• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 135
  • 27
  • 17
  • 16
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 235
  • 36
  • 35
  • 35
  • 25
  • 25
  • 21
  • 20
  • 19
  • 19
  • 18
  • 17
  • 17
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Field observations and numerical model simulations of a migrating inlet system

Hopkins, Julia A. January 2017 (has links)
Thesis: Ph. D., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Civil and Environmental Engineering; and the Woods Hole Oceanographic Institution), 2017 / Cataloged from PDF version of thesis. / Includes bibliographical references. / Waves, currents, and bathymetric change observed along 11 km of the southern shoreline of Martha's Vineyard include storm events, strong tidal flows (> 2 m/s), and an inlet migrating 2.5 km in ~7 years. A field-verified Delft3D numerical model developed for this system is used to examine the hydrodynamics in the nearshore and their effect on the migrating inlet. An initial numerical experiment showed that the observed 700 tidal modulation of wave direction in the nearshore was owing to interactions with tidal currents, and not to depth-induced refraction as waves propagated over complex shallow bathymetry. A second set of simulations focused on the separation of tidal currents from the southeast corner of Martha's Vineyard, showing the positive correlation between flow separation and sediment transport around a curved shoreline. Observations of waves, currents, and bathymetric change during hurricanes were reproduced in a third numerical experiment examining the competition between storm waves, which enhance inlet migration, and strong tidal currents, which scour the inlet and reduce migration rates. The combined field observations and simulations examined here demonstrate the importance of wave and tidal current forcings on morphological evolution at timescales of days to months. / by Julia A. Hopkins. / Ph. D. / Ph.D. Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Civil and Environmental Engineering; and the Woods Hole Oceanographic Institution)
212

Modélisation du rayonnement proche infrarouge émis par la haute atmosphère : étude théorique et observationnelle / Nightglow modelling at high altitude : theoretical and observational study

Bellisario, Christophe 10 December 2015 (has links)
Le rayonnement atmosphérique appelé nightglow est un phénomène se produisant à haute altitude (environ 90 km). Il consiste en l’émission d’un rayonnement suite à la désexcitation de certaines molécules et atomes (OH, Na, O2 et O). Il se répartit sur une large gamme spectrale, en particulier dans l’infrarouge et se propage jusqu’au niveau du sol. Le rayonnement nightglow constitue un marqueur important pour la haute atmosphère, permettant de remonter à la température, mais également à de nombreux phénomènes dynamiques comme les marées atmosphériques ou les ondes de gravité. Sa propagation au niveau du sol permet l’éclairage de scène terrestre et ainsi la vision nocturne à l’aide de caméras proche infrarouge. Afin de mieux connaître les fluctuations de ces émissions en fonction du temps à différentes échelles et en différents lieux sur la planète, la thèse s’est axée sur une étude observationnelle et une étude théorique. L’étude observationnelle a produit une climatologie à grande échelle par l’extraction du rayonnement issu des données de l’instrument GOMOS. Les campagnes de mesures réalisées au sol ont quant à elles mis en avant certains aspects dynamiques importants comme les marées et les ondes de gravité. Pour reproduire le rayonnement nightglow, il a été nécessaire de modéliser les réactions chimiques des nombreuses espèces présentes à haute altitude, le chauffage, la photodissociation de certaines molécules par le rayonnement solaire et la propagation du rayonnement vers le sol. Certains processus dynamiques ont été inclus comme la diffusion moléculaire, la diffusion turbulente et une paramétrisation des marées. Enfin, les résultats du modèle sont comparés aux observations satellitaires ainsi qu’au niveau du sol et des tests de sensibilité sont effectués pour estimer la réponse du rayonnement aux différents modules du modèle. / The nightglow is an atmospheric radiation which occurs at high altitude (around 90 km). It comes from the desexcitation of specific molecules and atoms (OH, Na, O2 and O). It spreads over a wide spectral band, especially in the infrared and propagates to the ground level. The nightglow emission is an important mark for the high atmosphere, as it allows the retrieval of the temperature and many dynamic processes such as atmospheric tides or gravity waves. Its propagation to the ground level allows the illumination of terrestrial scene and therefore the night vision with the use of near infrared cameras. In order to have a better knowledge of the emission fluctuations as a function of time for various scales and at various locations, the work is focused on an observational and theoretical study. The observational study produced large scale climatology with the extraction of nightglow emission from GOMOS data. On the other hand, ground measurements highlighted some dynamical aspects such as tides and gravity waves. To model the nightglow emission, it has been necessary to take into account the chemical reactions of the species available at high altitude, the heating, the photodissociation process and the propagation of the emission to the ground. Selected dynamical processes have been included, such as the molecular and turbulent diffusion, and a tide parameterization. Finally, the results of the model are compared to the satellite and ground observations and sensitivity tests are run to estimate the response of the emission to the various modules of the model.
213

