321 |
Correction de fronts d'onde de faisceaux lasers impulsionnels par mélange d'ondes photoréfractif.Mager, Loic 10 November 1994 (has links) (PDF)
Nous avons démontré que la correction de fronts d'onde de faisceaux lasers impulsionnels (nanoseconde) pouvait être réalisée par mélange d'ondes dans un cristal photoréfractif. Nous avons commence par déterminer le matériau photoréfractif le mieux adapte pour cette application. Pour des raisons d'efficacité photoréfractive et de tenue en puissance, notre choix s'est porte sur le titanate de baryum. Cela a conditionne le choix de la longueur d'onde utilisée (532 nm) pour cette démonstration. Nous avons étudié un premier dispositif de correction base sur le transfert d'énergie d'un faisceau fort vers un faisceau faible qui, par mélange d'ondes photoréfractif, peut être obtenu sans qu'il y ait de transfert de phase. Dans cette étude nous avons mesure les variations de l'amplification en fonction de différents paramètres (cohérence temporelle, rapport des énergies des faisceaux) et observe les variations de l'effet photorefractif en fonction de la densité de puissance dans le titanate de baryum. Nous avons aussi démontré la correction des déformations introduites par un objet de phase et cela pour différentes densités d'énergie incidente. Une deuxième méthode de correction est basée sur la compensation d'un aberrateur de phase par double passage. On a commence par préciser la notion de conjugaison de phase. Puis, nous avons étudié en particulier un miroir a conjugaison de phase auto pompe, l'oscillateur a boucle de réaction, qui fonctionne sur le principe du mélange a quatre ondes dans un cristal photoréfractif. Nous avons montre expérimentalement que des transformations des faisceaux dans la boucle de réaction améliorent la qualite de la conjugaison de phase et nous avons réalisé la compensation d'objets de phase par double passage en régime impulsionnel. La dernière partie est consacrée a l'étude comparative des deux dispositifs tels qu'ils pourront être mis en oeuvre pour la correction dynamique des lentilles thermiques dans les amplificateurs lasers solides.
|
322 |
Scattering Scanning Near-Field Optical Microscopy on Anisotropic Dielectrics / Aperturlose Nahfeldmikroskopie an anisotropen DielektrikaSchneider, Susanne Christine 17 October 2007 (has links) (PDF)
Near-field optical microscopy allows the nondestructive examination of surfaces with a spatial resolution far below the diffraction limit of Abbe. In fact, the resolution of this kind of microscope is not at all dependent on the wavelength, but is typically in the range of 10 to 100 nanometers. On this scale, many materials are anisotropic, even though they might appear isotropic on the macroscopic length scale. In the present work, the previously never studied interaction between a scattering-type near-field probe and an anisotropic sample is examined theoretically as well as experimentally. In the theoretical part of the work, the analytical dipole model, which is well known for isotropic samples, is extended to anisotropic samples. On isotropic samples one observes an optical contrast between different materials, whereas on anisotropic samples one expects an additional contrast between areas with different orientations of the same dielectric tensor. The calculations show that this anisotropy contrast is strong enough to be observed if the sample is excited close to a polariton resonance. The experimental setup allows the optical examination in the visible and in the infrared wavelength regimes. For the latter, a free-electron laser was used as a precisely tunable light source for resonant excitation. The basic atomic force microscope provides a unique combination of different scanning probe microscopy methods that are indispensable in order to avoid artifacts in the measurement of the near-field signal and the resulting anisotropy contrast. Basic studies of the anisotropy contrast were performed on the ferroelectric single crystals barium titanate and lithium niobate. On lithium niobate, we examined the spectral dependence of the near-field signal close to the phonon resonance of the sample as well as its dependence on the tip-sample distance, the polarization of the incident light, and the orientation of the sample. On barium titanate, analogous measurements were performed and, additionally, areas with different types of domains were imaged and the near-field optical contrast due to the anisotropy of the sample was directly measured. The experimental results of the work agree with the theoretical predictions. A near-field optical contrast due to the anisotropy of the sample can be measured and allows areas with different orientations of the dielectric tensor to be distinguished optically. The contrast results from variations of the dielectric tensor components both parallel and perpendicular to the sample surface. The presented method allows the optical examination of anisotropies of a sample with ultrahigh resolution, and promises applications in many fields of research, such as materials science, information technology, biology, and nanooptics. / Die optische Nahfeldmikroskopie ermöglicht die zerstörungsfreie optische Unter- suchung von Oberflächen mit einer räumlichen Auflösung weit unterhalb des klas- sischen Beugungslimits von Abbe. Die Auflösung dieser Art von Mikroskopie ist unabhängig von der verwendeten Wellenlänge und liegt typischerweise im Bereich