Spelling suggestions: "subject:"bthermal conergy"" "subject:"bthermal coenergy""
281 |
Optimierung der Nutzung von industrieller Abwärme durch mehrperiodische Wärmeintegration unter Berücksichtigung von thermischen Energiespeichern und WärmeverlustenMöhren, Simon 04 September 2023 (has links)
Zur Reduzierung von Treibhausgasemissionen und Energiekosten in der Industrie kann die Steigerung der Energieeffizienz durch Nutzung der verfügbaren Abwärme einen wichtigen Beitrag leisten. Mit den Methoden der Wärmeintegration kann das Abwärmepotenzial quantifiziert und systematisch Maßnahmen zur Nutzung von Abwärme identifiziert werden. Durch die mathematische Optimierung des Wärmetransports von Wärmequellen hin zu Wärmesenken kann ein Wärmeübertrager Netzwerk gebildet werden. Hierbei können je nach Formulierung der Zielfunktion des Optimierungsproblems der benötigte Energiebedarf, die Kosten oder Treibhausgasemissionen minimiert werden. In dieser Arbeit wird ein Ansatz für mehrperiodische Optimierungsprobleme weiterentwickelt und um die Einbindung von sensiblen und latenten thermischen Energiespeichern erweitert. Die Berücksichtigung des Phasenwechsels erfolgt mit Hilfe einer intervallweise linearen Funktion der Speichertemperatur. Durch Einführen von Binärvariablen erfolgt eine Berücksichtigung des jeweils relevanten Intervalls. Darüber hinaus wird eine Methode zur Berücksichtigung von Wärmeverlusten der Rohrleitungen vorgestellt. Die entwickelten Methoden werden in einem Fallbeispiel aus der Textilindustrie angewendet und im Rahmen von Sensitivitätsanalysen ausgewählte Einflussfaktoren untersucht. / Increasing the energy efficiency by using available waste heat can make an important contribution to reducing greenhouse gas emissions and energy costs in the industry. Heat integration methods can be used to quantify the waste heat potential and systematically identify measures for waste heat utilization. By mathematically optimizing the heat transport from heat sources to heat sinks, a heat exchanger network can be designed. Depending on the formulation of the objective function of the optimization problem, the required energy demand, costs or greenhouse gas emissions can be minimized. In this work, an approach for multiperiod optimization problems is further developed and extended to include sensible and latent thermal energy storage. The phase change is considered by an interval linear function of the storage temperature. By introducing binary variables, the relevant interval is taken into account. Furthermore, a method for including heat losses of pipelines is presented. The developed methods are applied in a case study from the textile industry and selected influencing factors are investigated within the scope of sensitivity analyses.
|
282 |
Analysis of a hybrid PV-CSP plant integration in the electricity marketMaz Zapater, Juan Vicente January 2023 (has links)
One of the key challenges the world will need to face during the 21st century is global warming and the consequent climate change. Its presence is indisputable, and decarbonizing the gird emerges as one of the required pathways to achieve global sustainable objectives. Solar energy power plants have the potential to revert this situation and solve the problem. One way to harness this energy is through Concentrated Solar Power plants. The major advantage and potential of this technology is its ability to integrate cost-effective Thermal Energy Storage (TES), which is key with such an inherently intermittent resource. On the other hand, the drawback is the high current Levelized Cost of Energy (LCOE). The other main way to harness that highlighted solar energy is the use of Photovoltaic panels, which have recently achieved very competitive LCOE values. On the other hand, the storage integration is still a very pricey option, normally done with Battery Energy Storage Systems (BESS). As a conclusion, a hybrid power plant combining the LCOE of the PV and the TES of the CSP emerges as the key way of achieving a very competitive solution with a big potential. This master thesis aims at exploring the possibilities of a hybrid CSP and PV power plant with a sCO2 power cycle, integrated in the primary, secondary and tertiary electricity markets. To achieve this purpose, firstly, a Python-based Energy Dispatcher was developed to control the hybrid power plant. Indeed, the Dispatcher is the tool that decides when to produce, when to store… following an optimization problem. This can be formulated mathematically, and that was done and integrated into the Python code using Pyomo, a software for optimization problems. As a result, the Dispatcher achieved an effective control of the plant, showing intelligent decisions in detailed hourly analyses. The results were very promising and included optimization functions as maximizing the profitability of the plant or the total production, among others. To proceed with the Techno-economic assessment of the hybrid plant, the electricity markets were studied. The main source of income of any power plant is normally the revenue from selling electricity to the grid, but since there are several markets, there are also other possibilities. In this thesis, it was assessed from a Techno-Economic perspective how the performance and optimal design of the plants vary when providing different services extra to selling electricity to the grid. The conclusion was that even though the Net Present Value (NPV) achieved working on the spot market was already very high, the extra value added from participating in the secondary or tertiary markets was indisputable. Indeed, the profits attained in those markets were between two and four times higher than the ones of the spot market. This is a specific case, but a trend was identified: these hybrid power plants have a huge possibility and a bright future on the service markets. As a consequence, this thesis shows the huge potential of hybrid power plants integrated in the grid participating in several markets. It also lays the foundation for future studies in other locations, under different conditions and with different technologies, among others.
