281 |
Methods for Improving the Piezoelectric and Energetic Performance of nAl/P(VDF-TrFE) CompositesCohen Thomas Ves Nunes (17405389) 17 November 2023 (has links)
<p dir="ltr">Piezoelectric polymers and ceramics have applications throughout many fields, including their use as pressure sensors and transducers. Of the polymers, poly(vinylidene fluoride – trifluoroethylene) (P(VDF-TrFE)), has been the go-to for its high piezoelectric performance. With the addition of aluminum nanopowders (nAl), P(VDF-TrFE) acts as a binder and oxidizer, creating an energetic composite, a so-called piezoenergetic. However, this typically results in lower d<sub>33</sub> coefficients and can have lower reactivity since ideal mixtures may short when poled. Here, we develop and demonstrate single-layer and multilayer polymer composite films with high piezoelectric and energetic content. We prepared single-layer thin film piezoelectric energetic composites of nAl and P(VDF-TrFE) and a combination of thermal annealing and poling at elevated temperatures enabled full poling of 9 wt.% nAl/P(VDF-TrFE) films with d<sub>33</sub> of 22.7 pC/N that is comparable to P(VDF-TrFE) films. We also investigated the addition of barium titanate (BaTiO<sub>3</sub>) particles as a piezoelectric ceramic to enhance the d<sub>33</sub> coefficient. In the neat polymer, BaTiO<sub>3</sub> had differing effects depending on the particle size, with 200 nm particles improving the d<sub>33</sub> coefficient more than the 1 μm particles. However, neither size of BaTiO<sub>3</sub> particle had a substantial effect on the piezoelectricity in the 9 wt.% nAl/P(VDF-TrFE) films. We also prepared hot-pressed, three-layer “sandwich” P(VDF-TrFE) – 30 wt.% nAl/P(VDF-TrFE) – P(VDF-TrFE) composites, which had marginally lower d<sub>33</sub> coefficients than the single-layer 9 wt.% nAl/P(VDF-TrFE) films. However, the 30 wt.% nAl/P(VDF-TrFE) sandwich films were far more energetic than the 9 wt.% nAl/P(VDF-TrFE) films, as confirmed by simultaneous differential scanning calorimetry and thermogravimetric analysis (DSC/TGA) and deflagration studies. The single films will often fail to fully sustain a deflagration, while the sandwich films burn completely. In addition, we can ignite the sandwich samples with an electrical discharge making these films also useful in ignition applications. To demonstrate the use of piezoenergetic films, 9 wt.% nAl/P(VDF-TrFE) single layer and 30 wt.% nAl/P(VDF-TrFE) sandwich films were calibrated as pressure gauges using a mini drop weight setup, and then demonstrated as a pressure gage. The improvements in the piezoelectric coefficient of the 9 wt.% nAl/P(VDF-TrFE) single layer films, as well as the energetic performance in the form of the 30 wt.% nAl/P(VDF-TrFE) sandwich films strongly amplify the existing potential of these multifunctional composites in energetic and pressure sensing applications.</p>
|
282 |
Spin and Carrier Relaxation Dynamics in InAsP Ternary Alloys, the Spin-orbit-split Hole Bands in Ferromagnetic InMnSb and InMnAs, and Reflectrometry Measurements of Valent Doped Barium TitanateMeeker, Michael A. 15 December 2016 (has links)
This dissertation focuses on projects where optical techniques were employed to characterize novel materials, developing concepts toward next generation of devices. The materials that I studied included InAsP, InMnSb and InMnAs, and BT-BCN. I have employed several advanced time resolved and magneto-optical techniques to explore unexplored properties of these structures.
The first class of the materials were the ternary alloys InAsP. The electron g-factor of InAsP can be tuned, even allowing for g=0, making InAsP an ideal candidate for quantum communication devices. Furthermore, InAsP shows promises for opto-electronics and spintronics, where the development of devices requires extensive knowledge of carrier and spin dynamics. Thus, I have performed time and polarization resolved pump-probe spectroscopy on InAsP with various compositions. The carrier and spin relaxation time in these structures were observed and demonstrated tunability to the excitation wavelengths, composition and temperature. The sensitivity to these parameters provide several avenues to control carrier and spin dynamics in InAsP alloys.
