• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 308
  • 107
  • 34
  • 21
  • 20
  • 10
  • 8
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 584
  • 584
  • 316
  • 294
  • 126
  • 89
  • 80
  • 76
  • 70
  • 68
  • 64
  • 64
  • 60
  • 58
  • 54
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Reversible windows for energy savings : Computer simulations using IDA-ICE software

Latasa Galíndez, Aitor, Mestre Manrique, Germán January 2023 (has links)
This study looks at how reversible windows can minimize cooling and heating energy use while maintaining thermal comfort in buildings in Sweden and Spain. The growing need for energy-efficient structures and the potential advantages of reversible windows served as the driving forces behind this study. The approach taken in this study is a comparison of energy use of buildings where reversible windows were installed. The windowpanes had properties such that different solar heat transmittance coefficients were attained at the two states of the windows, being altered in spring and autumn. The windows were tested in two different buildings, one in each country, using IDA-ICE software in order to calculate the energy consumption both in winter and cooling, focusing in heating in winter and cooling in summer in order to know if there was a real energy saving compared to the base model used.The major findings indicate that reversible windows significantly reduce cooling and heating energy usage while maintaining thermal comfort levels that are on par with those of traditional windows in buildings. The effectiveness of reversible windows may, however, fluctuate throughout nations, depending on elements including climate, building design, and user behavior. Among themain findings of the study, the ones to be mentioned would be the total energy use reduction in the whole year that add up to 15 % in Sweden and 21 % in Spain and that most of the energy savings came in Summer for both Spain and Sweden. Additionally, the study also made findings regarding the role that awnings play in energy usage, determining that they may be truly significant in terms of reducing electricity bills. The awnings helped reduced the amount of energy used for both climates, in Madrid, the reduction was of 8 % , and in Stockholm it was of 4 % , these findings lead us to believe that the awnings are better suited to warmer climates. This study also investigates the economic viability of this novel kind of windows. The idea was to calculate the extra cost that could be associated to the installation of these newer reversible windows technologies by use of the NPV method to calculate the present value of the future energy savings to know if the money investment of the reversible windows is profitable or not. When comparing the reversible window to the base window both of which share the same U-value an extra 19 % of the base window installation cost could be associated to the new installation of reversible windows (for a 30-year period) for Stockholm, and a 25 % for Madrid. Changing already existing 2-pane windows of ordinary, less insulating quality for the reversible windows, the total energy use is reduced by about 50 % in Spain and in Sweden, but it seems that is just economical for the Swedish model, regarding the well-insulated buildings. An additional conclusion is that, compared to investing in reversible windows on all façades, an investment in reversible windows only on the Southern façade and base windows on the rest becomes a bit more economical, with 25 % allowed extra cost for the reversible windows in Stockholm climate and 27 % in Madrid; however clearly less energy is saved.According to the study’s findings, reversible windows have proven to be useful tools to reduce energy usage in both climates and locations. Meaning that they may play an important role to reduce the impact of the energy crisis that affects the current situation.Reversible windows can lower a building's energy costs and carbon footprint, which can have good economic and environmental effects. For architects, builders, and legislators interested in promoting energy-efficient buildings, the study's findings may be helpful. Reversible windows are highlighted in this research as a viable solution to lower energy use and enhance thermal comfort in buildings, particularly in areas with large temperature and solar radiation changes.
342

Summer Microclimates and Thermal Perception in Japanese Gardens and Small Urban Parks: Hints for Climate-Adaptive Green Space Designs / 日本庭園及び街区公園における夏季の微気象と感じる暑さ:気候に適応的な緑地デザインに向けての知見

Cui, Lihua 25 September 2023 (has links)
京都大学 / 新制・課程博士 / 博士(農学) / 甲第24908号 / 農博第2571号 / 新制||農||1102(附属図書館) / 京都大学大学院農学研究科森林科学専攻 / (主査)教授 柴田 昌三, 教授 北島 薫, 教授 小杉 賢一朗 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
343