|
283 |
THE STABILITY OF, AND CORROSION BY, EARTH-ABUNDANT MOLTEN CHLORIDES FOR USE IN HIGH-TEMPERATURE THERMAL ENERGY STORAGEAdam Shama Caldwell (16327851) 14 June 2023
<p> </p>
<p>Concentrated solar power (CSP) is a technology that utilizes focused sunlight to heat a high-temperature medium (such as a molten salt). Heat from this medium can be transferred to a working fluid (such as supercritical CO2) that is then used to drive a turbine to generate electricity. Alternatively, the hot medium/fluid can be pumped into tanks for thermal energy storage (TES), for heat extraction later to generate dispatchable electricity and/or for electricity production at night or on cloudy days. By increasing the fluid temperature to <u>></u>750oC and utilizing TES, CSP can become more cost competitive with fossil-based electricity production. Current CSP systems utilize molten nitrate salts for heat transfer and TES that are known to thermally degrade at temperatures >600oC. To achieve temperatures <u>></u>750oC, molten chloride salts, such as ternary MgCl2-KCl-NaCl compositions, are being considered as heat transfer and thermal energy fluids for next generation CSP plants due to their higher temperature stability, low cost, and availability. </p>
<p>In this work, it was demonstrated that MgCl2-containing molten salts are prone to oxidation in ambient air at 750oC, which can enhance corrosion of the containment materials and alter the thermophysical properties of the fluid. An alternative, low-cost, earth-abundant, MgCl2-free, oxidation-resistant molten salt, a eutectic CaCl2-NaCl composition, was developed, along with a corrosion mitigation strategy, to enable the slow growth of protective oxide layers on metals that are resistant to dissolution by such MgCl2-free molten chloride salts. </p>
<p>This strategy was expanded to other low-cost, oxidation resistant compositions, such as eutectic BaCl2-CaCl2-KCl-NaCl with tailored chemical and thermophysical properties for CSP and TES. The melting temperature, heat capacity, oxidation resistance, and crystallization behavior were measured for eutectic a BaCl2-CaCl2-KCl-NaCl(17.5-47.8-3.3-31.4 mol%) (BCKN) salt and a MgCl2-KCl-NaCl (40-40-20 mol%) salt. BCKN salt was shown to have a similar melting temperature while having a higher heat capacity and far better oxidation resistance. </p>
<p>The corrosion of the nickel-based superalloy Haynes 214 was studied in molten MgCl2-KCl-NaCl (40-40-20 mol%) salt at 750oC under inert atmosphere conditions using a custom-built rotating-disc corrosion testing apparatus that maintained laminar fluid flow on the sample. Non-protective external Cr-, Al-, and Mg- oxide layers were formed on Haynes 214 that were prone to spallation. Internal oxidation of Al was also observed along with Cr depletion zones within Haynes 214. Corrosion kinetics were evaluated to quantify the role of fluid flow for application of this alloy for use in containment and transportation of this molten chloride salt. </p>
|
284 |
Modelling the Thermal Energy Storage of Cementitious Mortars Made with PCM-Recycled Brick AggregatesMankel, Christoph, Caggiano, Antonio, König, Andreas, Schicchi, Diego Said, Sam, Mona Nazari, Koenders, Eddie 20 April 2023 (has links)
This paper reports a numerical approach for modelling the thermal behavior and heat accumulation/liberation of sustainable cementitious composites made with Recycled Brick Aggregates (RBAs) employed as carriers for Phase-Change Materials (PCMs). In the framework of the further development of the fixed grid modelling method, classically employed for solving the well-known Stefan problem, an enthalpy-based approach and an apparent calorific capacity method have been proposed and validated. More specifically, the results of an experimental program, following an advanced incorporation and immobilization technique, developed at the Institut für Werkstoffe im Bauwesen for investigating the thermal responses of various combinations of PCM-RBAs, have been considered as the benchmark to calibrate/validate the numerical results. Promising numerical results have been obtained, and temperature simulations showed good agreement with the experimental data of the analyzed mixtures.