The second project focused on the ferromagnetic narrow gap semiconductors InMnAs and InMnSb. The incorporation of Mn can lead to ferromagnetic behavior of InMnAs and InMnSb, and enhance the g-factors, making them ideal candidates for spintronics devices. When grown using Molecular Beam Epitaxy (MBE), the Curie temperature (textit{$T_c$}) of these structures is textless 100 K, however structures grown using Metalorganic Vapor phase Epitaxy (MOVPE) have textit{$T_c$} textgreater 300 K. Magnetic circular dichroism was performed on MOVPE grown InMnAs and InMnSb. Comparison of the experimental results with the theoretical calculations provides a direct method to map the band structure, including the temperature dependence of the spin-orbit split-off band to conduction band transition and g-factors, as well as the estimated sp-d electron/hole coupling parameters.
My final project was on the lead-free ferroelectric BT-BCN. Ferroelectric materials are being investigated for high speed, density, nonvolatile and energy efficient memory devices; however, commercial ferroelectric memories typically contain lead, and use a destructive reading method. Reflectometry measurements were used in order to determine the refractive index of BT-BCN with varying thicknesses, which can provide a means to nondestructively read ferroelectric memory through optical methods. / Ph. D. / This dissertation focuses on the characterization of materials that are important for the next generation computer architecture through optical techniques. These materials include the ternary alloy InAsP, the ferromagnetic semiconductors InMnAs and InMnSb, and the lead-free ferroelectric BT-BCN.
InAsP is a ternary alloy composed of the technologically important InAs and InP, and by changing the alloy composition, the band gap and g-factor can be tuned. This allows for InAsP to have band gaps within the communication band, which is important for fiber optic communications as well as infrared photodetectors. As the functionality of these devices depends on the carrier dynamics, I have performed pump-probe spectroscopy in order to probe the carrier and spin relaxation times of this material system. These relaxation times were found to vary with excitation wavelengths, allowing flexibility in the application of this material system for devices.
InAs and InSb are attractive materials for device applications because they offer large electron g-factor, small effective masses, and high mobilities. With the incorporation of Mn, these materials can become ferromagnetic, allowing for their use in ferromagnetic memories as well as other possible devices. The theory of ferromagnetism in semiconductors relies on the interaction between the itinerant holes and the Mn ions, however, in narrow gap semiconductors there is a large band mixing between the conduction and valence band states, and thus the interaction between the conduction band electrons and the Mn is important. In this study, my measurements revealed several interband transitions, which allowed for the calculation of the coupling constants between the electrons, holes and the Mn.
My final study involved the lead-free ferroelectric BT-BCN. Ferroelectric materials are ideal for fast, low power and nonvolatile memories; however, typical implementation utilizes materials that contain lead, and a destructive reading mechanism, requiring a rewrite step. Optical, nondestructive reading methods are being explored based off of the rotation of the polarization of light as it passes through the sample. As this requires knowledge of the refractive index, I performed reflectometry measurements in order to determine the refractive indices of several BT-BCN films.
|
283 |
ESTRUTURA E PROPRIEDADES ÓPTICAS DO SISTEMA TITANATO-ESTANATO DE ESTRÔNCIO [Sr(Ti1-xSnx)O3 x = 0; 0,25; 0,50; 0,75; 1]Inglês, Daniella 08 March 2013 (has links)
Made available in DSpace on 2017-07-24T19:38:09Z (GMT). No. of bitstreams: 1
DaniellaIngles.pdf: 4512280 bytes, checksum: c8619d3eba91fdbec4d26eeb30e24eb9 (MD5)
Previous issue date: 2013-03-08 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Titanates have perovskite crystalline structure very known for electrical and optical properties used in the electronic devices such as sensors, capacitors, nonvolatile and dynamic random access memories. In particular, titanates structures are characterized for the ABO3 formula being A crystallographic site formed by 12 atoms neighbors and B crystallographic site formed by 6 atoms neighbors. However, researches about strontium titanate-stannate system are found minimally in the literature. Articles discussing synthesis, characterization and compositions are insufficiently presented. This project shows a theoretical study of