Parametric study of energy retrofit options for a historical building

El Tayara, Khaled January 2022 (has links)
Retrofitting measures in old buildings aimed at reducing energy consumption has become a widespread subject and an urgent matter to counteract the effects of climate change and GHGs emissions. The globe has reaffirmed its agreement taken in COP21 to reduce emissions in COP26. The building sector is one of the culprits with a 70 % future energy consumption forecasted by 2050 i.e., the year certain countries aim to carbon neutral (e.g., Sweden). An old building with a severe problem of energy leakage has been studied under the influence of multiple parameters such as building orientation, shading systems, location, Low-E film and an alternative energy supply (GHP). The original building’s EnU amounted to 194.5 kWh/m2•yr; the parameters were applied and orientation of 90⁰ worked best, if the building was being designed, contrary to this case. However, energy reductions, compared to the base model, were actually achieved with the application of Low-E (5%) films and when substituting the heating demand with a GHP (57.5%), LEF-GHP reached (59.2%) and a corresponding decrease in CO2 emissions. Thermal comfort was best achieved with models that had the highest energy consumption such as LEF and ES making it counterproductive in fulfilling the aim of reducing GHG footprint of Rådhuset. The economic feasibility study showed that the installation of a GHP with at least the COP of 4.0 would lead to a shorter payback period than solely applying LEF. A tailored solution of a change in the energy source such as electrified heat supply from renewables combined with LEFs would reduce the energy and emission impact of any building; this would help the building sector reach the envisioned goal of carbon neutrality in 2050.
344

Avaliação do conforto térmico de ovinos nascidos em confinamento. / Evaluation of the thermal comfort of sheep born in confinement.

RIBEIRO, Neila Lidiany. 24 May 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-05-24T20:10:35Z No. of bitstreams: 1 NEILA LIDIANY RIBEIRO - DISSERTAÇÃO PPGEA 2006..pdf: 12712674 bytes, checksum: 256a12bd01632a9502b9eb4794b1886d (MD5) / Made available in DSpace on 2018-05-24T20:10:35Z (GMT). No. of bitstreams: 1 NEILA LIDIANY RIBEIRO - DISSERTAÇÃO PPGEA 2006..pdf: 12712674 bytes, checksum: 256a12bd01632a9502b9eb4794b1886d (MD5) Previous issue date: 2006-02 / Capes / O presente trabalho teve como objetivo determinar os índices de conforto térmico em instalações para ovinos e analisar os parâmetros fisiológicos e o grau de adaptabilidade de quatro grupos genéticos de ovinos, em São João do Cariri, PB. Foram utilizados 40 animais, 10 por grupo genético, que foram o Cariri, Morada Nova, Barriga Negra e Cara Curta, todos fêmeas, alojadas em 4 apriscos. Os dados ambientais analisados foram a temperatura do ar (TA), umidade relativa do ar (UR), velocidade do vento (Vv), temperatura de globo negro (Tgn), índice de temperatura do globo negro e umidade (ITGU), carga térmica de radiação (CTR). Os dados fisiológicos analisados foram: a frequência respiratória (FR), frequência cardíaca (FC), temperatura retal (TR) e temperatura superficial (TS), medidos nos horários das 9 e 15 h. O grau de adaptabilidade foi realizado através do teste de Baccari Júnior. A avaliação dos dados foi realizada por um delineamento inteiramente casualizado em um fatorial 4x2, sendo 4 grupos genéticos e dois turnos. Os índices ambientais, no período da tarde, foram superiores aos da manhã e tiveram seus valores, com exceção da UR e Vv, acima da faixa considerada normal. A TR, FR, FC e TS no turno da tarde estiveram mais elevados do que no turno da manhã, sendo que a TR esteve dentro da faixa normal e a FR e FC acima da recomendada. O índice de tolerância ao calor não apresentou diferença significativa entre os grupos genéticos e mostrou que os animais, mesmo elevando a FR e FC, apresentaram alta capacidade de adaptação a região. / The present work had the aim to determine thermal means at installation to ovines and analyse physiological parameters and way of life degree of 4 genetic groups, in the dry region of Paraíba. It had been used 40 animais, 10 per genetic group: Cariri, Morada Nova, Barriga Negra and Cara Curta ,all of them were female ,kept in 4 places by chance .Data were air temperature (TA), air relative humidity (UR), wind speed (Vv), dark block temperature (Tgn), humidity and dark block temperature (ITGU), radiation thermal support (CTR). Physiological data were respiratory frequency ( FR), heart frequency (FC), bottom temperature (TR) and superficial temperature (TS), evaluated for 9 and 15 h. Way of life degree was carried out by Baccari Júnior Test. Data evaluation was carried out in randomized sketching in 4x2, being 4 genetic groups and two periods Environmental means ,in the afternoon, were upper to the moming ones and had its values, with exception to UR and Vv, increased to the normal tax. TR, FR, FC and TS in the afternoon were higher than in the morning, but TR normally and FR and FC upper to the normal. ITC did not show significance difference among genetic groups and showed that the animais, with higher FR and FC showed high capacity to the region.
345

