Spelling suggestions: "subject:"ehe fonte carlo 3methods"" "subject:"ehe fonte carlo 4methods""
121 |
Simulações numéricas de Monte Carlo aplicadas no estudo das transições de fase do modelo de Ising dipolar bidimensional / Numerical Monte Carlo simulations applied to study of phase transitions in two-dimensional dipolar Ising modelLeandro Gutierrez Rizzi 24 April 2009 (has links)
O modelo de Ising dipolar bidimensional inclui, além da interação ferromagnética entre os primeiros vizinhos, interações de longo alcance entre os momentos de dipolo magnético dos spins. A presença da interação dipolar muda completamente o sistema, apresentando um rico diagrama de fase, cujas características têm originado inúmeros estudos na literatura. Além disso, a possibilidade de explicar fenômenos observados em filmes magnéticos ultrafinos, os quais possuem diversas aplicações em àreas tecnológicas, também motiva o estudo deste modelo. O estado fundamental ferromagnético do modelo de Ising puro é alterado para uma série de fases do tipo faixas, as quais consistem em domínios ferromagnéticos de largura $h$ com magnetizações opostas. A largura das faixas depende da razao $\\delta$ das intensidades dos acoplamentos ferromagnético e dipolar. Através de simulações de Monte Carlo e técnicas de repesagem em histogramas múltiplos identificamos as temperaturas críticas de tamanho finito para as transições de fase quando $\\delta=2$, o que corresponde a $h=2$. Calculamos o calor específico e a susceptibilidade do parâmetro de ordem, no intervalo de temperaturas onde as transições são observadas, para diferentes tamanhos de rede. As técnicas de repesagem permitem-nos explorar e identificar máximos distintos nessas funções da temperatura e, desse modo, estimar as temperaturas críticas de tamanho finito com grande precisão. Apresentamos evidências numéricas da existência de uma fase nemática de Ising para tamanhos grandes de rede. Em nossas simulações, observamos esta fase para tamanhos de rede a partir de $L=48$. Para verificar o quanto a interação dipolar de longo alcance afeta as estimativas físicas, nós calculamos o tempo de autocorrelação integrado nas séries temporais da energia. Inferimos daí quão severo é o critical slowing down (decaimento lento crítico) para esse sistema próximo às transições de fase termodinâmicas. Os resultados obtidos utilizando um algoritmo de atualização local foram comparados com os resultados obtidos utilizando o algoritmo multicanônico. / Two-dimensional spin model with nearest-neighbor ferromagnetic interaction and long-range dipolar interactions exhibit a rich phase diagram, whose characteristics have been exploited by several studies in the recent literature. Furthermore, the possibility of explain observed phenomena in ultrathin magnetic films, which have many technological applications, also motivates the study of this model. The presence of dipolar interaction term changes the ferromagnetic ground state expected for the pure Ising model to a series of striped phases, which consist of ferromagnetic domains of width $h$ with opposite magnetization. The width of the stripes depends on the ratio $\\delta$ of the ferromagnetic and dipolar couplings. Monte Carlo simulations and reweighting multiple histograms techniques allow us to identify the finite-size critical temperatures of the phase transitions when $\\delta=2$, which corresponds to $h=2$. We calculate, for different lattice sizes, the specific heat and susceptibility of the order parameter around the transition temperatures by means of reweighting techniques. This allows us to identify in these observables, as functions of temperature, the distinct maxima and thereby to estimate the finite-size critical temperatures with high precision. We present numerical evidence of the existence of a Ising nematic phase for large lattice sizes. Our results show that simulations need to be performed for lattice sizes at least as large as $L=48$ to clearly observe the Ising nematic phase. To access how the long-range dipolar interaction may affect physical estimates we also evaluate the integrated autocorrelation time in energy time series. This allows us to infer how severe is the critical slowing down for this system with long-range interaction and nearby thermodynamic phase transitions. The results obtained using a local update algorithm are compared with results obtained using the multicanonical algorithm.