the structure and optical properties of the strontium titanate-stannate system for different substitutions [Sr(Ti1-xSnx)O3 x = 0; 0,25; 0,50; 0,75; 1]. It was used theoretical-computational methodology based on, Density Functional Theory (DFT) with B3LYP functional to calculate the structure of the models SrTiO3 (STO), Sr(Ti1-xSnx)O3 (STS) and SrSnO3 (SSO). Theoretical data of parameter lattice, cell unit angles, volume, band gap, overlap population, charges and free energy are presented as well as analysis and discussion of the results for band structure (EB), density of states (DOS), electron density maps. Thus, one may present the data obtained and investigate the properties of the materials. / Titanatos possuem estrutura cristalina perovskita muito conhecida pelas propriedades elétricas e ópticas utilizadas em dispositivos eletrônicos como sensores, capacitores, memória de acesso randômico dinâmica e não volátil. Em particular, as estruturas de titanatos são caracterizadas pela fórmula ABO3 sendo A sítio cristalográfico formado por 12 átomos vizinhos e B o sítio cristalográfico formado por 6 átomos vizinhos. No entanto, pesquisas sobre o sistema titanato-estanato de estrôncio são encontradas minimamente na literatura. Artigos que discutem a síntese, caracterização e composições são insuficientemente apresentados. Este trabalho apresenta o estudo teórico da estrutura e propriedades ópticas do sistema titanato-estanato de estrôncio para diferentes substituições [Sr(Ti1-xSnx)O3 x = 0; 0,25; 0,50; 0,75; 1]. Utilizou-se metodologia teórico-computacional baseada em, Teoria do Funcional de Densidade (DFT) com funcional B3LYP, para cálculo da estrutura dos modelos SrTiO3 (STO), Sr(Ti1-xSnx)O3 (STS) e SrSnO3 (SSO). Dados teóricos de parâmetro de rede, ângulos da célula unitária, band gap, recobrimento populacional, cargas e energia livre são apresentados como também a análise e discussão dos resultados por meio de estrutura de bandas (EB), densidade de estados (DOS), mapas de densidade eletrônica. Desta forma, podem-se apresentar os dados obtidos e investigar as propriedades dos materiais.
|
284 |
Gyromètre a fibre a double conjugaison de phase - étude d'un nouveau matériau photorefractif - réalisation d'un démonstrateur .Bernhardt, Sylvie 28 September 2001 (has links) (PDF)
Le remplacement de la fibre monomode a maintien de polarisation par de la fibre monomode standard dans les gyroscopes a fibre est un véritable enjeu économique. En effet, il permettrait a ces systèmes d'être compétitifs au niveau du coût sur le marche des centrales de navigations inertielles actuellement domine par les gyroscopes laser. Cependant, les problèmes de non réciprocités et d'effondrement du signal provoqués par l'utilisation de ce type de fibre n'ont pas été résolus de façon satisfaisante à ce jour. C'est a ce niveau que l'utilisation de la double conjugaison de phase apparaît comme une solution intéressante. L'objectif de ce travail consistait à valider cette solution d'une part en mettant au point un cristal photoréfractif adapte à cette application et d'autre part en insérant un miroir a double conjugaison de phase dans un gyroscope commercial fonctionnant a 850 mn. Dans un premier temps, nous avons donc etudie un nouveau cristal photorefractif : le titanate de barium calcium (bct) dont l'interet repose sur le fait qu'il ne subit pas de transition de phase de 120\ a 98\ c, contrairement au cristal de titanate de baryum dont il est dérivé. Ce cristal, généralement utilise pour la conjugaison de phase en raison de sa bonne efficacité est en effet détruit si sa température devient inférieure a 10\ c. Notre étude a permis de démontrer les bonnes propriétés photorefractives de ce matériau (coefficients electro-optiques élevés, sensibilité proche infrarouge) et de comprendre les différences de comportement par rapport au titanate de baryum. Dans un second temps, nous avons étudié et optimise un miroir a double conjugaison de phase réalisé avec un cristal de titanate de baryum que nous avons ensuite insere dans un gyromètre a fibre. Ainsi, nous avons pu montrer que le gyrometre a double conjugaison de phase permet de mesurer des rotations et n'introduit pas de non-reciprocités supérieures a la précision du montage que nous avons utilise (200 \/h).
|
285 |
Conductive Domain Walls in Ferroelectric Bulk Single Crystals / Leitfähige Domänenwände in ferroelektrischen EinkristallenSchröder, Mathias 13 May 2014 (has links) (PDF)
Ferroic materials play an increasingly important role in novel (nano-)electronic applications. Recently, research on domain walls (DWs) received a big boost by the discovery of DW conductivity in bismuth ferrite (BiFeO3 ) and lead zirconate titanate (Pb(Zrx Ti1−x )O3) ferroic thin films.