Adapting a human thermoregulation model for predicting the thermal response of older persons

Novieto, Divine Tuinese January 2013 (has links)
A human thermoregulation model has been adapted for predicting the thermal response of Typical Older Persons. The model known as the Older Persons Model predicts the core body temperature and regulatory responses of the older people in environmental exposures of cold, warm and hot. The model was developed by modifying an existing dynamic human thermoregulation model using anthropometric and thermo-physical properties of older people. The Model defines the body as two interrelating systems of the body structure (passive system) and the control system of the central nervous system (active system). The Older person's passive system of the model was developed by meticulously extracting relevant experimental data from selected published research works relating to anthropometric and thermo-physical properties of older people. The resultant body structure (passive system) is a multi-segmented representation of a Typical Older Person. The active system (central nervous system) was developed by the application of a novel optimization method based on the working principles of Genetic Algorithms. The use of Genetic Algorithm enables the complex characteristics of the central nervous system of the older persons to be well represented and evaluated based on available data. Active system control signal coefficients for sweating, shivering, vasodilation and vasoconstriction were explicitly derived based on experimental data sourced from literature. The Older Persons Model has been validated using independent experimental data and its results show good agreement with measured data. Furthermore, the Older Persons Model has been applied to several test cases extracted from published literature and its results show good agreement with published findings on the thermal behaviour of older persons. An interview study conducted as part of this research revealed that, professionals (built environment specialists) found the Older Persons Model useful in assisting to further understand the thermal response of the older persons. In conclusion, the adaptation of an existing human thermoregulation model has resulted in a new model, which allows improved prediction of heat and cold strain of the older person although there exist limitations.
346

Design, build and test a passive thermal system for a loft : a roof solar chimney application for South African weather conditions

Beviss-Challinor, Lauren Margaret January 2007 (has links)
Thesis (MEng (Mechanical and Mechatronic Engineering))--Stellenbosch University, 2007. / ENGLISH: The design, construction and testing of a passive thermal system, a roof solar chimney, for a loft is considered. Unlike conventional solar chimneys the solar collector is constructed from corrugated iron roof sheets with the aim that it can be integrated into existing buildings at a lower cost or used in low cost housing developments. The main objective of the study was to determine the feasibility of such low-cost design to regulate thermal conditions in a loft, that is heating the loft during winter and enhancing natural ventilation during summer, by carrying out an experimental and analytical study. The results obtained from the experimental study showed that for winter the solar chimney, having a channel width, depth and length of 0.7 m, 0.1 m and 1.8 m respectively and with a peal solar radiation of 850 W/m², heated the room air 5°C higher than the ambient temperature during the hottest periods of the day, which is only marginally better than a loft with conventional roof insulation. At night, it was found that reverse airflow occurred through the chimney, cooling the loft down to ambient temperature, due to radiation heat loss from the roof collector to the night sky. For summer operation, the experimental data showed that the chimney was able to maintain the loft at ambient temperature and the analytical study found that the chimney was able to enhance natural ventilation effectively, reaching air exchange rate of 6.6 per hour for the 4.6 m³ volume space. It was also found that the chimney’s performance dropped rapidly and significantly during periods of low solar radiation and at night. A sensitivity analysis illustrated that for both summer and winter operation, the size, tilt angle and absorptivity of the roof collector greatly effected the efficiency and mass flow rates of the system, agreeing well with other literature. These results prove that this low cost solar chimney cooling design was feasible to enhance natural ventilation mainly during hot summer conditions with high solar radiation. Compared to a loft with only conventional roof insulation, the chimney did not perform effectively during the winter to heat the loft up, meaning that winter operation for this specific design is not feasible. Possible improvements to the design include using construction materials with higher thermal capacities to retain heat energy and ensure continued operation during periods of low solar radiation, as well as using selective absorber coatings on the collector surface. It is recommended that further work on the project include the integration of these improvements into the present design and to use the findings obtained from the sensitivity analysis to improve system efficiencies. CFD analysis of the test-rig will be insightful as an additional means to validate and compare with the analytical and experimental data obtained in this report. With the continuation of these studies, this low-cost solar chimney design can be optimised, validated on a commercial scale and built into existing and new housing developments. Incorporating such a passive thermal device will aid homeowners in air regulation and thermal comfort of their living space as well as saving on energy requirements. / Sponsored by the Centre for Renewable and Sustainable Energy Studies, Stellenbosch University
347