von 10-100 Nanometern. Auf dieser Längenskala zeigen viele Materialien optisch anisotropes Verhalten, auch wenn sie makroskopisch isotrop erscheinen. In der vorliegenden Arbeit wird die bisher noch nicht bestimmte Wechselwirkung einer streuenden Nahfeldsonde mit einer anisotropen Probe sowohl theoretisch als auch experimentell untersucht. Im theoretischen Teil wird das für isotrope Proben bekannte analytische Dipol- modell auf anisotrope Materialien erweitert. Während fÄur isotrope Proben ein reiner Materialkontrast beobachtet wird, ist auf anisotropen Proben zusätzlich ein Kontrast zwischen Bereichen mit unterschiedlicher Orientierung des Dielektrizitätstensors zu erwarten. Die Berechnungen zeigen, dass dieser Anisotropiekontrast messbar ist, wenn die Probe nahe einer Polaritonresonanz angeregt wird. Der verwendete experimentelle Aufbau ermöglicht die optische Untersuchung von Materialien im sichtbaren sowie im infraroten Wellenlängenbereich, wobei zur re- sonanten Anregung ein Freie-Elektronen-Laser verwendet wurde. Das dem Nahfeld- mikroskop zugrunde liegende Rasterkraftmikroskop bietet eine einzigartige Kombi- nation verschiedener Rastersondenmikroskopie-Methoden und ermöglicht neben der Untersuchung von komplementären Probeneigenschaften auch die Unterdrückung von mechanisch und elektrisch induzierten Fehlkontrasten im optischen Signal. An den ferroelektrischen Einkristallen Lithiumniobat und Bariumtitanat wurde der anisotrope Nahfeldkontrast im infraroten WellenlÄangenbereich untersucht. An eindomÄanigem Lithiumniobat wurden das spektrale Verhalten des Nahfeldsignals sowie dessen charakteristische Abhängigkeit von Polarisation, Abstand und Proben- orientierung grundlegend untersucht. Auf Bariumtitanat, einem mehrdomänigen Kristall, wurden analoge Messungen durchgeführt und zusätzlich Gebiete mit ver- schiedenen Domänensorten abgebildet, wobei ein direkter nachfeldoptischer Kon- trast aufgrund der Anisotropie der Probe nachgewiesen werden konnte. Die experimentellen Ergebnisse dieser Arbeit stimmen mit den theoretischen Vorhersagen überein. Ein durch die optische Anisotropie der Probe induzierter Nahfeldkontrast ist messbar und erlaubt die optische Unterscheidung von Gebie- ten mit unterschiedlicher Orientierung des Dielektriziätstensors, wobei eine Än- derung desselben sowohl parallel als auch senkrecht zur Probenoberfläche messbar ist. Diese Methode erlaubt die hochauflösende optische Untersuchung von lokalen Anisotropien, was in zahlreichen Gebieten der Materialwissenschaft, Speichertech- nik, Biologie und Nanooptik von Interesse ist.
|
323 |
Synthese und Funktion nanoskaliger Oxide auf Basis der Elemente Bismut und NiobWollmann, Philipp 29 March 2012 (has links) (PDF)
Am Beispiel von ferroelektrischen Systemen auf Bismut-Basis (Bismutmolybdat, Bismutwolframat und Bismuttitanat) und von Strontiumbariumniobat werden neue Möglichkeiten zur Synthese solcher Nanopartikel aufgezeigt. Die Integration der Nanopartikel in
transparente Nanokompositmaterialien und die Entwicklung neuer Precursoren für die Herstellung von Dünnschichtproben gehen den Untersuchungen zur Anwendung als elektrooptische aktive Materialien voraus.
Durch weitere Anwendungsmöglichkeiten in der Photokatalyse, dem Test dampfadsorptiver Eigenschaften mit Hilfe eines neuartigen Adsorptionstesters (Infrasorb) und auch mit Hilfe der Ergebnisse der ferroelektrischen Charakterisierung von gesinterten Probenkörpern aus einem Spark-Plasma-Prozess wird ein gesamtheitlicher Überblick über die vielfältigen Aspekte in der Arbeit mit nanoskaligen, ferroelektrischen Materialien gegeben.
|
324 |
Investigations into the Synthesis, Structural, Dielectric, Piezoelectric and Ferroelectric Properties of Lead-Free Aurivillius Family of OxidesKumar, Sunil January 2011 (has links) (PDF)
Bismuth layer-structured ferroelectrics have received significant attention recently due to their fairly high TC and good fatigue endurance which make them important candidates for non-volatile ferroelectric random access memories (Fe-RAMs) as well as for the piezoelectric device applications at high temperatures. Structure of these compounds is generally described as the pseudo-perovskite block (An-1BnO3n+1)2- sandwiched between the bismuth oxide layers (Bi2O2)2+ along the c-axis, where n represents the number of corner sharing BO6 octahedra forming the perovskite-like slabs. Only a few compounds belonging to this family show relaxor behavior (frequency dependent diffuse phase transition). Relaxor ferroelectrics are very attractive for a variety of applications, such as capacitors, sensors, actuators, and integrated electromechanical systems.
The present work attempts to understand the mechanism of relaxor behavior in Aurivillius oxides as well as to improve the piezoelectric and ferroelectric properties of some of the known phases. Details pertaining to the fabrication and characterization of BaBi4Ti4O15 (n = 4 member of Aurivillius family of oxides) ceramics are presented. X-ray diffraction, Raman spectroscopy, Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were employed to probe the structural and microstructural details. The contribution of irreversible domain wall movement to the room temperature dielectric constant and polarization was quantitatively evaluated using the nonlinear dielectric response. Dielectric dispersion and conduction mechanism of these ceramics are also explicated using the complex impedance spectroscopy.