|
122 |
Estimation Bayésienne non Paramétrique de Systèmes Dynamiques en Présence de Bruits Alpha-Stables / Nonparametric Bayesian Estimition of Dynamical Systems in the Presence of Alpha-Stable NoiseJaoua, Nouha 06 June 2013 (has links)
Dans un nombre croissant d'applications, les perturbations rencontrées s'éloignent fortement des modèles classiques qui les modélisent par une gaussienne ou un mélange de gaussiennes. C'est en particulier le cas des bruits impulsifs que nous rencontrons dans plusieurs domaines, notamment celui des télécommunications. Dans ce cas, une modélisation mieux adaptée peut reposer sur les distributions alpha-stables. C'est dans ce cadre que s'inscrit le travail de cette thèse dont l'objectif est de concevoir de nouvelles méthodes robustes pour l'estimation conjointe état-bruit dans des environnements impulsifs. L'inférence est réalisée dans un cadre bayésien en utilisant les méthodes de Monte Carlo séquentielles. Dans un premier temps, cette problématique a été abordée dans le contexte des systèmes de transmission OFDM en supposant que les distorsions du canal sont modélisées par des distributions alpha-stables symétriques. Un algorithme de Monte Carlo séquentiel a été proposé pour l'estimation conjointe des symboles OFDM émis et des paramètres du bruit $\alpha$-stable. Ensuite, cette problématique a été abordée dans un cadre applicatif plus large, celui des systèmes non linéaires. Une approche bayésienne non paramétrique fondée sur la modélisation du bruit alpha-stable par des mélanges de processus de Dirichlet a été proposée. Des filtres particulaires basés sur des densités d'importance efficaces sont développés pour l'estimation conjointe du signal et des densités de probabilité des bruits / In signal processing literature, noise's sources are often assumed to be Gaussian. However, in many fields the conventional Gaussian noise assumption is inadequate and can lead to the loss of resolution and/or accuracy. This is particularly the case of noise that exhibits impulsive nature. The latter is found in several areas, especially telecommunications. $\alpha$-stable distributions are suitable for modeling this type of noise. In this context, the main focus of this thesis is to propose novel methods for the joint estimation of the state and the noise in impulsive environments. Inference is performed within a Bayesian framework using sequential Monte Carlo methods. First, this issue has been addressed within an OFDM transmission link assuming a symmetric alpha-stable model for channel distortions. For this purpose, a particle filter is proposed to include the joint estimation of the transmitted OFDM symbols and the noise parameters. Then, this problem has been tackled in the more general context of nonlinear dynamic systems. A flexible Bayesian nonparametric model based on Dirichlet Process Mixtures is introduced to model the alpha-stable noise. Moreover, sequential Monte Carlo filters based on efficient importance densities are implemented to perform the joint estimation of the state and the unknown measurement noise density
|
123 |
Étude et simulation des processus de diffusion biaisés / Study and simulation of skew diffusion processesLenôtre, Lionel 27 November 2015 (has links)
Nous considérons les processus de diffusion biaisés et leur simulation. Notre étude se divise en quatre parties et se concentre majoritairement sur les processus à coefficients constants par morceaux dont les discontinuités se trouvent le long d'un hyperplan simple. Nous commençons par une étude théorique dans le cas de la dimension un pour une classe de coefficients plus large. Nous donnons en particulier un résultat sur la structure des densités des résolvantes associées à ces processus et obtenons ainsi une méthode de calcul. Lorsque cela est possible, nous effectuons une inversion de Laplace de ces densités et donnons quelques fonctions de transition. Nous nous concentrons ensuite sur la simulation des processus de diffusions baisées. Nous construisons un schéma numérique utilisant la densité de la résolvante pour tout processus de Feller. Avec ce schéma et les densités calculées dans la première partie, nous obtenons une méthode de simulation des processus de diffusions biaisées en dimension un. Après cela, nous regardons le cas de la dimension supérieure. Nous effectuons une étude théorique et calculons des fonctionnelles des processus de diffusions biaisées. Ceci nous permet d'obtenir entre autre la fonction de transition du processus marginal orthogonal à l'hyperplan de discontinuité. Enfin, nous abordons la parallélisation des méthodes particulaires et donnons une stratégie permettant de simuler de grand lots de trajectoires de processus de diffusions biaisées sur des architectures massivement parallèle. Une propriété de cette stratégie est de permettre de simuler à nouveau quelques trajectoires des précédentes simulations. / We consider the skew diffusion processes and their simulation. This study are divided into four parts and concentrate on the processes whose coefficients are piecewise constant with discontinuities along a simple hyperplane. We start by a theoretical study of the one-dimensional case when the coefficients belong to a broader class. We particularly give a result on the structure of the resolvent densities of these processes and obtain a computational method. When it is possible, we perform a Laplace inversion of these densities and provide some transition functions. Then we concentrate on the simulation of skew diffusions process. We build a numerical scheme using the resolvent density for any Feller processes. With this scheme and the resolvent densities computed in the previous part, we obtain a simulation method for the skew diffusion processes in dimension one. After that, we consider the multidimensional case. We provide a theoretical study and compute some functionals of the skew diffusions processes. This allows to obtain among others the transition function of the marginal process orthogonal to the hyperplane of discontinuity. Finally, we consider the parallelization of Monte Carlo methods. We provide a strategy which allows to simulate a large batch of skew diffusions processes sample paths on massively parallel architecture. An interesting feature is the possibility to replay some the sample paths of previous simulations.