|
285 |
Energy System Analysis of thermal, hydrogen and battery storage in the energy system of Sweden in 2045Sundarrajan, Poornima January 2023 (has links)
Sweden has goals to reach net-zero emissions by 2045. Although electricity sector is almost fossil free, industry & transport still rely on fossil fuels. Ambitious initiatives such as HYBRIT, growth of EV market & expansion of wind power aim to expedite emission reduction. Decarbonization of transport, industry and large-scale wind & solar PV integration in the future necessitates studying energy system of Sweden at national scale in the context of sector coupling, external transmission & storage technologies. Therefore, this study aims to evaluate the impact of thermal energy storage, hydrogen storage and batteries via Power-to-heat & Power-to-hydrogen strategies in the future Swedish energy system (2045) with high proportions of wind power. Two scenarios SWE_2045 & NFF_2045 were formulated to represent two distinct energy systems of the future. The SWE_2045 energy system still relies on fossil fuels, but to a lower extent compared to 2019 level and has increased levels of electrification and biofuels in the transport and industrial sectors. In comparison, the fossil fuels are completely removed in NFF_2045 and the industrial sector has significant demand for electrolytic hydrogen. Both the scenarios were simulated using EnergyPLAN, a deterministic energy system model, under each storage technology. The results indicate that HPs coupled with TES has the potential to increase wind integration from 29.12% to 31.8% in SWE_2045 and 26.78% to 29.17% in NFF_2045. HP & TES also reduces heat production from boilers by 67% to 72% depending on the scenario, leading to overall reduction in total fuel and annual costs by at least 2.5% and 0.5% respectively. However, for wind integration of 31.1% in SWE_2045 the annual cost increases by 5.1% with hydrogen storage compared to TES. However, hydrogen storage shows better performance in NFF_2045, wherein the wind integration increases from 26.78% to 29.3%. Furthermore, increasing hydrogen storage for a lower wind capacity (60 GW) in NFF_2045 reduces both electricity import and export while simultaneously increasing the contribution of storage in fulfilling the hydrogen demand from 1.62% to 6.2%. Compared to TES and HS, the contribution of battery storage is minimal in sector integration. For increase in wind integration of 28% to 29%, the annual cost of a system with battery storage is 1.3% to 2% higher than that of the system with TES and hydrogen storage respectively. Therefore, HPs coupled with TES can improve flexibility in both scenarios. Hydrogen storage is not a promising option if the end goal is only to store excess electricity, as shown by the results in SWE_2045. However, it demonstrates better utilization in terms of wind integration, reduction in electricity import and export when there is a considerable demand for hydrogen, as in the case of NFF_2045. / Sverige ligger i framkant när det gäller avkarbonisering och har mål att nå nettonollutsläpp till 2045. Även om elsektorn är nästan fossilfri, är industri och transport fortfarande beroende av fossila bränslen. Ambitiösa initiativ som Hydrogen Breakthrough Ironmaking Technology (HYBRIT), tillväxt av elbilsmarknaden och expansion av vindkraft syftar till att påskynda utsläppsminskningar. Dekarbonisering av transport, industri och storskalig vind- och solcellsintegrering i framtiden kräver att man studerar Sveriges energisystem i nationell skala i samband med sektorskoppling, extern transmissions- och lagringsteknik. Därför syftar denna studie till att bestämma effekten av termisk energilagring, vätelagring och batterier via Power-to-heat & Power-to-hydrogen-strategier i det framtida svenska energisystemet (2045) med höga andelar vindkraft. Två scenarier SWE_2045 & NFF_2045 formulerades för att representera två distinkta framtidens energisystem. Energisystemet SWE_2045 är fortfarande beroende av fossila bränslen, men i lägre utsträckning jämfört med 2019 års nivå och har ökat