The effects of La3+ and Ca2+ doping on the phase transition behavior and other properties of BaBi4Ti4O15 are investigated. La3+ doping for Bi3+ was found to strengthen the relaxor behavior. New compounds such as CaNaBi2Nb3O12, SrNaBi2Nb3O12, Na0.5La0.5Bi4Ti4O12, etc. belonging to the Aurivillius family of oxides have been synthesized and investigations concerning their structural, dielectric and ferroelectric properties are presented. Rietveld refinement of room temperature X-ray powder data suggested that CaNaBi2Nb3O12 and SrNaBi2Nb3O12crystallize in the orthorhombic space group B2cb. SrNaBi2Nb3O12 ceramics exhibited frequency-dependent Tm which follows the Vogel-Fulcher relation implying a relaxor nature. No frequency dependence of Tm was observed for CaNaBi2Nb3O12 ceramics. Polarization - electric field hysteresis loops recorded well above Tm confirmed the coexistence of polar and non-polar domains in SrNaBi2Nb3O12 ceramics. Dielectric anomaly observed around 675 K for CNBN corresponds to the ferroelectric to paraelectric phase transition which is accompanied by the change in crystal structure from orthorhombic to tetragonal. Fe and Nb co-doped Bi4Ti3O12 ceramics were fabricated and characterized for their structural, electrical and magnetic properties.
|
325 |
Development of Multifunctional Biomaterials and Probing the Electric Field Stimulated Cell Functionality on Conducting Substrates : Experimental and Theoretical StudiesRavikumar, K January 2015 (has links) (PDF)
Materials with appropriate combinations of multifunctional properties (strength, toughness, electrical conductivity and piezoelectricity) together with desired biocompatibility are promising candidates for biomedical applications. Apart from these material properties, recent studies have shown the efficacy of electric field in altering cell functionality in order to elicit various cell responses, like proliferation, differentiation, apoptosis (programmed cell death) on conducting substrates in vitro. In the above perspective, the current work demonstrates how CaTiO3 (CT) addition to Hydroxyapatite (HA) can be utilised to obtain an attractive combination of long crack fracture toughness (up to 1.7 MPa.m1/2 measured using single edge V-notch beam technique) and a flexural strength of 155 MPa in addition to moderate electrical conductivity. The enhancement of fracture toughness in HA-CT composites has been explained based on the extensive characterization of twinned microstructure in CT along with the use of theoretical models for predicting the enhancement of toughening through crack tip tilt and twist mechanisms. Subsequent in vitro studies on HA-CT composites with human Mesenchymal Stem cells (hMSCs) in the presence of electric field has shown enhanced differentiation towards bone like cells (osteogenic lineage) as evaluated by ALP activity, Collagen content and gene expression analyses through Polymerase Chain Reaction (PCR) at the end of two weeks. he extracellular matrix mineralization analysis at the end of 4 weeks of hMSC culture further substantiated the efficacy of electric field as a biochemical cue that can influence the stem cell fate processes on conducting substrates. The electric field stimulation strategy was also implemented in in vitro studies with C2C12 mouse myoblast (muscle) cells on elastically compliant poly(vinylidene difluoride) (PVDF)-multiwall carbon nanotube (MWNT) composite substrates. PVDF is a piezoelectric polymer and the addition of MWNTs makes the composite electrically conducting. Upon, electric field stimulation of C2C12 mouse myoblast cells on these composites, has been observed that in a narrow window of electric field parameters, the cell viability was enhanced along with excellent cell alignment and cell-cell contact indicating a potential application of PVDF-based materials in the muscle cell regeneration. In an effort to rationalise such experimental observations, a theoretical model is proposed to explain the development of bioelectric stress field induced cell shape stability and deformation. A single cell is modelled as a double layered membrane separating the culture medium and the cytoplasm with different dielectric properties. This system is linearized by invoking Debye-Huckel approximation of the Poisson-Boltzmann equation. With appropriate boundary conditions, the system is solved to obtain intracellular and extracellular Maxwell stress as a function of multiple parameters like cell size, intracellular and extracellular permittivity and electric field strength. Based on the stresses, we predict shape changes of cell membrane by approximating the deformation amplitude under the influence of electric field. Apart from this, the shear stress on the membrane has been used to determine the critical electric field required to induce membrane breakdown. The analysis is conducted for a cell in suspension/on a conducting substrate and on an insulating substrate to illustrate the effect of substrate properties on cell response under the influence of external electric field.
|
326 |
Electrocatalysis using Ceramic Nitride and Oxide NanostructuresAnju, V G January 2016 (has links) (PDF)
Global warming and depletion in fossil fuels have forced the society to search for alternate, clean sustainable energy sources. An obvious solution to the aforesaid problem lies in electrochemical energy storage systems like fuel cells and batteries. The desirable properties attributed to these devices like quick response, long life cycle, high round trip efficiency, clean source, low maintenance etc. have made them very attractive as energy storage devices. Compared to many advanced battery chemistries like nickel-metal hydride and lithium - ion batteries, metal-air batteries show several advantages like high energy density, ease of operation etc. The notable characteristics of metal - air batteries are the open structure with oxygen gas accessed from ambient air in the cathode compartment. These batteries rely on oxygen reduction and oxygen evolution reactions during discharging and charging processes. The efficiency of these systems is determined by the kinetics of oxygen reduction reaction. Platinum is the most preferred catalyst for many electrochemical reactions. However, high cost and stability issues restrict the use of Pt and hence there is quest for the development of stable, durable and active electrocatalysts for various redox reactions.