Untersuchungen zu gezeitenbedingten Höhenänderungen des subglazialen Lake Vostok, Antarktika

Wendt, Anja 18 December 2003 (has links)
Lake Vostok, der größte der über 70 subglazialen Seen in der Antarktis, ist derzeit einer der Forschungsschwerpunkte der geowissenschaftlichen Polarforschung. Der See erstreckt sich unter einer 4 000 m dicken Eisschicht auf über 250 km Länge mit einer Wassertiefe von bis zu 1 000 m. Ziel der hier vorliegenden Arbeit ist die Untersuchung des Einflusses der Gezeiten auf den Wasserstand des Sees, die eine bisher nicht betrachtete Komponente in der Zirkulation im See darstellen. Auf Grund seiner Ausdehnung ist das Gezeitenpotential an verschiedenen Punkten auf dem See nicht gleich, sondern weist differentielle Unterschiede auf. Unter der Annahme, dass sich die Seeoberfläche entlang einer Äquipotentialfläche ausrichtet, ergeben sich Gleichgewichtsgezeiten des Sees mit Amplituden von bis zu 4,6 mm für die größte ganztägige Tide K1 und 1,8 mm für die größte halbtägige Tide M2. Differenzen des Luftdruckes zwischen Nord- und Südteil des Sees rufen zusätzlich einen differentiellen inversen Barometer-Effekt hervor. Der inverse Barometer-Effekt besitzt im wesentlichen die spektralen Eigenschaften eines roten Rauschens. Die Variationen erreichen bis zu +/- 20 mm. Zum messtechnischen Nachweis derartiger Höhenänderungen an der Eisoberfläche über dem See wurden drei unterschiedliche Verfahren herangezogen. Differentielle GPS-Messungen zwischen einem Punkt auf aufliegendem Eis und einem zweiten in der südlichen Seemitte bestätigen die Modellvorstellungen und zeigen sowohl mit der Luftdruckdifferenz korrelierte Höhenänderungen als auch Höhenänderungen mit ganz- und halbtägigen Perioden. Die SAR-Interferometrie als flächenhaft arbeitende Methode zur Bestimmung von Höhenänderungen lässt den räumlichen Verlauf der Deformation erkennen. Dabei zeigt sich, dass sich die Aufsetzzone auf dem etwa 50 km breiten See bis in die Seemitte ersteckt. Erdgezeitenregistrierungen, die im Jahr 1969 in der Station Vostok durchgeführt wurden, zeigen zwar Auffälligkeiten wie etwa einen stark erhöhten Luftdruckregressionskoeffzienten und einen Phasenvorlauf der K1-Tide, diese können jedoch nicht eindeutig als Resultat von Höhenänderungen der Seeoberfläche identifiziert werden. Auf Grund der Lage der Station Vostok nahe dem Ufer des Sees ist die Deformation dort schon stark gedämpft. Die zu erwartenden Effekte liegen daher unterhalb der Auflösung der damaligen Messungen. Damit sind die theoretischen Grundvorstellungen über die Reaktion des subglazialen Sees auf Gezeiten- und Luftdruckanregungen herausgearbeitet, sowie diese Effekte mit zwei unabhängigen und komplementären Messverfahren nachgewiesen. / Lake Vostok, the largest of more than 70 subglacial lakes in the Antarctic, is one of the prominent topics of recent geoscientific polar research. The lake extends beneath the 4,000 m thick ice sheet to a length of more than 250 km with a water depth of up to 1,000 m. This thesis aims to investigate the influence of tides on the lake level which has not been considered so far in the discussion of water circulation within the lake. Due to the extent of the lake the tidal potential at different positions on its surface is not equal but exhibits a differential effect. Under the assumption of the lake level to be parallel to an equipotential surface the equilibrium tides of the lake yield amplitudes of up to 4.6 mm for the largest diurnal tidal constituent K1 and 1.8 mm for the largest semi-diurnal wave M2. In addition, differences in air pressure between the northern and the southern part of the lake result in a differential inverse barometric effect. This effect shows red noise characteristics with variations of up to +/- 20 mm. Three different types of measurements were used to verify corresponding height changes of the ice surface above the lake. Differential GPS measurements between one station on grounded ice and one in the southern centre of the lake confirm the concept and show height changes correlated to air pressure differences as well as changes with diurnal and semi-diurnal periods. SAR interferometry as a spatial method to determine height changes reveals the areal extent of the deformation with a grounding zone extending to the centre of the about 50 km wide lake. Gravimetric earth tide data recorded at Vostok Station in 1969 show pecularities such as an increased regression with air pressure and a phase lead of the K1 tide. However, these effects cannot be explicitly attributed to height changes of the lake surface. Due to the position of the station near the edge of the lake the effect is highly attenuated and below the noise level of these measurements. This work introduces the concept of the response of the subglacial lake to the tidal potential and to air pressure forcings and presents evidence for the effect by two different techniques proving the validity of the model.
214