nivåerna av elektrifiering och biobränslen inom transport- och industrisektorn. Som jämförelse är de fossila bränslena helt borttagna i NFF_2045-scenariot där transportsektorn endast är beroende av el och biobränslen, medan industrisektorn har en betydande efterfrågan på elektrolytiskt väte. Båda energisystemen simuleras med EnergyPLAN, en deterministisk energisystemmodell, för olika testfall under varje lagringsteknik. Resultatet av simuleringen bedömdes i termer av kritisk överskottselproduktion, potential för ytterligare vindintegration, total bränslebalans i systemet och årliga kostnader. Resultatet indikerar att värmepumpar i kombination med termisk energilagring kan förbättra flexibiliteten i båda scenarierna genom att minska den kritiska överskottselproduktionen och bränsleförbrukningen samtidigt som vindintegrationen förbättras. Vätgaslagring är inget lovande alternativ om målet är att endast lagra överskottsel, vilket framgår av vindintegrationsnivåerna i SWE_2045. Det förbättrar dock vindintegration och tillförlitlighet avsevärt när det finns en betydande efterfrågan på vätgas i NFF_2045. Som jämförelse är batteriernas bidrag till vindintegration minimalt i båda scenarierna i samband med sektorintegration på grund av utnyttjandet av överskottsel av värmepumpar och extern överföring av restel. Valet av lagringsteknik i framtiden beror dock på dess tekniska ekonomiska utveckling och energipolitik.
|
286 |
Design of Induction heating system for AlSi PCM to use as an alternative charging solution in Azelio´s thermal energy storage system (TES.POD).Gandhi, Ketul January 2022 (has links)
This thesis is a part of the research work for Azelio TES.POD (Thermal energy storage. power on demand). It is a patented thermal energy storage system developed by Swedish cleantech company Azelio AB. The objective of this thesis work to find an alternative charging technology system that can be validated to be efficient and safe in operation for the charging of TES.POD. Induction heating technology is chosen as an alternative charging solution. Derived design steps to implement induction heater as a charging unit then selection of PCM container compatible with induction heater. Later simulating to evaluate total flux path in Finite Element Method Magnetics (FEMM) simulation tool which proposes the electrical results. The electrical performance of the induction heater indicates almost 9% higher electrical losses than the charging mechanism of the existing TES.POD design. However, from a safety standpoint, the alternate charging approach appears to be safer in operation than the existing system. Additionally, it reflects better intuitiveness from a manufacturing viewpoint.
|
287 |
Intelligent Non-Invasive Thermal Energy Flow Rate Sensor for Laminar and Turbulent Pipe FlowsAlanazi, Mohammed Awwad 23 March 2022 (has links)
This dissertation describes the development of an intelligent non-invasive thermal energy flow rate sensor for laminar and turbulent pipe flows. Energy flow rate is the thermal energy that is carried by a fluid, for example, in a pipe to heat or cool a space in a building. It can be measured by an energy flow rate sensor which consists of a volume flow rate meter and supply and return fluid temperature sensors to bill the users for their energy usage. A non-invasive, low-cost, and easy to install thermal energy flow rate sensor based on thermal interrogation transient heat flux and temperature measurements has been developed to measure fluid velocity and fluid temperature in pipes. This sensor can be used for different pipe diameters, different pipe materials, and different viscous fluids. The transient measurements are made on the outer surface of a pipe by using a heat flux sensor and a thin-film thermocouple which are covered by a thin-film heater. A one-dimensional transient thermal model is applied before and during activation of the external heater along with a parameter estimation code to provide estimates of the fluid heat transfer coefficient and apparent thermal resistance between the thermocouple and the pipe surface.