The present thesis is directed towards exploring the electrocatalytic aspects of titanium carbonitride. TiCN, a fascinating material, possesses many favorable properties such as extreme hardness, high melting point, good thermal and electrical conductivity. Its metal-like conductivity and extreme corrosion resistance prompted us to use this material for various electrochemical studies. The work function as well as the bonding in the material can be tuned by varying the composition of carbon and nitrogen in the crystal lattice.
The current study explores the versatility of TiCN as electrocatalyst in aqueous and non-aqueous media. One dimensional TiC0.7N0.3 nanowires are prepared by simple one step solvothermal method without use of any template and are characterized using various physicochemical techniques. The 1D nanostructures are of several µm size length
and 40 ± 15 nm diameter (figure 1). Orientation followed by attachment of the primary particles results in the growth along a particular plane (figure 2).
(a) (b)
(c)
Figure 1. (a) SEM images of TiC0.7N0.3 nanowires (b) TEM image and (c) High resolution TEM image showing the lattice fringes.
(a) (b) (d)
Figure 2. Bright field TEM images obtained at different time scales of reaction. (a) 0 h; (b) 12 h; (c) 72 h and (d) 144 h.
The next aspect of the thesis discusses the electrochemical performance of TiC0.7N0.3 especially for oxygen reduction. Electrochemical oxygen reduction reaction (ORR) reveals that the nanowires possess high activity for ORR and involves four electron process leading to water as the product. The catalyst effectively converts oxygen to water with an efficiency of 85%. A comparison of the activity of different (C/N) compositions of TiCN is shown in figure 3. The composition TiC0.7N0.3 shows the maximum activity for the reaction. The catalyst is also very selective for ORR in presence of methanol and thus cross-over issue in fuel cells can be effectively addressed. Density functional theory (DFT) calculations also lead to the same composition as the best for electrocatalysis, supporting the experimental observations.
Figure 3. Linear sweep voltammetric curves observed for different compositions of titanium carbonitride towards ORR.
The next chapter deals with the use of TiC0.7N0.3 as air cathode for aqueous metal
- air batteries. The batteries show remarkable performance in the gel- and in liquid- based electrolytes for zinc - air and magnesium - air batteries. A partial potassium salt of polyacrylic acid (PAAK) is used as the polymer to form a gel electrolyte. The cell is found to perform very well even at very high current densities in the gel electrolyte (figures 4 and 5).
Figure 4 Photographs of different components of the gel - based zinc - air battery.
(a) (b)
Figure 5. a) Discharge curves at different current densities of 5, 20, 50 and 100 mA/cm2 for zinc-air system with TiC0.7N0.3 cathode b) Charge – discharge cycles at 50 mA/cm2 for the three electrode configuration with TiC0.7N0.3 nanowire for ORR and IrO2 for OER and Zn electrode (2h. cycle period).
Similarly, the catalytic activity of TiC0.7N0.3 has also been explored in non-aqueous electrolyte. The material acts as a bifunctional catalyst for oxygen in non-
aqueous medium as well. It shows a stable performance for more than 100 cycles with
high reversibility for ORR and OER (figure 6). Li-O2 battery fabricated with a non-aqueous gel- based electrolyte yields very good output. (a) (b) (c)
Figure 6. Galvanostatic charge –discharge cycles. (a) at 1 mA/cm2 (b) specific capacity as a function of no. of cycles (c) photographs of PAN-based gel polymer electrolyte.
Another reaction of interest in non –aqueous medium is I-/I3-. redox couple. TiC0.7N0.3 nanowires show small peak to peak separation, low charge transfer resistance and hence high activity. The catalyst is used as a counter electrode in dye sensitized a
solar cell that shows efficiencies similar to that of Pt, state of the art catalyst (figure 7). (a) (b)
(c)
Figure 7 (a) Cyclic voltammograms for I-/I3 - redox species on TiC0.7N0.3 nanowires (red), TiC0.7N0.3 particle (black) and Pt (blue). (b) Photocurrent density - voltage characteristics for DSSCs with different counter electrodes. TiC0.7N0.3 nanowire (black), TiC0.7N0.3 particle (blue), Pt (red). (c) Photograph of a sample cell.
(a) (b)
(c) (d)
Figure 8 a) Comparison ORR activity for (i) NiTiO3(black), (ii) N-rGO (red), (iii) NiTiO3 – N-rGO (green) and (iv) Pt/C (blue) (b) Linear sweep voltammograms for OER observed on NiTiO3 – N-rGO composite (black), NiTiO3 (brown), N-rGO (blue), glassy carbon (red) in 0.5 M KOH. (c) Galvanostatic discharge curves of NiTiO3 – N-rGO as air electrode
(d) Charge – discharge cycle at 5 mA/cm2 for the rechargeable battery with 10 min. cycle period.