These achievements open a realistic and unique perspective to reproducibly engineer conductive paths and nanocontacts of sub-nanometer dimensions into wide-bandgap materials. The possibility to control and induce conductive DWs in insulating templates is a key step towards future innovative nanoelectronic devices [1]. This work focuses on the investigation of the charge transport along conductive DWs in ferroelectric single crystals. In the first part, the photo-induced electronic DC and AC charge transport along such DWs in lithium niobate (LNO) single crystals is examined. The DC conductivity of the bulk and DWs is investigated locally using piezoresponse force microscopy (PFM) and conductive AFM (c-AFM). It is shown that super-bandgap illumination (λ ≤ 310 nm) in combination with (partially) charged 180° DWs increases the DC conductivity of the DWs up to three orders of magnitude compared to the bulk. The DW conductivity is proportional to the charge of the DW given by its inclination angle α with respect to the polar axis. The latter can be increased by doping the crystal with magnesium (0 to 7 mol %) or reduced by sample annealing. The AC conductivity is investigated locally utilizing nanoimpedance microscopy (NIM) and macroscopic impedance measurements.
Again, super-bandgap illumination increases the AC conductivity of the DWs. Frequency-dependent measurements are performed to determine an equivalent circuit describing the domains and DWs in a model system. The mixed conduction model for hopping transport in LNO is used to analyze the frequency-dependent complex permittivity. Both, the AC and DC results are then used to establish a model describing the transport along the conductive DW through the insulating domain matrix material. In the last part, the knowledge obtained for LNO is applied to study DWs in lithium tantalate (LTO), barium titanate (BTO) and barium calcium titanate (BCT) single crystals. Under super-bandgap illumination, conductive DWs are found in LTO and BCT as well, whereas a domain-specific conductivity is observed in BTO.
|
286 |
Nanoparticules d'oxydes de fer et nanotubes de titanate pour l'imagerie multimodale et à destination de la thérapie anticancéreuse / Iron oxides nanoparticles and titanate nanotubes dedicated to multimodal imaging and anticancer therapyParis, Jérémy 13 December 2013 (has links)
Les possibilités offertes par les applications en médecine des nanoparticules sont l’un des facteurs essentiels des progrès médicaux attendus pour ce XXIème siècle. Ainsi, le domaine de l’imagerie médicale est aussi touché par cette évolution technologique. Ce présent travail a consisté à élaborer des sondes théranostiques à base de nanoparticules d’oxydes de fer (SPIO) et de nanotubes de titanate (TiONts) pour l’imagerie multimodale (magnétique/nucléaire ou magnétique/optique) et possédant aussi un effet thérapeutique (hyperthermie/PDT ou radiosensibilisation/PDT).Les nanotubes de titanate de cette étude, d’une longueur moyenne d’environ 150 nm, ont été obtenus par synthèse hydrothermale selon la méthode de Kasuga. Ces nanotubes présentent un diamètre extérieur de l’ordre de 10 nm et une cavité interne de 4 nm. Les nanoparticules d’oxydes de fer ont quant à elles été synthétisées par méthode de co-précipitation "Massart". Ces nanoparticules d’oxydes de fer de structure spinelle possèdent des cristallites de 9 nm de diamètre et présentent un comportement superparamagnétique mis en évidence par des mesures FC/ZFC. Pour préparer ces nanoparticules à recevoir des molécules d’intérêt biologique, deux ligands possédant des fonctions organiques plus réactives (APTES : NH2 et PHA : COOH) ont été greffés à la surface de ces deux types de nanoparticules. La présence de l'un ou l'autre a été mise en évidence par différentes techniques d’analyses (XPS, IR, zêtamétrie). La quantité de molécules greffées a été déterminé par ATG, elle est dans tous les cas d’environ 5 molécules/nm2. Dans un premier temps, les nanotubes de titanate ont été fonctionnalisés par un agent macrocyclique (0,2 DOTA/nm2). Après radiomarquage à l’indium 111, les TiONts – DOTA[In] ont été injectés dans des souris Swiss mâle nude pour connaître leur biodistribution en imagerie SPECT/CT. Les images obtenues et le comptage de la radioactivité dans chaque organe ont montré qu’au bout d’une heure, les nanotubes se situent dans les poumons et dans l’urine. Ensuite, les nanotubes sont progressivement éliminés pour n’être plus présents que dans les urines à 24 heures. Ces mêmes agents chélatants ont été greffés à la surface des SPIO pour la création de sondes multimodales IRM/SPECT ou IRM/TEP. En parallèle de cette étude, un fluorophore (phtalocyanine de zinc, ZnPc) a été greffé à la surface des nanoparticules. Le nanohybride SPIO – Pc synthétisé possède les propriétés