This dissertation contributes to the sensor's development in three ways. First, a new design is developed by using a single layer of Kapton tape with an adhesive (dielectric material) between the thermocouple foils and the pipe wall to isolate the thermocouple electrically from the pipe surface. This new design gives accurate and reliable estimates of the internal mean fluid temperature without environmental interference.
Second, this new sensor design is tested for turbulent pipe flows with two different pipe diameters ( = 25.4 mm and = 12.7 mm) and two different viscous fluids (diesel oil and water). Experiments are completed over a large range of fluid velocity from 0.2 m/s to 5.5 m/s and a range of fluid temperature from 20 ℃ to 50 ℃. The estimated parameters, heat transfer coefficient and apparent thermal resistance, are correlated with the fluid velocity and fluid temperature. This sensor gives a good correlation, repeatability, and sensitivity between the estimated parameters and the fluid velocities with an accurate estimation of the fluid temperatures without environmental interference. Third, this sensor is tested for laminar flow in pipes over a range of fluid velocity from 0.049 m/s to 0.45 m/s and a range of fluid temperature from 20 ℃ to 50 ℃. A new empirical correlation between the estimated parameters and the laminar fluid velocity has been developed. The results show that this sensor gives lower sensitivity and accuracy between the estimated parameters and the fluid velocity and fluid temperature for the laminar flow. / Doctor of Philosophy / Heating or cooling is responsible for approximately 50% of the total energy consumption in a building.
Budlings' energy consumption can be measured by energy flow rate sensors (measuring both fluid velocity and fluid temperature). Current energy flow rate sensors are invasive (requiring installation inside the system and disturbing the flow) which create unacceptable risks, such as fluid leaks and damage the equipment. Other energy flow rate sensors based on ultrasonic and electromagnetic technologies are non-invasive which can be installed on the outside of the pipe without disturbing the flow, however, they are expensive to buy, difficult to install, and hard to calibrate. Therefore, developing new sensor techniques is necessary, preferably non-invasive, low-cost, and easy to install.
In this dissertation, a new non-invasive, low-cost, and easy to install thermal energy flow rate sensor has been designed, developed, and tested. This thermal sensor is based on transient heat flux and temperature measurements which are made on the outside of a copper pipe surface by using a heat flux sensor and a thermocouple.
This sensor is used to estimate the energy consumption by measuring a fluid velocity and a fluid temperature in heating and cooling pipe applications for different pipe diameters, different fluids, and different pipe materials. A parameter estimation code is developed to match the analytical and experimental sensor temperature values and to estimate the unknown system parameters. These parameters are correlated with the fluid velocity and fluid temperature. Experiments are completed over a large range of fluid velocity from 0.049 m/s to 5.5 m/s and a range of fluid temperature from 20℃ to 50℃. The encouraging measurement results show that this sensor gives a good correlation, repeatability, accuracy, and sensitivity between the estimated parameters and the fluid velocities with an accurate estimation of the fluid temperatures to allow calculation of the thermal energy consumption.