The last part of the thesis discusses about a ceramic oxide, nickel titanate. The electrocatalytic studies of the material towards ORR and OER reveal that the catalyst shows remarkable performance as a bifunctional electrode. A gel - based zinc - air battery fabricated with nickel titanate – reduced graphene oxide composite shows exceptional performance of 1000 charge-discharge cycles in the rechargeable mode (figure 8). Of course, the primary battery configuration works very well too
The thesis contains seven chapters on the aspects mentioned above with summary and future perspectives given as the last chapter. An appendix based on TiN nanotubes and supercapacitor studies is given at the end.
|
327 |
Scattering Scanning Near-Field Optical Microscopy on Anisotropic DielectricsSchneider, Susanne Christine 31 August 2007 (has links)
Near-field optical microscopy allows the nondestructive examination of surfaces with a spatial resolution far below the diffraction limit of Abbe. In fact, the resolution of this kind of microscope is not at all dependent on the wavelength, but is typically in the range of 10 to 100 nanometers. On this scale, many materials are anisotropic, even though they might appear isotropic on the macroscopic length scale. In the present work, the previously never studied interaction between a scattering-type near-field probe and an anisotropic sample is examined theoretically as well as experimentally. In the theoretical part of the work, the analytical dipole model, which is well known for isotropic samples, is extended to anisotropic samples. On isotropic samples one observes an optical contrast between different materials, whereas on anisotropic samples one expects an additional contrast between areas with different orientations of the same dielectric tensor. The calculations show that this anisotropy contrast is strong enough to be observed if the sample is excited close to a polariton resonance. The experimental setup allows the optical examination in the visible and in the infrared wavelength regimes. For the latter, a free-electron laser was used as a precisely tunable light source for resonant excitation. The basic atomic force microscope provides a unique combination of different scanning probe microscopy methods that are indispensable in order to avoid artifacts in the measurement of the near-field signal and the resulting anisotropy contrast. Basic studies of the anisotropy contrast were performed on the ferroelectric single crystals barium titanate and lithium niobate. On lithium niobate, we examined the spectral dependence of the near-field signal close to the phonon resonance of the sample as well as its dependence on the tip-sample distance, the polarization of the incident light, and the orientation of the sample. On barium titanate, analogous measurements were performed and, additionally, areas with different types of domains were imaged and the near-field optical contrast due to the anisotropy of the sample was directly measured. The experimental results of the work agree with the theoretical predictions. A near-field optical contrast due to the anisotropy of the sample can be measured and allows areas with different orientations of the dielectric tensor to be distinguished optically. The contrast results from variations of the dielectric tensor components both parallel and perpendicular to the sample surface. The presented method allows the optical examination of anisotropies of a sample with ultrahigh resolution, and promises applications in many fields of research, such as materials science, information technology, biology, and nanooptics. / Die optische Nahfeldmikroskopie ermöglicht die zerstörungsfreie optische Unter- suchung von Oberflächen mit einer räumlichen Auflösung weit unterhalb des klas- sischen Beugungslimits von Abbe. Die Auflösung dieser Art von Mikroskopie ist unabhängig von der verwendeten Wellenlänge und liegt typischerweise im Bereich von 10-100 Nanometern. Auf dieser Längenskala zeigen viele Materialien optisch anisotropes Verhalten, auch wenn sie makroskopisch isotrop erscheinen. In der vorliegenden Arbeit wird die bisher noch nicht bestimmte Wechselwirkung einer streuenden Nahfeldsonde mit einer anisotropen Probe sowohl theoretisch als auch experimentell untersucht. Im theoretischen Teil wird das für isotrope Proben bekannte analytische Dipol- modell auf anisotrope Materialien erweitert. Während fÄur isotrope Proben ein reiner Materialkontrast beobachtet wird, ist auf anisotropen Proben zusätzlich ein Kontrast zwischen Bereichen mit unterschiedlicher Orientierung des Dielektrizitätstensors zu erwarten. Die Berechnungen zeigen, dass dieser Anisotropiekontrast messbar ist, wenn die Probe nahe einer Polaritonresonanz angeregt wird. Der verwendete experimentelle Aufbau ermöglicht die optische Untersuchung von Materialien im sichtbaren sowie im infraroten Wellenlängenbereich, wobei zur re- sonanten Anregung ein Freie-Elektronen-Laser verwendet wurde. Das dem Nahfeld- mikroskop zugrunde liegende Rasterkraftmikroskop bietet eine einzigartige Kombi- nation verschiedener Rastersondenmikroskopie-Methoden und ermöglicht neben der Untersuchung von komplementären Probeneigenschaften auch die Unterdrückung von mechanisch und elektrisch induzierten Fehlkontrasten im optischen Signal. An den ferroelektrischen Einkristallen Lithiumniobat und Bariumtitanat wurde der anisotrope Nahfeldkontrast im infraroten WellenlÄangenbereich untersucht. An eindomÄanigem Lithiumniobat wurden das spektrale Verhalten des Nahfeldsignals sowie dessen charakteristische Abhängigkeit von Polarisation, Abstand und Proben- orientierung grundlegend untersucht. Auf Bariumtitanat, einem mehrdomänigen Kristall, wurden analoge Messungen durchgeführt und zusätzlich Gebiete mit ver- schiedenen Domänensorten abgebildet, wobei ein direkter nachfeldoptischer Kon- trast aufgrund der Anisotropie der Probe nachgewiesen werden konnte. Die experimentellen Ergebnisse dieser Arbeit stimmen mit den theoretischen Vorhersagen überein. Ein durch die optische Anisotropie der Probe induzierter Nahfeldkontrast ist messbar und erlaubt die optische Unterscheidung von Gebie- ten mit unterschiedlicher Orientierung des Dielektriziätstensors, wobei eine Än- derung desselben sowohl parallel als auch senkrecht zur Probenoberfläche messbar ist. Diese Methode erlaubt die hochauflösende optische Untersuchung von lokalen Anisotropien, was in zahlreichen Gebieten der Materialwissenschaft, Speichertech- nik, Biologie und Nanooptik von Interesse ist.