requises pour être une sonde utilisable en imagerie bimodale IRM/IO grâce à sa longueur d’émission vers 670 nm et sa relaxivité de l’ordre de 70 L.mmolFe3O4-1.s-1. De plus, les nanohybrides ont été fonctionnalisés par du PEG pour les rendre furtifs, biocompatibles et stables. La toxicité de certains de ces nanohybrides a été évaluée avec le modèle in vivo zebrafish. Les nanohybrides étudiés n’ont pas présenté de toxicité, n’ont pas perturbé l’éclosion et n’ont pas provoqué de malformations sur les larves des zebrafish. / The new implementations of nanoparticles in the medical field are one of the essential factors of the medical progress expected at the beginning of this XXIst century. Thus, the domain of the medical imaging is also affected by this technological evolution. This work consisted in developing theranostic probes with iron oxides nanoparticles (SPIO) and titanate nanotubes (TiONts) for multimodal imaging (magnetic/nuclear or magnetic/optical) and also possessing a therapeutic effect (hyperthermia/PDT or radiosensitization/PDT).The titanate nanotubes of this study have an average length of about 150 nm and were obtained by Kasuga's hydrothermal synthesis. These nanotubes present an outside diameter of about 10 nm and an intern cavity of 4 nm. On the other hand, iron oxides nanoparticles were synthesized by soft chemistry ("Massart" method). These spinel-like iron oxides nanoparticles have a crystallite size of 9 nm in diameter and exhibit a superparamagnetic behavior which was highlighted by FC / ZFC measurements.To get these nanoparticles ready to receive molecules of biological interest, two linkers of more reactive organic functions (APTES: NH2 or PHA: COOH) were grafted to the surface of these two types of nanoparticles. Their presence was shown by different techniques (XPS, IR, UV-vis). The amount of grafted linkers was determined by TGA and in all cases this amount is close to 5 molecules/nm2. First, titanate nanotubes were coated by a macrocyclic chelating agent (0.2 DOTA/nm2). After radiolabelling with indium 111, the TiONts – DOTA[In] nanohybrids were injected in Swiss nude mice and observed by SPECT/CT imaging to characterize their biodistribution. The SPECT/CT images and the radioactivity measured in each organ showed that after one hour, nanotubes are located in lungs and in urine. Then, the nanotubes are gradually eliminated and are only found in urines after 24 hours. The same macrocyclic agent was grafted to the SPIO’s surface for the creation of multimodal probes MRI/SPECT or MRI/PET. Alongside this study, a fluorophore (Zinc phthalocyanine) was also grafted to the surface of nanoparticles. The synthesized SPIO – Pc nanohybrid has the required properties of bimodal imaging MRI/OI probe thanks to his emission wavelength around 670 nm and its relaxivity is about 70 L.mmolFe3O4-1.s-1. Furthermore, nanohybrids were coated by PEG to make them stealth, biocompatible and stable.In this study, the toxicity of most nanohybrids was evaluated by the in vivo zebrafish model. The studied nanohybrids did not present any toxicity, hatching disruption or malformation on zebrafish larvae.
|
287 |
Conductive Domain Walls in Ferroelectric Bulk Single CrystalsSchröder, Mathias 07 March 2014 (has links)
Ferroic materials play an increasingly important role in novel (nano-)electronic applications. Recently, research on domain walls (DWs) received a big boost by the discovery of DW conductivity in bismuth ferrite (BiFeO3 ) and lead zirconate titanate (Pb(Zrx Ti1−x )O3) ferroic thin films.
These achievements open a realistic and unique perspective to reproducibly engineer conductive paths and nanocontacts of sub-nanometer dimensions into wide-bandgap materials. The possibility to control and induce conductive DWs in insulating templates is a key step towards future innovative nanoelectronic devices [1]. This work focuses on the investigation of the charge transport along conductive DWs in ferroelectric single crystals. In the first part, the photo-induced electronic DC and AC charge transport along such DWs in lithium niobate (LNO) single crystals is examined. The DC conductivity of the bulk and DWs is investigated locally using piezoresponse force microscopy (PFM) and conductive AFM (c-AFM). It is shown that super-bandgap illumination (λ ≤ 310 nm) in combination with (partially) charged 180° DWs increases the DC conductivity of the DWs up to three orders of magnitude compared to the bulk. The DW conductivity is proportional to the charge of the DW given by its inclination angle α with respect to the polar axis. The latter can be increased by doping the crystal with magnesium (0 to 7 mol %) or reduced by sample annealing. The AC conductivity is investigated locally utilizing nanoimpedance microscopy (NIM) and macroscopic impedance measurements.