|
124 |
Rare event simulation for statistical model checking / Simulation d'événements rares pour le model checking statistiqueJegourel, Cyrille 19 November 2014 (has links)
Dans cette thèse, nous considérons deux problèmes auxquels le model checking statistique doit faire face. Le premier concerne les systèmes hétérogènes qui introduisent complexité et non-déterminisme dans l'analyse. Le second problème est celui des propriétés rares, difficiles à observer et donc à quantifier. Pour le premier point, nous présentons des contributions originales pour le formalisme des systèmes composites dans le langage BIP. Nous en proposons une extension stochastique, SBIP, qui permet le recours à l'abstraction stochastique de composants et d'éliminer le non-déterminisme. Ce double effet a pour avantage de réduire la taille du système initial en le remplaçant par un système dont la sémantique est purement stochastique sur lequel les algorithmes de model checking statistique sont définis. La deuxième partie de cette thèse est consacrée à la vérification de propriétés rares. Nous avons proposé le recours à un algorithme original d'échantillonnage préférentiel pour les modèles dont le comportement est décrit à travers un ensemble de commandes. Nous avons également introduit les méthodes multi-niveaux pour la vérification de propriétés rares et nous avons justifié et mis en place l'utilisation d'un algorithme multi-niveau optimal. Ces deux méthodes poursuivent le même objectif de réduire la variance de l'estimateur et le nombre de simulations. Néanmoins, elles sont fondamentalement différentes, la première attaquant le problème au travers du modèle et la seconde au travers des propriétés. / In this thesis, we consider two problems that statistical model checking must cope. The first problem concerns heterogeneous systems, that naturally introduce complexity and non-determinism into the analysis. The second problem concerns rare properties, difficult to observe, and so to quantify. About the first point, we present original contributions for the formalism of composite systems in BIP language. We propose SBIP, a stochastic extension and define its semantics. SBIP allows the recourse to the stochastic abstraction of components and eliminate the non-determinism. This double effect has the advantage of reducing the size of the initial system by replacing it by a system whose semantics is purely stochastic, a necessary requirement for standard statistical model checking algorithms to be applicable. The second part of this thesis is devoted to the verification of rare properties in statistical model checking. We present a state-of-the-art algorithm for models described by a set of guarded commands. Lastly, we motivate the use of importance splitting for statistical model checking and set up an optimal splitting algorithm. Both methods pursue a common goal to reduce the variance of the estimator and the number of simulations. Nevertheless, they are fundamentally different, the first tackling the problem through the model and the second through the properties.
|
125 |
Algorithmes de restauration bayésienne mono- et multi-objets dans des modèles markoviens / Single and multiple object(s) Bayesian restoration algorithms for Markovian modelsPetetin, Yohan 27 November 2013 (has links)
Cette thèse est consacrée au problème d'estimation bayésienne pour le filtrage statistique, dont l'objectif est d'estimer récursivement des états inconnus à partir d'un historique d'observations, dans un modèle stochastique donné. Les modèles stochastiques considérés incluent principalement deux grandes classes de modèles : les modèles de Markov cachés et les modèles de Markov à sauts conditionnellement markoviens. Ici, le problème est abordé sous sa forme générale dans la mesure où nous considérons le problème du filtrage mono- et multi objet(s), ce dernier étant abordé sous l'angle de la théorie des ensembles statistiques finis et du filtre « Probability Hypothesis Density ». Tout d'abord, nous nous intéressons à l'importante classe d'approximations que constituent les algorithmes de Monte Carlo séquentiel, qui incluent les algorithmes d'échantillonnage d'importance séquentiel et de filtrage particulaire auxiliaire. Les boucles de propagation mises en jeux dans ces algorithmes sont étudiées et des algorithmes alternatifs sont proposés. Les algorithmes de filtrage particulaire dits « localement optimaux », c'est à dire les algorithmes d'échantillonnage d'importance avec densité d'importance conditionnelle optimale et de filtrage particulaire auxiliaire pleinement adapté sont comparés statistiquement, en fonction des paramètres du modèle donné. Ensuite, les méthodes de réduction de variance basées sur le théorème de Rao-Blackwell sont exploitées dans le contexte du filtrage mono- et multi-objet(s) Ces méthodes, utilisées principalement en filtrage mono-objet lorsque la dimension du vecteur d'état à estimer est grande, sont dans un premier temps étendues pour les approximations Monte Carlo du filtre Probability Hypothesis Density. D'autre part, des méthodes de réduction de variance alternatives sont proposées : bien que toujours basées sur le théorème de Rao-Blackwell, elles ne se focalisent plus sur le caractère spatial du problème mais plutôt sur son caractère temporel. Enfin, nous abordons l'extension des modèles probabilistes classiquement utilisés. Nous rappelons tout d'abord les modèles de Markov couple et triplet dont l'intérêt est illustré à travers plusieurs exemples pratiques. Ensuite, nous traitons le problème de filtrage multi-objets, dans le contexte des ensembles statistiques finis, pour ces modèles. De plus, les propriétés statistiques plus générales des modèles triplet sont exploitées afin d'obtenir de nouvelles approximations de l'estimateur bayésien optimal (au sens de l'erreur quadratique moyenne) dans les modèles à sauts classiquement utilisés; ces approximations peuvent produire des estimateurs de performances comparables à celles des approximations particulaires, mais ont l'avantage d'être moins coûteuses sur le plan calculatoire / This thesis focuses on the Bayesian estimation problem for statistical filtering which consists