|
328 |
Reliability Assessment and Defect Characterization of Piezoelectric Thin FilmsHo, Kuan-Ting 19 October 2024 (has links)
The ensuring of reliability of piezoelectric thin films is crucial for a successful piezoelectric micro-electromechanical system (piezoMEMS) application. One of the most important limiting factors for reliability is resistance degradation, where the leakage current increases over time under electrical load. The understanding of resistance degradation in piezoelectric thin films requires knowledge about point defects inside the materials. In this dissertation, the resistance degradation mechanism in sputtered lead zirconate titanate (PZT) and lead-free alternative sodium potassium niobate (KNN) thin films is studied in both voltage polarities, and its relation to point defects is established. The conduction mechanism of both PZT and KNN thin films is found to be Schottky-limited. Furthermore, the resistance degradation is due to the reduction in Schottky barrier height, which results from the interfacial accumulation of additional charged defects. In order to study those defects, we use thermally stimulated depolarization current (TSDC) measurements and charge-based deep level transient spectroscopy (Q-DLTS) to characterize the defects in both PZT and KNN thin films. In PZT thin films, the resistance degradation take place in different waves of increasing leakage current. Both oxygen vacancies and lead vacancies contribute to the different waves of resistance degradation in both voltage polarities. A physical degradation model was developed based on hopping migration of oxygen vacancies at constant speed and exponent accumulation of lead vacancy trapping, where the natural logarithm of leakage current is proportional to the accumulated defect concentration to the power of 0.25. By using the oxygen vacancy concentration measured by TSDC and lead vacancy concentrations measured by Q-DLTS, the model successfully explained the resistance degradation behaviors of PZT films varying due to deposition non-uniformity and due to different process parameters. The accumulation of oxygen vacancies at cathode is supported by X-ray photoelectron spectroscopy (XPS), and the resistance degradation can be restored by proper heat and electrical treatment as predicted by the defect characterization results. In KNN thin films, oxygen vacancies contribute to the resistance degradation when a negative voltage is applied at the top electrode, whereas sodium and potassium vacancies contribute to the resistance degradation when a positive voltage is applied at the top electrode. The model developed for PZT can be applied also to KNN, where the model successfully explained the resistance degradation behaviors of KNN films varying due to the deposition non-uniformity by using the defect concentration measured by TSDC. The accumulation of oxygen vacancies at cathode and sodium plus potassium vacancies at anode are supported by transmission electron microscopy energy dispersive X-ray spectroscopy (TEM-EDX), and the resistance degradation can be restored also by proper heat and electrical treatment as predicted by the defect characterization results. This dissertation revealed the similarity of the resistance degradation between sputtered PZT and KNN thin films. The degradation is controlled by the crystallography point defects created during deposition process inside the material, indicating the significance of process control on material reliability. This dissertation also demonstrates the applicability of TSDC and Q-DLTS as alternative methods to assess the quality of the piezoelectric thin films. Both measurement techniques provide additional information regarding specific defects when comparing with conventional highly accelerated lifetime test (HALT) or other relevant tests. / Die Sicherstellung der Zuverlässigkeit piezoelektrischer Dünnschichten ist entscheidend für eine erfolgreiche Anwendung in piezoelektrischen mikro-elektromechanischen Systemen (piezoMEMS). Einer der wichtigsten limitierenden Faktoren für die Zuverlässigkeit ist die Widerstandsdegradation, bei der der Leckstrom mit der Zeit unter elektrischer Last zunimmt. Das Verständnis der Widerstandsdegradation in piezoelektrischen Dünnschichten erfordert laut Literatur Kenntnisse über Punkt-Defekte innerhalb der Materialien. In dieser Dissertation wird der Mechanismus der Widerstandsdegradation in gesputterten Blei-Zirkonat-Titanat (PZT) Dünnschichten und dessen bleifreier alternative Kalium-Natrium-Niobat (KNN) in beiden Spannungspolaritäten untersucht und deren Zusammenhang mit Punkt-Defekte hergestellt. Der Leitungsmechanismus von PZT- und KNN-Dünnschichten ist Schottky-begrenzt. Außerdem ist die Widerstandsdegradation auf die Reduzierung der Schottky-Barrierhöhe zurückzuführen, die von der Akkumulation zusätzlicher aufgeladener -Defekte an der Grenzfläche stammt. Um diese -Defekte zu untersuchen, verwenden wir thermisch stimulierte Depolarisationsstrommessungen (Thermally stimulated depolarization current, TSDC) und ladungsbasierte Deep-Level-Transientenspektroskopie (Charge-based deep level transient spectroscopy, Q-DLTS), um die Defekte sowohl in PZT- als auch in KNN-Dünnschichten zu charakterisieren.Die Wiederstandsdegradation in PZT-Dünnschichten findet in unterschiedlichen Wellen des erhöhenden Leckstroms statt. Sowohl Sauerstofffehlstellen als auch Bleifehlstellen tragen zu den unterschiedlichen Wellen der Widerstandsdegradation in beiden Spannungspolaritäten bei. Ein physikalisches Degradationsmodell wurde entwickelt, basierend auf der Hopping-Migration von Sauerstofffehlstellen bei konstanter Geschwindigkeit und exponentieller Akkumulation von Ladungseinfang durch Bleifehlstellen, wobei der natürliche Logarithmus des Leckstroms proportional zur akkumulierten Defektkonzentration hoch 0,25 ist. Durch die Verwendung der Sauerstofffehlstellen- und Bleifehlstellenkonzentrationen konnte das Modell das Widerstandsdegradationsverhalten von PZT-Dünnschichten erklären, das wegen der Ungleichmäßigkeit der Deposition und wegen der verschiedenen Prozessparameters variiert. Die Sauerstofffehlstellenkonzentration wird durch TSDC gemessen und die Bleifehlstellenkonzentrationen