|
288 |
Drallbehaftete Beladung von schlanken Heißwasserspeicher – Detaillierte Simulation der Strömung im Diffusor und SpeicherOestreich, Felix, Urbaneck, Thorsten 20 June 2024 (has links)
Thermische Energiespeicher tragen u. a. zur Erhöhung der Versorgungsicherheit in der
Fernwärmeversorgung und zur Effizienzsteigerung des Fernwärmesystems (z. B. Flexibilisierung
der Erzeuger, Speicherung überschüssiger Wärme, besserer hydraulischer Betrieb) bei. Dafür
eignen sich Druckbehälter, sog. schlanke Heißwasserspeicher (Speichertyp b1). Die oben
genannten Vorteile setzen einen effizienten Speicherbetrieb (niedrige interne und externe
Speicherverluste) voraus. Dieser Beitrag beschäftigt sich mit der Minimierung der internen Verluste
durch die Verbesserung des thermischen Schichtungsverhaltens. Eine thermische Schichtung mit
einem möglichst schmalen Übergangsbereich zwischen heißer und kalter Zone ist ein Indikator für
geringe Mischvorgänge während der Beladung. Die Minimierung dieser Mischungsvorgänge bei der
Beladung nimmt eine Schlüsselrolle bei der Minimierung der internen Speicherverluste ein. Lohse
und Brähmer untersuchten die Beladung mit herkömmlichen radialen Diffusor in schlanken
Heißwasserspeicher mit numerischer Strömungssimulation. Die Arbeiten identifizieren aufgrund der
schlanken Speicherform nachteilige Strömungseffekte wie z. B. einen ausgeprägten Wandstrahl.
Dieser Wandstrahl regt Mischvorgänge an und damit steigen die internen Speicherverluste. Zur
Überwindung dieser Strömungsproblematik schlägt die Beladung mit Drall vor. Die Untersuchungen
von Oestreich zeigten das Strömungsverhalten im Diffusor und im Speicher, die Auswirkungen auf
die thermische Schichtung sowie die Vorteilhaftigkeit. Dieser Beitrag soll eine detailliertere
Beschreibung der Strömungsvorgänge liefern. Dieses Wissen ist unbedingt notwendig, um die
Ursachen und Wirkungen bei der Beladung mit Drall und beim Aufbau der thermischen Schichtung
besser zu verstehen. Die Modellierung und Simulation des Diffusors bzw. des Speichers erfolgen
mit ANSYS CFX. Zur Auflösung turbulenter Strukturen findet die Large Eddy Simulation Anwendung.
Dieser Artikel präsentiert erstmalig die Wirbelstrukturen im Diffusor mit Leitelementen zur
Drallerzeugung. Die Speicherströmung weist ein ähnliches Verhalten zu bekannten
Dichteströmungen (z. B. Lappen-Kluft-Struktur, Instabilitäten in den freien Scherschichten) auf, was
bisher nicht bekannt war. Hohe Peclet-Zahlen (hohe Advektionsströme) im Speichermodell führen
zu numerischer Instabilität der Simulation und erfordern deshalb erhöhten Diskretisierungsaufwand. / Thermal energy storage systems contribute, among other things, to increasing the security of supply
in the district heating system and to improving the efficiency of the district heating system (e.g.,
making the generators more flexible, storing waste heat, better hydraulic operation). Pressure
vessels, so-called slim hot water storage tanks (storage type b1) are suitable for this purpose. The
above mentioned advantages require efficient storage operation (low internal and external storage
losses). This paper deals with the minimization of internal losses by improving the thermal
stratification behavior. Thermal stratification with a thermocline between hot and cold zone as narrow
as possible is an indicator of low mixing processes during loading. Minimizing these mixing
processes during loading takes a key role in minimizing internal storage losses. Lohse and Brähmer
investigated loading with conventional radial diffuser in slim hot water storage tanks with numerical
flow simulation. The work identifies adverse flow effects due to the slim tank shape, such as a wall
jet. This wall jet stimulates mixing processes and thus increases the internal storage losses. To
overcome this flow problem, Findeisen et al. proposes swirl loading. The investigations of Oestreich
et al. showed the flow behavior in the diffuser and in the storage, the effects on the thermal
stratification as well as the advantageousness. This paper aims to provide a more detailed
description of the flow processes. This knowledge is essential to better understanding the causes
and effects of swirl loading and the structure of thermal stratification. Modeling and simulation of the
diffuser and storage, respectively, are performed using Ansys CFX. Large eddy simulation (LES) is
applied to resolve turbulent structures. This paper presents for the first time the vortex structures in
the diffuser with internal elements for swirl generation. The storage flow exhibits similar behavior to
known density flows (e.g., head and nose formation, instabilities in the free shear layers), which was
previously unknown. High Peclet numbers (high advection currents) in the storage model lead to
numerical instability of the simulation and therefore require increased discretization efforts.