Again, super-bandgap illumination increases the AC conductivity of the DWs. Frequency-dependent measurements are performed to determine an equivalent circuit describing the domains and DWs in a model system. The mixed conduction model for hopping transport in LNO is used to analyze the frequency-dependent complex permittivity. Both, the AC and DC results are then used to establish a model describing the transport along the conductive DW through the insulating domain matrix material. In the last part, the knowledge obtained for LNO is applied to study DWs in lithium tantalate (LTO), barium titanate (BTO) and barium calcium titanate (BCT) single crystals. Under super-bandgap illumination, conductive DWs are found in LTO and BCT as well, whereas a domain-specific conductivity is observed in BTO.
|
288 |
Probing the effect of oxygen vacancies in strontium titanate single crystalsRahman, Shams ur January 2014 (has links)
This thesis describes investigations into the role of non-stoichiometry in the surface and bulk properties of SrTiO<sub>3</sub> single crystals. A family of (n×n) reconstructions, where n = 2, 3, 4, 5, 6 are produced by argon ion sputtering of the SrTiO<sub>3</sub> (111) single crystals and subsequent annealing in UHV or in an oxygen rich environment. The sputtering process introduces defects or oxygen vacancies in the surface region of the sample, whilst the annealing gives rise to surface reconstructions. The surface preparation conditions such as sputtering time, annealing temperature and environment are optimized to obtain various reconstructions in a controlled and reproducible manner. High resolution STM images of these reconstructions are also obtained and utilized in the investigation of the surface reactivity. Fullerene molecules are deposited on the reconstructed surfaces to elucidate the surface reactivity through template assisted growth. Fullerene molecules are first deposited with substrate surfaces held at room temperature. Being the most highly reduced among the (n×n) family, the 5×5 reconstruction significantly influenced the growth of fullerenes. Both C<sub>60</sub> and C<sub>70</sub> adsorb as individual molecules and produce clusters with magic numbers. The 4×4 and 6×6 reconstructed surfaces encourage the formation of close-packed structures upon the deposition at room temperature. When the surface covered with fullerenes is heated to a temperature of around 200 °C, epitaxial islands are observed. The 6×6 reconstructed surface appeared to be less reactive than the 4×4. Electrical transport, cathodoluminescence (CL) and electron spin resonance (ESR) experiments are also carried out to investigate the effect of oxygen vacancies on the bulk properties of UHV annealed SrTiO<sub>3</sub> single crystals. Thermal reduction leads to carrier doping of the material, which not only gives rise to electrical conduction but also induces room temperature luminescence. Both the electrical conductivity and CL intensity increases with annealing time. The work presented in this thesis provides insight into the defect driven properties in both the surface and bulk of SrTiO<sub>3</sub> single crystals, which could play an important role in the development of oxide-based electronic devices.