wird durch Q-DLTS gemessen. Die Akkumulation von Sauerstofffehlstellen an der Kathode wird durch die Röntgen-Photoelektronenspektroskopie (X-ray photoelectron spectroscopy, XPS) unterstützt und die Widerstandsdegradation kann durch eine ordnungsgemäße Wärme- und elektrische Behandlung wiederhergestellt werden, wie durch die Ergebnisse von Defektecharakterisierung vorhergesagt wurde. Bei KNN-Dünnschichten tragen Sauerstofffehlstellen zu der Widerstandsdegradation bei, wenn eine negative Spannung an der oberen Elektrode anliegt, und Natrium- und Kaliumfehlstellen tragen zu der Widerstandsdegradation bei, wenn eine positive Spannung an der oberen Elektrode anliegt. Das für PZT entwickelte Modell kann auch auf KNN angewendet werden. Das Modell erklärt erfolgreich das Widerstandsdegradationverhalten von KNN-Dünnschichten, das durch die Ungleichmäßigkeit der Deposition variiert werden, was mithilfe der mit TSDC gemessenen Defektkonzentrationen erklärt werden kann. Die Akkumulation von Sauerstofffehlstellen an Kathode und Natrium- und Kaliumfehlstellen an der Anode wird durch die transmissionselektronenmikroskopische energiedispersive Röntgenspektroskopie (transmission electron microscopy energy dispersive X-ray spectroscopy, TEM-EDX) unterstützt, und die Widerstandsdegradation kann auch durch eine ordnungsgemäße Wärme- und elektrische Behandlung wiederhergestellt werden, wie durch die Ergebnisse von Defektecharakterisierung vorhergesagt wurde. Diese Dissertation zeigt die Ähnlichkeit der Widerstandsdegradation zwischen gesputterten PZT- und KNN-Dünnschichten. Die Degradation wird durch die kristallographischen Punkt-Defekte gesteuert, die während des Abscheidungsprozesses im Material entstehen. Das weist auf die Bedeutung der Prozesskontrolle für die Zuverlässigkeit des Materials hin. Diese Dissertation zeigt auch die Anwendbarkeit von TSDC und Q-DLTS als alternative Methoden zur Beurteilung der Qualität der piezoelektrischen Dünnschichten. Beide Messtechniken liefern zusätzliche Informationen zu spezifischen Defekte im Vergleich zu traditionellen HALT-Prüfungen (highly accelerated lifetime test).
|
329 |
Caractérisation électrique multi-échelle d'oxydes minces ferroélectriques / Multi-scale electrical characterization of ferroelectric thin filmsMartin, Simon 12 December 2016 (has links)
Les matériaux ferroélectriques sont des matériaux qui possèdent une polarisation spontanée en l'absence de champ électrique, leur conférant plusieurs propriétés intéressantes du point de vue des applications possibles. La réduction de l'épaisseur des couches ferroélectriques vers des films minces et ultra-minces s'est avérée nécessaire notamment en vue de leur intégration dans les dispositifs de la micro et nano-électronique. Cependant, cette diminution a fait apparaître certains phénomènes indésirables au sein des couches minces tels que les courants de fuite. La caractérisation électrique de ces matériaux reste donc un défi afin de comprendre les mécanismes physiques en jeu dans ces films, d'autant qu'une information à l'échelle très locale est maintenant requise. Il est donc nécessaire de faire progresser les techniques de mesure électrique pour atteindre ces objectifs. Durant cette thèse, nous mesurons la polarisation diélectrique de l'échelle mésoscopique jusqu'à l'échelle nanométrique en utilisant des caractérisations purement électriques constituées de mesures Polarisation-Tension, Capacité-Tension et Courant-Tension mais aussi des mesures électromécaniques assurées par une technique dérivée de la microscopie à force atomique et nommée Piezoresponse Force Microscopy. Au cours de nos travaux, nous montrons la limite de certaines techniques de caractérisation classiques ainsi que les artéfacts affectant la mesure électrique ou électromécanique et pouvant mener à une mauvaise interprétation des résultats de mesure. Afin de pousser nos investigations plus loin, nous avons développé de nouvelles techniques de mesure pour s'affranchir de certains signaux parasites dont nous exposerons le principe de fonctionnement. Nous présentons les premières mesures directes de polarisation rémanente à l'échelle du nanomètre grâce à une technique que nous nommons nano-PUND. Ces techniques et méthodes sont appliquées à une variété importante de matériaux tels que Pb(Zr,Ti)O3, GaFeO3 ou BaTiO3 dont, pour certains, la ferroélectricité n'a jamais été démontrée expérimentalement sans ambiguïté. / Ferroelectric materials show a spontaneous dielectric polarisation even in the absence of applied electric field, which confers them interesting possibilities of applications. The reduction of the thickness of ferroelectric layers towards ultra-thin values has been necessary in view of their integration in micro and nano-electronic devices. However, the reduction of thickness has been accompanied by unwanted phenomena in thin layers such as tunneling currents and more generally leakage currents. The electrical characterization of these materials remains a challenge which aims at better understanding the physical mechanisms at play, and requires now a nanometric spatial resolution. To do so, it is thus mandatory to enhance the techniques of electrical measurement. In this work, we measure the dielectric polarisation of ferroelectric films from mesoscopic scale down to the nanometric scale using purely electric characterisation techniques (Polarisation vs Voltage, Capacitance vs Voltage, Current vs Voltage), but also electro-mechanical techniques like Piezoresponse Force Microscopy which derives from Atomic Force Microscopy. We show the limits of several classical techniques as well as the artefacts which affect electrical or electro-mechanical measurement and may lead to an incorrect interpretation of the data. In order to push the investigation further, we have developed and we describe new measurement techniques which aim at avoiding some parasitic signals. We present the first direct measurement of the remnent polarisation at the nanoscale thanks to a technique which we call « nano-PUND ». These techniques and methods are applied to a large variety of materials like Pb(Zr,Ti)O3, GaFeO3 or BaTiO3 which (for some of them), ferroelectricity has not been measured experimentally.