Web-based Tidal Toolbox Of Astronomic Tidal Data For The Atlantic Intracoastal Waterway, Esturaries Sic] And Continental Shelf Of The South Atlantic Bight

Ruiz, Alfredo 01 January 2011 (has links)
A high-resolution astronomic tidal model has been developed that includes detailed inshore regions of the Atlantic Intracoastal Waterway and associated estuaries along the South Atlantic Bight. The unique nature of the model’s development ensures that the tidal hydrodynamic interaction between the shelf and estuaries is fully described. Harmonic analysis of the model output results in a database of tidal information that extends from a semi-circular arc (radius ~750 km) enclosing the South Atlantic Bight from the North Carolina coast to the Florida Keys, onto the continental shelf and into the full estuarine system. The need for tidal boundary conditions (elevation and velocity) for driving inland waterway models has motivated the development of a software application to extract results from the tidal database which is the basis of this thesis. In this tidal toolbox, the astronomic tidal constituents can be resynthesized for any open water point in the domain over any interval of time in the past, present, or future. The application extracts model results interpolated to a user’s exact geographical points of interest, desired time interval, and tidal constituents. Comparison plots of the model results versus historical data are published on the website at 89 tidal gauging stations. All of the aforementioned features work within a zoom-able geospatial interface for enhanced user interaction. In order to make tidal elevation and velocity data available, a web service serves the data to users over the internet. The tidal database of 497,847 nodes and 927,165 elements has been preprocessed and indexed to enable timely access from a typical modern web server. The iii preprocessing and web services required are detailed in this thesis, as well as the reproducibility of the Tidal Toolbox for new domains.
215

Mass Conservation Analysis For The Lower St. Johns River Using Continuous And Discontinuous Galerkin Finite Element Methods

Thomas, Lillie E 01 January 2011 (has links)
This thesis provides a mass conservation analysis of the Lower St. Johns River for the purpose of providing basis for future salinity transport modeling. The analysis provides an assessment of the continuous (CG) and discontinuous (DG) Galerkin finite element methods with respect to their mass conservation properties. The following thesis also presents a rigorous literature review pertaining to salinity transport in the Lower St. Johns River, from which this effort generates the data used to initialize and validate numerical simulations. Two research questions are posed and studied in this thesis: can a DG-based modeling approach produce mass conservative numerical solutions; and what are the flow interactions between the river and the marshes within the coastal region of the Lower St. Johns River? Reviewing the available data provides an initial perspective of the ecosystem. For this, salinity data are obtained and assembled for three modeling scenarios. Each scenario, High Extreme, Most Variable, and Low Extreme, is 30 days long (taken from year 1999) and represents a unique salinity regime in the Lower St. Johns River. Time-series of salinity data is collected at four stations in the lower and middle reaches of the Lower St. Johns River, which provides a vantage point for assessing longitudinal variation of salinity. As an aside, precipitation and evaporation data is presented for seven stations along the entire St. Johns River, which provides added insight into salinity transport in the river. A mass conservation analysis is conducted for the Lower St. Johns River. The analysis utilizes a segmentation of the Lower St. Johns River, which divides the domain into sections iv based on physical characteristics. Mass errors are then calculated for the CG and DG finite element methods to determine mass conservative abilities. Also, the flow interactions (i.e., volume exchange) between the river and marshes are evaluated through the use of tidal prisms. The CG- and DG- finite element methods are then tested in tidal simulation performance, which the results are then compared to observed tides and tidal currents at four stations within the lower portion of the Lower St. Johns River. Since the results show that the DG model outperforms the CG model, the DG model is used in the tidally driven salinity transport simulations. Using four stations within the lower and middle part of the Lower St. Johns River, simulated and observed water levels and salinity concentrations are compared.
216