|
289 |
Elemental growth of oxide thin filmsWu, Chen January 2010 (has links)
This thesis reports on the elemental growth of oxide thin films including TiO<sub>x</sub>, BaO<sub>x</sub> and Ba<sub>x</sub>Ti<sub>y</sub>O<sub>z</sub> by Ti/Ba deposition and oxidation. The films were grown on two different substrates, Au(111) and SrTiO₃(001), and studied using a variety of surface characterisation techniques. On the reconstructed Au(111) surface, three different TiO<sub>x</sub> structures were obtained with increasing Ti amounts deposited: a (2 × 2) Ti₂O₃ honeycomb structure, a pinwheel structure that is the result of a Moiré pattern, and a triangular island TiO<sub>1.30</sub> structure. The structures arise from raised Ti coverages and have increased Ti densities. Although Ba deposited on the reconstructed Au(111) has a weak interaction with the substrate, the BaO<sub>x</sub> thin films can grow epitaxially and lift the Au(111) reconstruction. Two well-ordered phases, a (6 × 6) and a (2√3 × 2√3) BaO<sub>x</sub> structure, were obtained which may have octopolar-based surface structures. For Ba & Ti deposition on Au(111), a locally ordered (5 × 5) BaxTiyOz structure was observed in the sub-monolayer regime. What is more interesting is the possible formation of a BaO-TiO surface alloy with short-range ordering achieved by Ba deposition on the (2 × 2) Ti₂O₃-templated Au(111) surface. This is the first time that surface-alloying has been observed for oxides. When Ti is deposited onto the SrTiO₃(001) surface, it is incorporated into the substrate by forming a variety of Ti-rich SrTiO₃ surface reconstructions, such as c(4 × 2), (6 × 2), (9 × 2) and (√5 ×√5)-R26.6°. Ti deposition provides a completely different route to obtaining these reconstructions at much lower anneal temperatures than the previously reported preparation procedures involving sputtering and annealing the SrTiO₃ sample. Anatase islands with (1 × 3) and (1 × 5) periodicities were also formed by increasing the Ti deposition amount and post-annealing. Reconstructed SrTiO₃ substrate surface has a lattice that differs from the bulk crystal and affects the epitaxial growth of BaO, however, a locally ordered BaO<sub>x</sub> structure was observed on the sputtered substrate with a growth temperature of 300 °C. Depositing Ba & Ti on SrTiO₃(001) results in the formation of BaO<sub>x</sub> clusters and the Ti incorporation into the substrate, forming the familiar Ti-rich SrTiO₃ surface reconstructions.
|
290 |
Síntese e caracterização estrutural e dielétrica de compostos ferroelétricos \'PB IND.1-X\'\'R IND.X\'\'ZR IND.0,40\'\'TI IND.0,60\'\'O IND.3\' (R = La, Ba) / Synthesis and characterization of \'PB IND.1-X\'\'R IND.X\'\'ZR IND.0,40\'\'TI IND.0,60\'\'O IND.3\' (R = La, Ba)Mesquita, Alexandre 15 March 2011 (has links)
O titanato e zirconato de chumbo \'PB\'(\'ZR\'1-y\'TI\'y)\'O IND.3\' é um material ferroelétrico de estrutura perovskita que tem sido aplicado como transdutores, amplificadores, sensores piezoelétricos, piroelétricos e memórias ferroelétricas. É bem estabelecido que a incorporação de íons de \'LA POT.3+\' ou \'BA POT.2+\' nos sítios ocupados pelo \'PB\' no sistema \'PB\'(\'ZR\'1-y\'TI\'y)\'O\' (PZT), formando os sistemas \'PB\'1-x\'LA\'x\'ZR\'1-y\'TI\'y\'O IND.3\' (PLZT) e \'PB\'1-x\'BA\'x\'ZR\'1-y\'TI\'y\'O IND.3\' (PBZT), provoca mudanças significativas nas suas propriedades. No entanto, poucos trabalhos tem sido dedicados a esses sistemas contendo altas concentrações de \'TI\', principalmente no que se refere à estrutura desses materiais. Assim, este trabalho teve por objetivo analisar as propriedades estruturais e suas correlações com as propriedades dielétricas dos sistemas \'PB\'1-x\'LA\'x\'ZR\'0,40\'TI\'0,60\'O IND.3\' (PLZT100x) e \'PB\'1-x\'BA\'x\'ZR\'0,40\'TI\'0,60\'O IND.3\' (PBZT100x) em função da composição e da temperatura. Foram preparadas amostras cerâmicas por meio de sinterização convencional com x variando entre 0,05 e 0,21 para o sistema PLZT e entre 0,10 e 0,50 para o sistema PBZT. Em relação à estrutura a longa distância, medidas de difração de raios X mostraram uma diminuição no grau de tetragonalidade com o aumento da concentração dos cátions substituintes, que foi atribuída à formação de vacâncias no sítio A (caso do \'LA\') e diferença entre o raio iônico (caso do \'BA\'). Estas alterações estruturais em função da composição foram também responsáveis pelo aumento do grau de difusidade das curvas de permissividade dielétrica e pela observação de um estado ferroelétrico relaxor nas amostras contendo altas concentrações de \'LA\' e \'BA\'. Em relação à estrutural local, os resultados obtidos através da técnica de espectroscopia de