|
289 |
Design and fabrication of cellulose nanofibril (CNF) based microcapsules and their applicationsMubarak, Shuaib Ahmed 13 August 2024 (has links) (PDF)
Emulsions, comprising dispersed oil or water droplets stabilized by surfactants, are widely employed across industries. However, conventional surfactants raise environmental concerns, and emulsions may encounter stability challenges during storage. A promising alternative lies in Pickering emulsions, where particles adhere irreversibly at the water-oil interface, providing enhanced stability. Recent research explores the use of natural bio-based particles as interfacial stabilizers for creating Pickering emulsions, offering improved stability and environmental friendliness. This significant change towards particle-stabilized emulsions addresses sustainability and efficacy concerns. This dissertation investigates the application of cellulose nanofibrils (CNFs) in stabilizing Pickering emulsions for the development of functional microcapsules with diverse applications. A novel CNF aerogel with a hierarchical pore structure was developed using n-hexane-CNF oil-in-water (O/W) Pickering emulsions as templates. These hollow microcapsule-based CNF (HM-CNF) aerogels demonstrated high oil absorption capacities of 354 grams per gram for chloroform and 166 grams per gram for n-hexadecane, without requiring hydrophobic modifications, highlighting their potential as environmentally sustainable and high-performance oil absorbents. Further, the research explored the microencapsulation of n-hexadecane, an organic phase change material (PCM), within a hybrid shell of CNFs and chitin nanofibers (ChNFs). This method significantly improved the thermal stability of the encapsulated n-hexadecane, with maximum weight loss temperatures increasing from 184 degrees Celsius to 201 degrees Celsius with ChNF loading. The char yield also increased with ChNF content, indicating enhanced thermal degradation resistance. These emulsions demonstrated stability in various ionic solutions and elevated temperatures, showcasing their potential for applications such as thermal energy storage, cosmetics, food, and pharmaceuticals. Additionally, the dissertation examined stable water-in-oil (W/O) inverse Pickering emulsions using TEMPO-treated cellulose nanofibrils (TCNF). These emulsions, stabilized by TCNF-oleylamine complexes, exhibited droplet sizes ranging from 27 micrometers to 8 micrometers depending on TCNF concentration. They maintained stability under varying pH, ionic strength, and temperature conditions and demonstrated the encapsulation of water-soluble components like phytic acid, highlighting their versatility for diverse encapsulation applications. Overall, the research presents significant advancements in the utilization of CNF-stabilized Pickering emulsions, employing them as templates for fabricating aerogels and microcapsules. This approach enhances oil absorption, thermal stability, and encapsulation capabilities, offering eco-friendly solutions for diverse applications.
|
290 |
Beräkning av värmeenergiförluster i flerbostadshus genom analys av den totala fjärrvärmeenergianvändningen : / Calculation of the thermal energy losses in apartment buildings through analyze of the total district thermal energy consumption :Fredhav, Dennis, Briggert Sjöstrand, Carl Andreas January 2012 (has links)
This thesis has been carried out on behalf of IV Produkt AB and intends to set an average ratio of thermal energy losses in apartment buildings that were built during the 1960-1990. This shall be derived by analyzing the total district energy consumption that has been divided into three parts: heat energy losses (the actual heating requirements), the heating of domestic hot water and heating energy consumption for the controlled ventilation. Three different residential areas that were built during the years 1962-1966 and one that was built in 1993 has been analyzed. All residential areas are located in Växjö urban and contains between four and six apartment buildings. The analyzed objects have a mechanical exhaust ventilation systems and district heating as the heating method. No own laboratory work or experiments have been done in this thesis, the calculations have been done on the basis of parameters from VEAB, interviews with property managers, and literature studies. By calculations, we have got a result that is reported in Chapter 6. The result is given as a thermal energy loss as a percentage of the total heat consumption. In this thesis there has also been a review of the rules on requirements for the specific energy consumptions in buildings, indoor environment and indoor temperature from the National Board of Housing and the National Board of Health and Welfare.
|
Page generated in 0.0598 seconds