in estimating hidden states from an historic of observations over time in a given stochastic model. The considered models include the popular Hidden Markov Chain models and the Jump Markov State Space Systems; in addition, the filtering problem is addressed under a general form, that is to say we consider the mono- and multi-object filtering problems. The latter one is addressed in the Random Finite Sets and Probability Hypothesis Density contexts. First, we focus on the class of particle filtering algorithms, which include essentially the sequential importance sampling and auxiliary particle filter algorithms. We explore the recursive loops for computing the filtering probability density function, and alternative particle filtering algorithms are proposed. The ``locally optimal'' filtering algorithms, i.e. the sequential importance sampling with optimal conditional importance distribution and the fully adapted auxiliary particle filtering algorithms, are statistically compared in function of the parameters of a given stochastic model. Next, variance reduction methods based on the Rao-Blackwell theorem are exploited in the mono- and multi-object filtering contexts. More precisely, these methods are mainly used in mono-object filtering when the dimension of the hidden state is large; so we first extend them for Monte Carlo approximations of the Probabilty Hypothesis Density filter. In addition, alternative variance reduction methods are proposed. Although we still use the Rao-Blackwell decomposition, our methods no longer focus on the spatial aspect of the problem but rather on its temporal one. Finally, we discuss on the extension of the classical stochastic models. We first recall pairwise and triplet Markov models and we illustrate their interest through several practical examples. We next address the multi-object filtering problem for such models in the random finite sets context. Moreover, the statistical properties of the more general triplet Markov models are used to build new approximations of the optimal Bayesian estimate (in the sense of the mean square error) in Jump Markov State Space Systems. These new approximations can produce estimates with performances alike those given by particle filters but with lower computational cost
|
126 |
Active Tuning of Thermal Conductivity in Single layer Graphene Phononic crystals using Engineered Pore Geometry and StrainRadhakrishna Korlam (11820830) 19 December 2021 (has links)
Understanding thermal transport across length scales lays the foundation to developing high-performance electronic devices. Although many experiments and models of the past few decades have explored the physics of heat transfer at nanoscale, there are still open questions regarding the impact of periodic nanostructuring and coherent phonon effects, as well as the interaction of strain and thermal transport. Thermomechanical effects, as well as strains applied in flexible electronic devices, impact the thermal transport. In the simplest kinetic theory models, thermal conductivity is proportional to the phonon group velocity, heat capacity, and scattering times. Periodic porous nanostructures impact the phonon dispersion relationship (group velocity) and the boundaries of the pores increase the scattering times. Strain, on the other hand, affects the crystal structure of the lattice and slightly increases the thermal conductivity of the material under compression. Intriguingly, applying strain combined with the periodic porous structures is expected to influence both the dispersion relation and scattering rates and yield the ability to tune thermal transport actively. But often these interrelated effects are simplified in models.<br><br>This work evaluates the combination of structure and strain on thermal conductivity by revisiting some of the essential methods used to predict thermal transport for a single layer of graphene with a periodic porous lattice structure with and without applied strain. First, we use the highest fidelity method of Non-Equilibrium Molecular Dynamics (NEMD) simulations to estimate the thermal conductivity which considers the impact of the lattice structure, strain state, and phononic band structure together. Next, the impact of the geometry of the slots within the lattice is interrogated with Boltzmann Transport Equation (BTE) models under a Relaxation Time Approximation. A Monte Carlo based Boltzmann Transport Equation (BTE) solver is also used to estimate the thermal conductivity of phononic crystals with varying pore geometry. Dispersion relations calculated from continuum mechanics are used as input here. This method which utilizes a simplified pore geometry only partially accounts for the effects of scattering on the pore boundaries. Finally, a continuum level model is also used to predict the thermal conductivity and its variations under applied strain. As acoustic phonon branches tend to carry the most heat within the lattice, these continuum models and other simple kinetic theories only consider their group velocities to estimate their impact on phonon thermal conductivity. As such, they do not take into account the details of phonon transport across all wavelengths.<br><br>By comparing the results from these different methods, each of which has different assumptions and simplifications, the current work aims to understand the effects of changes to the dispersion relationship based on strain and the periodic nanostructures on the thermal conductivity. We evaluate the accuracy of the kinetic theory, ray tracing, and BTE models in comparison to the MD results to offer a perspective of the reliability of each method of thermal conductivity estimation. In addition, the effect of strain on each phononic crystal with different pore geometry is also predicted in terms of change to their in-plane thermal anisotropy values. To summarize, this deeper understanding of the nanoscale thermal transport and the interrelated effects of geometry, strain, and phonon band structure on thermal conductivity can aid in developing lattices specifically designed to achieve the required dynamic thermal response for future nano-scale thermoelectric applications.