absorção de raios X (XAS) nas bordas \'K\' do \'TI\' e LIII do \'PB\' mostraram que a incorporação de átomos de \'LA\' ou \'BA\' à estrutura do PZT leva a uma redução no deslocamento do átomo de \'TI\' em relação ao centro do octaedro \'TI\'O IND.6\' e mudanças na ordem local do átomo de \'PB\'. No que tange as composições contendo 21% at. de \'LA\' e 50% at. de \'BA\', diferentemente dos resultados de DRX que mostraram uma simetria cúbica, a técnica de XAS mostrou uma simetria local tetragonal. Em bom acordo com os resultados obtidos pela técnica de espectroscopia Raman, espectros EXAFS medidos em altas temperaturas mostraram também que a estrutura local não é compatível com uma estrutura de simetria cúbica. Espectros XANES medidos na borda \'K\' do oxigênio revelaram uma redução no grau de hibridização entre os estados 2p do \'O\' com 6sp do \'PB\' à medida que a concentração de \'LA\' ou \'BA\' aumenta, que estaria relacionada com o surgimento de comportamento relaxor. Amostras cerâmicas densas nanoestruturadas de composição PZT, PLZT11 e PBZT10 foram preparadas pelo método de spark plasma sintering (SPS) a fim de analisar a influência do tamanho de grão. Foi verificado que as amostras sinterizadas por SPS apresentam tamanho de grão em torno de 60 nm. A caracterização dielétrica destas amostras mostra que a redução do tamanho de grão causa uma redução no valor de máximo da permissividade dielétrica e características difusas da permissividade em função da temperatura devido ao aumento das regiões de contorno de grão. / Lead titanate zirconate (\'PB\'(\'ZR\'1-x\'TI\'x)\'O IND.3\') are ferroelectric materials with perovskite structure which has been used as transducers, capacitors, piezoelectric and pyroelectric sensors and ferroelectric memories. The substitution of \'PB POT.+2\' ions by \'LA POT.+3\' or \'BA POT.+2\' ions in the \'PB\'(\'ZR\'1-x\'TI\'x)\'O IND.3\' (PZT) system, which leads to the formation of the \'PB\'1-x\'LA\'x\'ZR\'1-y\'TI\'y\'O IND.3\' (PLZT) and the \'PB\'1-x\'BA\'x\'ZR\'1-y\'TI\'y\'O IND.3\' (PBZT) systems, induces several changes in the electric and structural properties of these materials. However, PLZT or PBZT systems based on \'TI\'-rich compositions have not been thoroughly investigated and the literature contains few reports concerning their structure. Thus, the main objectives of this doctoral thesis were the synthesis and structural characterization of \'PB\'1-x\'R\'x\'ZR\'0.40\'TI\'0.60\'O IND.3\' ferroelectric ceramic samples, with R = \'BA\' and \'LA\' and x between 0.00 to 0.50 (PLZT100x and PBZT100x). The characterization with X-ray diffraction technique of these samples showed a decrease of the tetragonality degree with increase of the doping cation concentration, which was related to the appearance of defects caused by the incorporation of \'LA\' or \'BA\' cations. These structural modifications were also responsible by the increase of the diffuseness at the dielectric permittivity and a relaxor behavior as a function of the \'LA\' or \'BA\' concentration. Concerning the local structure, XANES spectra in the absorption edge of various elements in PLZT and PBZT samples were performed. In the cases of \'TI\' \'K\'-edge absorption, the doping of \'LA\' and \'BA\' atoms in the PZT structure leads to a reduction of the displacement of \'TI\' atom in the center of the \'TI\'O IND.6\' octahedron. However, even when the crystal structure is cubic, a local octahedron distortion remains. EXAFS measurements in \'PB\' LIII-edge and \'ZR\' \'K\'-edge were performed and also indicate that local structure around lead or zirconium atoms is also affected by the introduction of \'LA\' and \'BA\' atoms in the PZT structure. In addition, XANES spectra measured at \'O\' \'K\'-edge revealed a reduction in the hybridization degree between \'O\' 2p and \'PB\' 6sp states with the addition of \'LA\' or \'BA\' atoms to the structure of PZT. It has been shown that hybridization between these states is essential to ferroelectricity and this reduction would be related to the relaxor behavior. PLZT and PBZT systems were also studied depending on the size of particle size in a nanometer scale. Thus samples PZT, PLZT11 and PBZT10 compositions were prepared using the synthesis method of precursor polymers and the process of sintering by spark plasma. A pronounced decrease in the values of maximum permittivity was observed and the dielectric curve as a function of the temperature exhibits a diffuse behavior. This size-induced diffuse phase transition and the reduction of the permittivity magnitude could be related to the differences between the core grain and the grain boundaries.
|
Page generated in 0.0293 seconds