Analysis Of Microtextures On Quartz Sand Grains Of Triassic Age, From The Minas Basin - Cobequid Bay Area (Bay of Fundy), Nova Scotia

Davis, Patricia Marian 05 1900 (has links)
<p> Triassic sandstones form rapidly eroding cliffs around much of the Minas Basin, Nova Scotia. The sand eroded from these cliffs is one major source of the modern intertidal sands. Wave erosion of the cliffs locally produces a small sand beach at the high tide level. </p> <p> Eight samples were examined using the Scanning Electron Microscope: two from the Triassic sandstones, and six from the high-tide beach below the cliffs. All samples contained rounded, as well as subrounded and subangular, quartz grains in the 0.5 - 1.00 mm size fraction. As the samples originated in the cliffs, abrasion by strong tidal currents cannot account for the rounded grain shape. </p> <p> All grains studied had suffered some degree of diagenesis in the form of a precipitation coat. This was generally thicker on the rounded grains than on the more angular ones. The Triassic sandstone grains generally illustrated upturned plates, semiparallel steps, conchoidal breaks and a fine V-shaped pattern. The high beach grains illustrated upturned plates, V-shaped patterns, conchoidal breaks, greater rounding of featu res present and arc-shaped steps. Wehrfritz (1973) studied quartz grains from intertidal sand bars in the Minas Basin. He concluded that grains were considerably rounded by intertidal processes, and the frequency of V-shapes increased with grain roundness. </p> <p> Although some rounding of the beach sands was inherited, wave and tidal action aided in rounding the features further. The initial rounding of the sand grains within the sandstones may have occurred during periods in the Triassic when they were exposed to wind or reworked in the lakes. </p> / Thesis / Bachelor of Arts (BA)
217

Incorporating Remotely Sensed Data into Coastal Hydrodynamic Models: Parameterization of Surface Roughness and Spatio-Temporal Validation of Inundation Area

