theory.</p>
|
4 |
Estudi de mètodes de classificació borrosa i la seva aplicació a l'agrupació de zones geogràfiques en base a diverses característiques incertesClara i Lloret, Narcís 22 July 2004 (has links)
Aquesta memòria està estructurada en sis capítols amb l'objectiu final de fonamentar i desenvolupar les eines matemàtiques necessàries per a la classificació de conjunts de subconjuntsborrosos. El nucli teòric del treball el formen els capítols 3, 4 i 5; els dos primers són dos capítols de caire més general, i l'últim és una aplicació dels anteriors a la classificació delspaïsos de la Unió Europea en funció de determinades característiques borroses.En el capítol 1 s'analitzen les diferents connectives borroses posant una especial atenció en aquells aspectes que en altres capítols tindran una aplicació específica. És per aquest motiu que s'estudien les ordenacions de famílies de t-normes, donada la seva importància en la transitivitat de les relacions borroses. Laverificació del principi del terç exclòs és necessària per assegurar que un conjunt significatiu de mesures borroses generalitzades, introduïdes en el capítol 3, siguin reflexives.Estudiem per a quines t-normes es verifica aquesta propietat i introduïm un nou conjunt de t-normes que verifiquen aquest principi.En el capítol 2 es fa un recorregut general per les relacions borroses centrant-nos en l'estudi de la clausura transitiva per a qualsevol t-norma, el càlcul de la qual és en molts casosfonamental per portar a terme el procés de classificació. Al final del capítol s'exposa un procediment pràctic per al càlcul d'unarelació borrosa amb l'ajuda d'experts i de sèries estadístiques.El capítol 3 és un monogràfic sobre mesures borroses. El primer objectiu és relacionar les mesures (o distàncies) usualment utilitzades en les aplicacions borroses amb les mesuresconjuntistes crisp. Es tracta d'un enfocament diferent del tradicional enfocament geomètric. El principal resultat és la introducció d'una família parametritzada de mesures que verifiquenunes propietats de caràcter conjuntista prou satisfactòries.L'estudi de la verificació del principi del terç exclòs té aquí la seva aplicació sobre la reflexivitat d'aquestes mesures, que sónestudiades amb una certa profunditat en alguns casos particulars.El capítol 4 és, d'entrada, un repàs dels principals resultats i mètodes borrosos per a la classificació dels elements d'un mateixconjunt de subconjunts borrosos. És aquí on s'apliquen els resultats sobre les ordenacions de les famílies de t-normes i t-conormes estudiades en el capítol 1. S'introdueix un nou mètodede clusterització, canviant la matriu de la relació borrosa cada vegada que s'obté un nou clúster. Aquest mètode permet homogeneïtzar la metodologia del càlcul de la relació borrosa ambel mètode de clusterització.El capítol 5 tracta sobre l'agrupació d'objectes de diferent naturalesa; és a dir, subconjunts borrosos que pertanyen a diferents conjunts. Aquesta teoria ja ha estat desenvolupada en elcas binari; aquí, el que es presenta és la seva generalització al cas n-ari. Més endavant s'estudien certs aspectes de les projeccions de la relació sobre un cert espai i el recíproc,l'estudi de cilindres de relacions predeterminades. Una aplicació sobre l'agrupació de les comarques gironines en funció de certesvariables borroses es presenta al final del capítol.L'últim capítol és eminentment pràctic, ja que s'aplica allò estudiat principalment en els capítols 3 i 4 a la classificació dels països de la Unió Europea en funció de determinadescaracterístiques borroses. Per tal de fer previsions per a anys venidors s'han utilitzat sèries temporals i xarxes neuronals.S'han emprat diverses mesures i mètodes de clusterització per tal de poder comparar els diversos dendogrames que resulten del procésde clusterització.Finalment, als annexos es poden consultar les sèries estadístiques utilitzades, la seva extrapolació, els càlculs per a la construcció de les matrius de les relacions borroses, les matriusde mesura i les seves clausures. / This thesis is organized in six chapters with the final goal to found and explain the mathematical set of tools necessary to classify sets of fuzzy sets. The theoretic kernel is made by the chapters 3, 4 and 5; the first and second are more generals and the last one is an aplication of the precedent to make a classification of the union european countries in function of some vague attibutes.In the first chapter we analize the different fuzzy logic connectives making a special attention those aspects which will have a specific application in other chapters. Is for this reason that we study the order of families of t-norms, given its importance in the transivity of fuzzy relations. The verification of the third excluded principle is necessary to ensure that a significant set of generalized fuzzy measures, introduced in the chapter 3, were reflexive. We study for which t-norms is verified this property and we introduce a new set of t-norms which verify this principle.In the second chapter we study in a general way the fuzzy relations making a special attention in the transivity closure for any t-norm, its calculus is in a lot of cases basic to make the classification process. At the end of this chapter we describe a practical method to find a fuzzy relation with the help of experts and statistical series.The third chapter is a monographic about fuzzy measures. The first goal is to relate the measures (or distances) usually