|
127 |
Incorporating Metadata Into the Active Learning Cycle for 2D Object Detection / Inkorporera metadata i aktiv inlärning för 2D objektdetekteringStadler, Karsten January 2021 (has links)
In the past years, Deep Convolutional Neural Networks have proven to be very useful for 2D Object Detection in many applications. These types of networks require large amounts of labeled data, which can be increasingly costly for companies deploying these detectors in practice if the data quality is lacking. Pool-based Active Learning is an iterative process of collecting subsets of data to be labeled by a human annotator and used for training to optimize performance per labeled image. The detectors used in Active Learning cycles are conventionally pre-trained with a small subset, approximately 2% of available data labeled uniformly at random. This is something I challenged in this thesis by using image metadata. With the motivation of many Machine Learning models being a "jack of all trades, master of none", thus it is hard to train models such that they generalize to all of the data domain, it can be interesting to develop a detector for a certain target metadata domain. A simple Monte Carlo method, Rejection Sampling, can be implemented to sample according to a metadata target domain. This would require a target and proposal metadata distribution. The proposal metadata distribution would be a parametric model in the form of a Gaussian Mixture Model learned from the training metadata. The parametric model for the target distribution could be learned in a similar manner, however from a target dataset. In this way, only the training images with metadata most similar to the target metadata distribution can be sampled. This sampling approach was employed and tested with a 2D Object Detector: Faster-RCNN with ResNet-50 backbone. The Rejection Sampling approach was tested against conventional random uniform sampling and a classical Active Learning baseline: Min Entropy Sampling. The performance was measured and compared on two different target metadata distributions that were inferred from a specific target dataset. With a labeling budget of 2% for each cycle, the max Mean Average Precision at 0.5 Intersection Over Union for the target set each cycle was calculated. My proposed approach has a 40 % relative performance advantage over random uniform sampling for the first cycle, and 10% after 9 cycles. Overall, my approach only required 37 % of the labeled data to beat the next best-tested sampler: the conventional uniform random sampling. / De senaste åren har Djupa Neurala Faltningsnätverk visat sig vara mycket användbara för 2D Objektdetektering i många applikationer. De här typen av nätverk behöver stora mängder av etiketterat data, något som kan innebära ökad kostnad för företag som distribuerar dem, om kvaliteten på etiketterna är bristfällig. Pool-baserad Aktiv Inlärning är en iterativ process som innebär insamling av delmängder data som ska etiketteras av en människa och användas för träning, för att optimera prestanda per etiketterat data. Detektorerna som används i Aktiv Inlärning är konventionellt sätt förtränade med en mindre delmängd data, ungefär 2% av all tillgänglig data, etiketterat enligt slumpen. Det här är något jag utmanade i det här arbetet genom att använda bild metadata. Med motiveringen att många Maskininlärningsmodeller presterar sämre på större datadomäner, eftersom det kan vara svårt att lära detektorer stora datadomäner, kan det vara intressant att utveckla en detektor för ett särskild metadata mål-domän. För att samla in data enligt en metadata måldomän, kan en enkel Monte Carlo metod, Rejection Sampling implementeras. Det skulle behövas en mål-metadata-distribution och en faktisk metadata distribution. den faktiska metadata distributionen skulle vara en parametrisk modell i formen av en Gaussisk blandningsmodell som är tränad på träningsdata. Den parametriska modellen för mål-metadata-distributionen skulle kunna vara tränad på liknande sätt, fast ifrån mål-datasetet. På detta sätt, skulle endast träningsbilder med metadata mest lik mål-datadistributionen kunna samlas in. Den här samplings-metoden utvecklades och testades med en 2D objektdetektor: Faster R-CNN med ResNet-50 bildegenskapextraktor. Rejection sampling metoden blev testad mot konventionell likformig slumpmässig sampling av data och en klassisk Aktiv Inlärnings metod: Minimum Entropi sampling. Prestandan mättes och jämfördes mellan två olika mål-metadatadistributioner som var framtagna från specifika mål-metadataset. Med en etiketteringsbudget på 2%för varje cykel, så beräknades medelvärdesprecisionen om 0.5 snitt över union för mål-datasetet. Min metod har 40%bättre prestanda än slumpmässig likformig insamling i första cykeln, och 10 % efter 9 cykler. Överlag behövde min metod endast 37 % av den etiketterade data för att slå den näst basta samplingsmetoden: slumpmässig likformig insamling.