NOT ANOTHER SPACE SUIT: Fusing Technology and Indigenous Solutions To Facilitate Thermal Comfort

Khairat, Alia 02 May 2013 (has links)
Unseen, unheard and unconsidered, Qatar’s migrant worker population is building one of the richest countries in the world. They labor in Qatar’s high heat index1 climate, which is coincidentally comparable to an Oriental sauna, wearing the most rudimentary of clothes. Working up to 60 hours a week, migrant workers fall victim to heat stress and dozens are hospitalized daily, starting as early as March and increasing in numbers during the peak months of June to August. Since clothes are essentially a “second skin,” affecting the rate and efficiency with which heat is exchanged between the body and its surroundings, a concept garment was designed to improve thermal comfort. Low-tech, indigenous heat-management systems are combined with new technologies and knowledge of human physiology to design a two-layer suit that aims to optimize heat exchange mechanisms. The suit enhances radiation, convection and evaporation by having a snug-fitting inner wicking layer and a loose-cut outer shell, and by using strategically placed vents, perforations, and Phase Change Material (PCM) packs. Using fiction as a medium of social commentary and critical design, the concept suit borrows from the superhero aesthetic to present the migrant worker in a new light. The suit denotes power, symbolizing the superhuman feat these workers perform and their true worth to the economy. Its aesthetic and function aim to improve worker morale and performance. Mapping, scoping and primary and secondary qualitative and quantitative research have been used throughout the design process. This is in addition to an ethnographic study, field observations, material explorations, body storming and experimentation.
348

Investigation on the Effects of Indoor Temperature Modulations on Building Energy Usage and Human Thermal Comfort

Traylor, Caleb 05 1900 (has links)
Energy efficiency in the operation of buildings is becoming increasingly important with a growing emphasis on sustainability and reducing environmental impacts of irresponsible energy usage. Improvements have been made both on the technology side of energy efficiency and on the human behavior side. However, when changing human behavior, it is critical to find energy conservation measures that will maintain comfort for occupants. This paper analyzes how this can be done by implementing a modulating temperature schedule based on the concept of alliesthesia, which states that pleasure is observed in transient states. EnergyPlus simulations were used to show that in cooling applications, this type of scheduling can produce significant energy savings. However, energy savings are not predicted for the same type of scheduling for heating applications. Thermal comfort was examined with a cooling experiment and a separate heating experiment, each lasting 45 minutes and taking place during the corresponding season. The experiments showed that modulating temperatures can cause occupants to experience more pleasure than if the temperature remained constant in a cooled space, whereas modulating temperatures had a negative impact on comfort relative to the constant temperature in the heated space. This presents evidence for an ideal opportunity for cooling applications by implementing modulating temperature schedules: an increase in thermal pleasure accompanied by a decrease in cooling energy.
349

A produção recente de edifícios residenciais em São Paulo: desempenho e conforto térmico no contexto urbano e climá¡tico em transição / The recent residential building production in São Paulo: performance and thermal comfort in the urban and climate transition context