Medeiros, Stephen Conroy 01 January 2012 (has links)
This dissertation investigates the use of remotely sensed data in coastal tide and inundation models, specifically how these data could be more effectively integrated into model construction and performance assessment techniques. It includes a review of numerical wetting and drying algorithms, a method for constructing a seamless digital terrain model including the handling of tidal datums, an investigation into the accuracy of land use / land cover (LULC) based surface roughness parameterization schemes, an application of a cutting edge remotely sensed inundation detection method to assess the performance of a tidal model, and a preliminary investigation into using 3-dimensional airborne laser scanning data to parameterize surface roughness. A thorough academic review of wetting and drying algorithms employed by contemporary numerical tidal models was conducted. Since nearly all population centers and valuable property are located in the overland regions of the model domain, the coastal models must adequately describe the inundation physics here. This is accomplished by techniques that generally fall into four categories: Thin film, Element removal, Depth extrapolation, and Negative depth. While nearly all wetting and drying algorithms can be classified as one of the four types, each model is distinct and unique in its actual implementation. The use of spatial elevation data is essential to accurate coastal modeling. Remotely sensed LiDAR is the standard data source for constructing topographic digital terrain models (DTM). Hydrographic soundings provide bathymetric elevation information. These data are combined to form a seamless topobathy surface that is the foundation for distributed coastal models. A three-point inverse distance weighting method was developed in order to account for the spatial variability of bathymetry data referenced to tidal datums. This method was applied to the Tampa Bay region of Florida in order to produce a seamless topobathy DTM. Remotely sensed data also contribute to the parameterization of surface roughness. It is used to develop land use / land cover (LULC) data that is in turn used to specify spatially distributed bottom friction and aerodynamic roughness parameters across the model domain. However, these parameters are continuous variables that are a function of the size, shape and density of the terrain and above-ground obstacles. By using LULC data, much of the variation specific to local areas is generalized due to the categorical nature of the data. This was tested by comparing surface roughness parameters computed based on field measurements to those assigned by LULC data at 24 sites across Florida. Using a t-test to quantify the comparison, it was proven that the parameterizations are significantly different. Taking the field measured parameters as ground truth, it is evident that parameterizing surface roughness based on LULC data is deficient. In addition to providing input parameters, remotely sensed data can also be used to assess the performance of coastal models. Traditional methods of model performance testing include harmonic resynthesis of tidal constituents, water level time series analysis, and comparison to measured high water marks. A new performance assessment that measures a model's ability to predict the extent of inundation was applied to a northern Gulf of Mexico tidal model. The new method, termed the synergetic method, is based on detecting inundation area at specific points in time using satellite imagery. This detected inundation area is compared to that predicted by a time-synchronized tidal model to assess the performance of model in this respect. It was shown that the synergetic method produces performance metrics that corroborate the results of traditional methods and is useful in assessing the performance of tidal and storm surge models. It was also shown that the subject tidal model is capable of correctly classifying pixels as wet or dry on over 85% of the sample areas. Lastly, since it has been shown that parameterizing surface roughness using LULC data is deficient, progress toward a new parameterization scheme based on 3-dimensional LiDAR point cloud data is presented. By computing statistics for the entire point cloud along with the implementation of moving window and polynomial fit approaches, empirical relationships were determined that allow the point cloud to estimate surface roughness parameters. A multi-variate regression approach was chosen to investigate the relationship(s) between the predictor variables (LiDAR statistics) and the response variables (surface roughness parameters). It was shown that the empirical fit is weak when comparing the surface roughness parameters to the LiDAR data. The fit was improved by comparing the LiDAR to the more directly measured source terms of the equations used to compute the surface roughness parameters. Future work will involve using these empirical relationships to parameterize a model in the northern Gulf of Mexico and comparing the hydrodynamic results to those of the same model parameterized using contemporary methods. In conclusion, through the work presented herein, it was demonstrated that incorporating remotely sensed data into coastal models provides many benefits including more accurate topobathy descriptions, the potential to provide more accurate surface roughness parameterizations, and more insightful performance assessments. All of these conclusions were achieved using data that is readily available to the scientific community and, with the exception of the Synthetic Aperture Radar (SAR) from the Radarsat-1 project used in the inundation detection method, are available free of charge. Airborne LiDAR data are extremely rich sources of information about the terrain that can be exploited in the context of coastal modeling. The data can be used to construct digital terrain models (DTMs), assist in the analysis of satellite remote sensing data, and describe the roughness of the landscape thereby maximizing the cost effectiveness of the data acquisition.
218

On the dynamics of shallow water currents in Massachusetts Bay and on the New England continental shelf.

Butman, Bradford January 1975 (has links)
Thesis. 1975. Ph.D.--Massachusetts Institute of Technology. Dept. of Earth and Planetary Sciences. / Vita. / Bibliography: p.160-163. / Ph.D.
219