|
128 |
Mean square solutions of random linear models and computation of their probability density functionJornet Sanz, Marc 05 March 2020 (has links)
[EN] This thesis concerns the analysis of differential equations with uncertain input parameters, in the form of random variables or stochastic processes with any type of probability distributions. In modeling, the input coefficients are set from experimental data, which often involve uncertainties from measurement errors. Moreover, the behavior of the physical phenomenon under study does not follow strict deterministic laws. It is thus more realistic to consider mathematical models with randomness in their formulation. The solution, considered in the sample-path or the mean square sense, is a smooth stochastic process, whose uncertainty has to be quantified. Uncertainty quantification is usually performed by computing the main statistics (expectation and variance) and, if possible, the probability density function.
In this dissertation, we study random linear models, based on ordinary differential equations with and without delay and on partial differential equations. The linear structure of the models makes it possible to seek for certain probabilistic solutions and even approximate their probability density functions, which is a difficult goal in general.
A very important part of the dissertation is devoted to random second-order linear differential equations, where the coefficients of the equation are stochastic processes and the initial conditions are random variables. The study of this class of differential equations in the random setting is mainly motivated because of their important role in Mathematical Physics. We start by solving the randomized Legendre differential equation in the mean square sense, which allows the approximation of the expectation and the variance of the stochastic solution. The methodology is extended to general random second-order linear differential equations with analytic (expressible as random power series) coefficients, by means of the so-called Fröbenius method. A comparative case study is performed with spectral methods based on polynomial chaos expansions. On the other hand, the Fröbenius method together with Monte Carlo simulation are used to approximate the probability density function of the solution. Several variance reduction methods based on quadrature rules and multilevel strategies are proposed to speed up the Monte Carlo procedure. The last part on random second-order linear differential equations is devoted to a random diffusion-reaction Poisson-type problem, where the probability density function is approximated using a finite difference numerical scheme.
The thesis also studies random ordinary differential equations with discrete constant delay. We study the linear autonomous case, when the coefficient of the non-delay component and the parameter of the delay term are both random variables while the initial condition is a stochastic process. It is proved that the deterministic solution constructed with the method of steps that involves the delayed exponential function is a probabilistic solution in the Lebesgue sense.
Finally, the last chapter is devoted to the linear advection partial differential equation, subject to stochastic velocity field and initial condition. We solve the equation in the mean square sense and provide new expressions for the probability density function of the solution, even in the non-Gaussian velocity case. / [ES] Esta tesis trata el análisis de ecuaciones diferenciales con parámetros de entrada aleatorios, en la forma de variables aleatorias o procesos estocásticos con cualquier tipo de distribución de probabilidad. En modelización, los coeficientes de entrada se fijan a partir de datos experimentales, los cuales suelen acarrear incertidumbre por los errores de medición. Además, el comportamiento del fenómeno físico bajo estudio no sigue patrones estrictamente deterministas. Es por tanto más realista trabajar con modelos matemáticos con aleatoriedad en su formulación. La solución, considerada en el sentido de caminos aleatorios o en el sentido de media cuadrática, es un proceso estocástico suave, cuya incertidumbre se tiene que cuantificar. La cuantificación de la incertidumbre es a menudo llevada a cabo calculando los principales estadísticos (esperanza y varianza) y, si es posible, la función de densidad de probabilidad.
En este trabajo, estudiamos modelos aleatorios lineales, basados en ecuaciones diferenciales ordinarias con y sin retardo, y en ecuaciones en derivadas parciales. La estructura lineal de los modelos nos permite buscar ciertas soluciones probabilísticas e incluso aproximar su función de densidad de probabilidad, lo cual es un objetivo complicado en general.
Una parte muy importante de la disertación se dedica a las ecuaciones diferenciales lineales de segundo orden aleatorias, donde los coeficientes de la ecuación son procesos estocásticos y las condiciones iniciales son variables aleatorias. El estudio de esta clase de ecuaciones diferenciales en el contexto aleatorio está motivado principalmente por su importante papel en la Física Matemática. Empezamos resolviendo la ecuación diferencial de Legendre aleatorizada en el sentido de media cuadrática, lo que permite la aproximación de la esperanza y la varianza de la solución estocástica. La metodología se extiende al caso general de ecuaciones diferenciales lineales de segundo orden aleatorias con coeficientes analíticos (expresables como series de potencias), mediante el conocido método de Fröbenius. Se lleva a cabo un estudio comparativo con métodos espectrales basados en expansiones de caos polinomial. Por otro lado, el método de Fröbenius junto con la simulación de Monte Carlo se utilizan para aproximar la función de densidad de probabilidad de la solución. Para acelerar el procedimiento de Monte Carlo, se proponen varios métodos de reducción de la varianza basados en reglas de cuadratura y estrategias multinivel. La última parte sobre ecuaciones diferenciales lineales de segundo orden aleatorias estudia un problema aleatorio de tipo Poisson de difusión-reacción, en el que la función de densidad de probabilidad es aproximada mediante un esquema numérico de diferencias finitas.