used in the fuzzy applications with the crisp measures. The question is to change the traditional geometrical point of view for another absolutely fuzzy. The first result is the introduction of a parametrized family of measures that verify a set of properties enough satisfactories. The study of the third exclude principle has here its application about the reflexivity of these measures which are studied with certain profundity in some particular cases.The fourth chapter is, at the beginning, a review of the main results and fuzzy methods for the classification of elements of a same set of fuzzy sets. Is now where we apply the results of orders for t-norms and t-conorms studied in the first chapter. We introduce a new method of fuzzy clustering, changing the fuzzy relation matrix each time that we obtain a new cluster. This method permit to homogenize the methodology of the calculus of the fuzzy relation with the clustering method.The fifth chapter is about the objects association of different nature; that is, fuzzy subsets that belong to different sets. This theory already has been developed in the binary case; here, we submit its generalization for the n dimensional case. Later, we study certain aspects of the fuzzy relation projection on a certain space and the reciprocal, the cilindrical extensions. An application about grouping regions of Girona in function of some uncertain attibutes finish the chapter.The last chapter is eminently applied, because we apply that studied in the 3 and 4 chapters to classify the union european countries in function of some fuzzy attributes. To do forecasts for coming years we have used time series and neural networks. We have used several measures and clustering methods in order to compare the dendograms that result of the clustering process.Finally, in the suplements we can consult the used time series, its extrapolation, the calculus to construct the fuzzy relations, the measure matrixs and its closures.
|
5 |
Contractive Maps and Complexity Analysis in Fuzzy Quasi-Metric SpacesTirado Peláez, Pedro 04 September 2008 (has links)
En los últimos años se ha desarrollado una teoría matemática con propiedades robustas con el fin de fundamentar la Ciencia de la Computación. En este sentido, un avance significativo lo constituye el establecimiento de modelos matemáticos que miden la "distancia" entre programas y entre algoritmos, analizados según su complejidad computacional.
En 1995, M. Schellekens inició el desarrollo de un modelo matemático para el análisis de la complejidad algorítmica basado en la construcción de una casi-métrica definida en el espacio de las funciones de complejidad, proporcionando una interpretación computacional adecuada del hecho de que un programa o algoritmo sea más eficiente que otro en todos su "inputs". Esta información puede extraerse en virtud del carácter asimétrico del modelo. Sin embargo, esta estructura no es aplicable al análisis de algoritmos cuya complejidad depende de dos parámetros. Por tanto, en esta tesis introduciremos un nuevo espacio casi-métrico de complejidad que proporcionará un modelo útil para el análisis de este tipo de algoritmos. Por otra parte, el espacio casi-métrico de complejidad no da una interpretación computacional del hecho de que un programa o algoritmo sea "sólo" asintóticamente más eficiente que otro. Los espacios casi-métricos difusos aportan un parámetro "t", cuya adecuada utilización puede originar una información extra sobre el proceso computacional a estudiar; por ello introduciremos la noción de casi-métrica difusa de complejidad, que proporciona un modelo satisfactorio para interpretar la eficiencia asintótica de las funciones de complejidad.
En este contexto extenderemos los principales teoremas de punto fijo en espacios métricos difusos , utilizando una determinada noción de completitud, y obtendremos otros nuevos. Algunos de estos teoremas también se establecerán en el contexto general de los espacios casi-métricos difusos intuicionistas, de lo que resultarán condiciones de contracción menos fuertes.
Los resultados obt / Tirado Peláez, P. (2008). Contractive Maps and Complexity Analysis in Fuzzy Quasi-Metric Spaces [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/2961
|
6 |
Elementos de Semántica Denotacional de Lenguajes de Programación con Datos BorrososSánchez Álvarez, Daniel 01 October 1999 (has links)
A fin de diseñar e implementar lenguajes de programación que tengan en cuenta el paradigma borroso modificaremos el lambda cálculo clásico, adjuntando a cada término un grado, y redefiniendo la beta-reducción, obteniendo que para que el nuevo cálculo verifique la propiedad de Church-Rosser la transmisión de los grados debe hacerse por medio de una función que sea una t-norma o s-conorma. Utilizando esta nueva herramienta diseñamos un lenguaje no determinista que satisface los requerimientos de la programación con datos borrosos. / With the aim of designing and implementing programming languages that take into account the fuzzy paradigm we will modify the classical lambda calculus by adding a degree to each term and by redefining the b-reduction. Thus, for the new calculus to verify the Church-Rosser property, the degree computed with can be made through a function that is a t-norm or an s-conorm. With this new tool we design a nondeterminist language that satisfies fuzzy dataprogramming requirements, and an example of its behaviour is shown.
|
Page generated in 0.0408 seconds