Tidal and sediment dynamics of a partially mixed, micro-tidal estuary

O'Callaghan, Joanne M. January 2005 (has links)
[Truncated abstract] The expansion of human populations in coastal land margins has resulted in major modifcations to estuarine ecosystems. The use of numerical models as predictive tools for assessing remediation strategies is increasing. However, parameterisation of physical processes, developed mainly through field investigations, is necessary for these models to be reliable and effective management tools. The physical processes in micro–tidal diurnal tidal systems are relatively unknown and the current study examines field measurements obtained from the upper Swan River estuary (Western Australia), a diurnal, partially mixed system during the summer when the freshwater discharge is negligible. The aims of the study were to characterise, temporally and spatially, the dominant physical processes and associated sediment resuspension. Variability at three dominant time-scales were examined: 1) sub–tidal oscillations (∼5 to 10 days) resulting from local and remote forcing; 2) tidal (∼ 24 hours) due to astronomical forcing; and 3) intra-tidal (∼2 to 3 hours) resulting from the interaction between tidal constituents. Circulation in estuaries is widely accepted in the literature to be dominated, in varying proportions, by tidal range, freshwater discharge and gravitational circulation. In the upper Swan River estuary sub–tidal oscillations were responsible for the largest upstream displacement of the salt wedge in the absence of freshwater discharge. Moreover, these sub–tidal fluctuations in water level modified the ‘classic’ estuarine circulation. The dynamics of diurnal tides are largely controlled by the tropic month, which oscillates at a slightly different period to the lunar month, resulting in the spring–neap tidal cycle to be sometimes different from syzygy. The phase lag between the diurnal (O1 + K1) and semi-diurnal (M2 + S2) constituents, at the seasonal time scale cause the maximum tidal range to be near the solstice. Over a 24–hour tidal cycle this phase lag is manifested as an intra–tidal oscillation that occurs on the flood tide. Turbidity events that last ∼1 to 2 hours occur during the intra–tidal oscillation, but are not related to maximum shear stress predicted from the mean flow characteristics. The increases in turbidity during the intra–tidal oscillation is, however, correlated with the near–bed Reynolds fluxes. During the intra–tidal oscillation advection opposes the estuarine circulation in the near–bed region, promoting vertical shear that results in destratifcation of the water column. The turbulent mixing generated at the interface and in the near–bed region coincide with resuspension events. Similar turbidity data have often been disregarded and documented as being ‘spikes’ based on the premise that the mean flow was below a critical level to resuspend sediment. Resuspension events were not simply related to mean processes and may be controlled by turbulent instabilities generated when tidal currents reverse during an intra-tidal oscillation
220

Forçage harmonique d'écoulements en rotation : vents zonaux, ondes inertielles et instabilités.

Sauret, Alban 01 February 2013 (has links)
Une grande quantité d'énergie est présente dans les mouvements de rotations propre et orbitale des planètes. Des forçages harmoniques tels que les déformations de marées, la précession ou la libration peuvent en convertir une partie pour générer des écoulements dans les couches fluides d'une planète. Ces écoulements restent largement méconnus même s'ils sont importants pour contraindre des modèles d'intérieur planétaire ou expliquer la présence de champs magnétiques dans certains astres.Dans cette thèse, nous étudions les mécanismes engendrés par ces forçages en combinant une approche théorique, expérimentale et numérique et soulignons la généricité des phénomènes observés. L'étude d'un forçage de libration longitudinale, i.e. des oscillations de la vitesse de rotation d'un astre, montre la présence d'un écoulement zonal généré par des interactions non-linéaires dans les couches visqueuses. Nous étudions ensuite l'instabilité qui apparaît à la paroi pour des amplitudes de libration suffisantes et qui peut transférer de l'énergie vers le volume du fluide. Finalement, une étude expérimentale de forçage de marées dans une sphère met en évidence que l'excitation directe d'ondes inertielles induit un écoulement zonal intense et localisé. Cet écoulement peut se déstabiliser par une instabilité de cisaillement et générer un écoulement turbulent dans tout le volume.Pour finir, nous considérons la pertinence de ces résultats pour des applications géo-/astrophysiques, telles que l'étude des océans internes sous la surface de glace des satellites joviens Ganymède, Encelade et Europe. / A huge amount of energy is stored in the spin and orbital motions of any planet. Harmonic forcings such as libration, precession and tides are capable of conveying a portion of this energy to drive intense three-dimensional flows in liquid layers of planetary bodies. The generated flows remain largely unknown even if they are important to constraint model of planetary interior or to explain the presence of magnetic fields in some astrophysical bodies.In this thesis, we study the mechanisms induced by these forcings by combining theoretical, experimental and numerical approaches and we highlight the genericity of the observed phenomena. The study of a longitudinal libration forcing, corresponding to oscillations of the rotation rate of a planet, shows the presence of a mean zonal flow generated by non-linear interactions in the viscous layers. We then study the instability which appears at the outer boundary at sufficiently large libration amplitude or small Ekman number and which can transfer energy to the bulk of the fluid. Finally, an experimental study of tidal forcing in a sphere shows that the nonlinear self-interaction of excited inertial waves may drive an intense and localised axisymmetric jet, which becomes unstable at low Ekman number following a shear instability, generating space-filling turbulence.To conclude, we consider the relevance of these results to geo-/astrophysical applications, such as the subsurface oceans of the icy satellites Ganymede, Enceladus or Europa.

Page generated in 0.0569 seconds