En la tesis también se tratan ecuaciones diferenciales ordinarias aleatorias con retardo discreto y constante. Estudiamos el caso lineal y autónomo, cuando el coeficiente de la componente no retardada i el parámetro del término retardado son ambos variables aleatorias mientras que la condición inicial es un proceso estocástico. Se demuestra que la solución determinista construida con el método de los pasos y que involucra la función exponencial retardada es una solución probabilística en el sentido de Lebesgue.
Finalmente, el último capítulo lo dedicamos a la ecuación en derivadas parciales lineal de advección, sujeta a velocidad y condición inicial estocásticas. Resolvemos la ecuación en el sentido de media cuadrática y damos nuevas expresiones para la función de densidad de probabilidad de la solución, incluso en el caso de velocidad no Gaussiana. / [CA] Aquesta tesi tracta l'anàlisi d'equacions diferencials amb paràmetres d'entrada aleatoris, en la forma de variables aleatòries o processos estocàstics amb qualsevol mena de distribució de probabilitat. En modelització, els coeficients d'entrada són fixats a partir de dades experimentals, les quals solen comportar incertesa pels errors de mesurament. A més a més, el comportament del fenomen físic sota estudi no segueix patrons estrictament deterministes. És per tant més realista treballar amb models matemàtics amb aleatorietat en la seua formulació. La solució, considerada en el sentit de camins aleatoris o en el sentit de mitjana quadràtica, és un procés estocàstic suau, la incertesa del qual s'ha de quantificar. La quantificació de la incertesa és sovint duta a terme calculant els principals estadístics (esperança i variància) i, si es pot, la funció de densitat de probabilitat.
En aquest treball, estudiem models aleatoris lineals, basats en equacions diferencials ordinàries amb retard i sense, i en equacions en derivades parcials. L'estructura lineal dels models ens fa possible cercar certes solucions probabilístiques i inclús aproximar la seua funció de densitat de probabilitat, el qual és un objectiu complicat en general.
Una part molt important de la dissertació es dedica a les equacions diferencials lineals de segon ordre aleatòries, on els coeficients de l'equació són processos estocàstics i les condicions inicials són variables aleatòries. L'estudi d'aquesta classe d'equacions diferencials en el context aleatori està motivat principalment pel seu important paper en Física Matemàtica. Comencem resolent l'equació diferencial de Legendre aleatoritzada en el sentit de mitjana quadràtica, el que permet l'aproximació de l'esperança i la variància de la solució estocàstica. La metodologia s'estén al cas general d'equacions diferencials lineals de segon ordre aleatòries amb coeficients analítics (expressables com a sèries de potències), per mitjà del conegut mètode de Fröbenius. Es duu a terme un estudi comparatiu amb mètodes espectrals basats en expansions de caos polinomial. Per altra banda, el mètode de Fröbenius juntament amb la simulació de Monte Carlo són emprats per a aproximar la funció de densitat de probabilitat de la solució. Per a accelerar el procediment de Monte Carlo, es proposen diversos mètodes de reducció de la variància basats en regles de quadratura i estratègies multinivell. L'última part sobre equacions diferencials lineals de segon ordre aleatòries estudia un problema aleatori de tipus Poisson de difusió-reacció, en què la funció de densitat de probabilitat és aproximada mitjançant un esquema numèric de diferències finites.
En la tesi també es tracten equacions diferencials ordinàries aleatòries amb retard discret i constant. Estudiem el cas lineal i autònom, quan el coeficient del component no retardat i el paràmetre del terme retardat són ambdós variables aleatòries mentre que la condició inicial és un procés estocàstic. Es prova que la solució determinista construïda amb el mètode dels passos i que involucra la funció exponencial retardada és una solució probabilística en el sentit de Lebesgue.