|
330 |
Einfluss reversibler epitaktischer Dehnung auf die ferroische Ordnung dünner SchichtenHerklotz, Andreas 05 June 2012 (has links) (PDF)
In dieser Arbeit werden die Auswirkungen epitaktischer Dehnung auf die Eigenschaften ferromagnetischer und ferroelektrischer Perowskitschichten untersucht. Dazu wird der biaxiale Dehnungszustand einer Schicht reversibel verändert, indem einkristalline piezoelektrische Pb(Mg1/3Nb2/3)0.72Ti0.28O3 (001) Substrate (PMN-PT) verwendet werden. Ergänzt werden die Messungen mit dieser “dynamischen” Methode durch Untersuchungen an statisch gedehnten Schichten, gewachsen auf LaAlxSc1-xO3-Pufferschichten mit gezielt abgestimmter Gitterfehlpassung.
Drei verschiedene Materialsysteme werden studiert: die ferromagnetischen Oxide La0.8Sr0.2CoO3 und SrRuO3 und das ferroelektrische Pb(Zr,Ti)O3. Für La0.8Sr0.2CoO3 wird ein dehnungsinduzierter Übergang von der bekannten ferromagnetischen Phase zu einer magnetisch weniger geordneten, spinglasartigen Phase nachgewiesen. Es ergeben sich keine Hinweise auf eine Beeinflussung des Co-Spinzustandes.
In epitaktischen SrRuO3-Schichten bewirkt eine Zugdehnung einen strukturellen Phasenübergang von der orthorhombischen Bulk-Phase zu einer out-of-plane orientierten tetragonalen Phase. Die leichte Richtung liegt in der Ebene. Reversible Dehnungsmessungen zeigen einen deutlichen Einfluss auf die ferromagnetische Ordnungstemperatur und deuten auf eine geringe Veränderung des magnetischen Moments hin. Der Dehnungseffekt auf die elektrischen Transporteigenschaften wird bestimmt.
Pb(Zr,Ti)O3 wird als ferroelektrisches Standardmaterial genutzt, um erstmalig den Einfluss biaxialer Dehnung auf das ferroelektrische Schaltverhalten dünner Schichten zu untersuchen. Für kleine elektrische Felder zeigen die Messungen das typische Verhalten einer gepinnten Domänenwandbewegung. Hier wird der Schaltvorgang unter Piezokompression stark beschleunigt. Werden an die elektrischen Kontakte größere elektrische Felder angelegt, geht die Domänenwandbewegung in das Depinning-Regime über. Die Schaltkinetik wird in diesem Bereich unter Piezokompression leicht verlangsamt. / In this work, the effect of epitaxial strain on the properties of ferromagnetic and ferroelectric perovskite thin films is studied. Single-crystalline piezoelectric Pb(Mg1/3Nb2/3)0.72Ti0.28O3 (001) substrates (PMN-PT) are utilized to reversibly change the biaxial strain state of the films. The measurements performed by this “dynamic” approach are complemented by studying statically strained films grown on LaAlxSc1-xO3 buffer layers with deliberately tuned lattice misfit.
Three different material systems are investigated: the ferromagnetic oxides La0.8Sr0.2CoO3 and SrRuO3 and the ferroelectric compound Pb(Zr,Ti)O3. In case of La0.8Sr0.2CoO3 a strain-induced transition from the known ferromagnetic phase to a magnetically less ordered spinglas-like phase is observed. No indications for an effect on the Co spin state are found.
In epitaxial SrRuO3 films tensile strain is causing a structural phase transition from the bulk-like orthorhombic structure to an out-of-plane oriented tetragonal phase. The magnetic easy axis is in the film plane. Reversible strain experiments show a significant effect on the ferromagnetic ordering temperature and point to a small change of the magnetic moment. The strain effect on the electric transport properties is also determined.
Pb(Zr,Ti)O3 as a standard ferroelectric material is used to study the influence of biaxial strain on the ferroelectric switching behaviour of thin films for the first time. At small electric fields the measurements reveal the typical signs of creep-like domain wall motion caused by wall pinning. In this regime the switching process is accelerated strongly under piezo-compression. For higher electric fields a transition of the domain wall motion to the depinning regime is observed. Here, the switching kinetics is slowed down moderately by compressive strain.
|
Page generated in 0.0428 seconds