Finalment, el darrer capítol el dediquem a l'equació en derivades parcials lineal d'advecció, subjecta a velocitat i condició inicial estocàstiques. Resolem l'equació en el sentit de mitjana quadràtica i donem noves expressions per a la funció de densitat de probabilitat de la solució, inclús en el cas de velocitat no Gaussiana. / This work has been supported by the Spanish Ministerio de Economía y Competitividad grant MTM2017–89664–P. I acknowledge the doctorate scholarship granted by Programa de Ayudas de Investigación y Desarrollo (PAID),
Universitat Politècnica de València. / Jornet Sanz, M. (2020). Mean square solutions of random linear models and computation of their probability density function [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/138394
|
129 |
Étude probabiliste de systèmes de particules en interaction : applications à la simulation moléculaire / Probabilistic study of interacting particle systems : applications to molecular simulationRoux, Raphaël 06 December 2010 (has links)
Ce travail présente quelques résultats sur les systèmes de particules en interaction pour l'interprétation probabiliste des équations aux dérivées partielles, avec des applications à des questions de dynamique moléculaire et de chimie quantique. On présente notamment une méthode particulaire permettant d'analyser le processus de la force biaisante adaptative, utilisé en dynamique moléculaire pour le calcul de différences d'énergies libres. On étudie également la sensibilité de dynamiques stochastiques par rapport à un paramètre, en vue du calcul des forces dans l'approximation de Born-Oppenheimer pour rechercher l'état quantique fondamental de molécules. Enfin, on présente un schéma numérique basé sur un système de particules pour résoudre des lois de conservation scalaires, avec un terme de diffusion anormale se traduisant par une dynamique de sauts sur les particules / This work presents some results on stochastically interacting particle systems and probabilistic interpretations of partial differential equations with applications to molecular dynamics and quantum chemistry. We present a particle method allowing to analyze the adaptive biasing force process, used in molecular dynamics for the computation of free energy differences. We also study the sensitivity of stochastic dynamics with respect to some parameter, aiming at the computation of forces in the Born-Oppenheimer approximation for determining the fundamental quantum state of molecules. Finally, we present a numerical scheme based on a particle system for the resolution of scalar conservation laws with an anomalous diffusion term, corresponding to a jump dynamics on the particles
|
130 |
Analyse du transport turbulent dans une zone de mélange issue de l'instabilité de Richtmyer-Meshkov à l'aide d'un modèle à fonction de densité de probabilité : Analyse du transport de l’énergie turbulente / Simulation of a turbulent mixing zone resulting from the Richtmyer-Meshkov instability using a probability density function model : Analysis of the turbulent kinetic energy transportGuillois, Florian 07 September 2018 (has links)
Cette thèse a pour objet la simulation d'une zone de mélange turbulente issue de l'instabilité de Richtmyer-Meshkov à l'aide d'un modèle à fonction de densité de probabilité (PDF). Nous analysons plus particulièrement la prise en charge par le modèle PDF du transport de l'énergie cinétique turbulente dans la zone de mélange.Dans cette optique, nous commençons par mettre en avant le lien existant entre les statistiques en un point de l'écoulement et ses conditions initiales aux grandes échelles. Ce lien s'exprime à travers le principe de permanence des grandes échelles, et permet d'établir des prédictions pour certaines grandeurs de la zone de mélange, telles que son taux de croissance ou son anisotropie.Nous dérivons ensuite un modèle PDF de Langevin capable de restituer cette dépendance aux conditions initiales. Ce modèle est ensuite validé en le comparant à des résultats issus de simulations aux grandes échelles (LES).Enfin, une analyse asymptotique du modèle proposé permet d'éclairer notre compréhension du transport turbulent. Un régime de diffusion est mis en évidence, et l'expression du coefficient de diffusion associé à ce régime atteste l'influence de la permanence des grandes échelles sur le transport turbulent.Tout au long de cette thèse, nous nous sommes appuyés sur des résultats issus de simulations de Monte Carlo du modèle de Langevin. A cet effet, nous avons développé une méthode spécifique eulérienne et à l'avons comparé à des alternatives lagrangiennes. / The aim of the thesis is to simulate a turbulent mixing zone resulting from the Richtmyer-Meshkov instability using a probability density function (PDF) model. An emphasis is put on the analysis of the turbulent kinetic energy transport.To this end, we first highlight the link existing between the one-point statistics of the flow and its initial conditions at large scales. This link is expressed through the principle of permanence of large eddies, and allows to establish predictions for quantities of the mixing zone, such as its growth rate or its anisotropy.We then derive a Langevin PDF model which is able to reproduce this dependency of the statistics on the initial conditions. This model is then validated by comparing it against large eddy simulations (LES).Finally, an asymptotic analysis of the derived model helps to improve our understanding of the turbulent transport. A diffusion regime is identified, and the expression of the diffusion coefficient associated with this regime confirms the influence of the permanence of large eddies on the turbulent transport.Throughout this thesis, our numerical results were based on Monte Carlo simulations for the Langevin model. In this regard, we proceeded to the development of a specific Eulerian method and its comparison with Lagrangian counterparts.
|
Page generated in 0.0955 seconds