Alves, Carolina Abrahão 17 April 2019 (has links)
O objeto deste trabalho é o desempenho térmico da produção recente de edifícios residenciais multifamiliares em São Paulo, lançados entre 2005 e 2014, considerando o contexto urbano e climático em transição, visando às condições de conforto térmico. O objetivo é quantificar, por meio de estudos paramétricos com simulações computacionais termodinâmicas, o efeito de elementos, tanto intrínsecos quanto externos, aos edifícios sobre as condições de conforto térmico no clima atual e, em um segundo momento, no futuro (cerca de 50 anos à frente) identificando as melhores estratégias de projeto e operação para o conforto térmico. A hipótese é de que algumas práticas de projeto e operação correntes nos edifícios residenciais multifamiliares, que incluem o uso da varanda como ambiente interno da unidade e a vedação envidraçada de maiores proporções, tudo isso conjugado com as pequenas dimensões das unidades e os decorrentes prejuízos à ventilação natural, fazem com que esse estoque edificado, operando em modo naturalmente ventilado, apresente um desempenho térmico insatisfatório para o conforto térmico, e que isso vai ocorrer em uma parcela considerável do tempo de uso. No entanto, a varanda, valorizada nos edifícios residenciais multifamiliares verticais recentes, quando usada de fato como elemento de transição, consegue ser o vetor de melhoria do conforto térmico interno através da promoção de diferentes possibilidades de operação, incluindo sombreamento e ventilação. O estudo parte de uma leitura de grandes temas relacionados, passa por estudos de casos reais de apartamentos residenciais e estudos de clima urbano e realiza simulações computacionais termodinâmicas de desempenho térmico de uma unidade residencial considerada representativa da produção recente do mercado imobiliário de edifícios verticais multifamiliares. O método é indutivo, por meio de levantamentos de dados e elaboração de um modelo representativo (Ap Base) para as simulações computacionais, e dedutivo, por meio de comparações entre os diversos resultados obtidos pelas simulações computacionais nas diferentes configurações propostas. Dos estudos de simulação computacional depreende-se que, para os padrões construtivos de unidades residenciais em edifícios verticais praticados pelo mercado, alcançar o conforto ambiental em modo de operação naturalmente ventilado será um desafio de maiores dimensões nos cenários de aquecimento global e urbano vislumbrados. A diminuição de massa térmica aliada ao aumento das superfícies envidraçadas não sombreadas e reduzidas possibilidades de ventilação nos ambientes são os principais fatores que contribuem para o aquecimento em edificações. A presença da varanda, por sua vez, é positiva quando ela assume diversas possibilidades de configuração, atuando e sendo ocupada como um ambiente de transição de fato e não como um dos cômodos internos à residência; deste modo ela pode ser vetor das melhores práticas de operação na busca do conforto térmico. Portanto, os resultados comprovam a hipótese inicial, destacando-se que elementos que possibilitem a operação das aberturas, em especial aquelas ligadas à varanda, a saber, envidraçamento externo, porta entre varanda e estar e elemento sombreador externo, precisam estar disponíveis para serem operados pelo usuário, que deve estar apto a perceber as melhores possibilidades de operação e realizá-las. / The objective of this work is the thermal performance of the recent multifamily residential building production in São Paulo, launched between 2005 and 2014, considering the urban and the transition climate contexts aiming at the thermal comfort conditions. The objective is to quantify, through parametric studies using thermodynamic computational simulations, the effect of both intrinsic and external elements on the thermal comfort conditions in the current climate and, in a second moment, in the future about 50 years ahead, identifying the best design and operation strategies for the thermal comfort. The hypothesis is that some current design and operation practices in multifamily residential buildings, which include the use of the balcony as an interior environment and the large glass enclosures combined with the apartment\'s small area and the insufficient natural ventilation possibilities, result in poor thermal comfort performance of this free running building stock in a considerable part of its lifespan. However, the balcony, valued in the recent multi-family residential buildings, when in fact used as a transition space, can be the vector of internal thermal comfort improvements by promoting different operation possibilities, including shading and ventilation. This study starts from a broader context, observing real residential apartments\' study cases, going into urban climate studies and performing thermodynamic simulations of a residential apartment considered representative of the recent vertical multifamily building production of the local real estate market. The method is inductive, through data surveys and elaboration of a representative model (Ap Base) for the simulations, and deductive, through comparisons between the several results obtained by the simulations in the different configurations proposed. From the simulation studies, it can be concluded that, for the building standards of residential apartments in vertical buildings practiced by the market, achieving thermal comfort in free running mode will be a major challenge in the envisioned global and urban heating scenarios. The decrease of the thermal mass coupled with the unshaded large glazed surface area and reduced ventilation possibilities are the main factors for the building heating. The balcony, in turn, is positive when it assumes several configuration possibilities, acting and being occupied as a transitional environment in fact and not as an interior room; in this way it can be a vector of the best operating practices in the search for thermal comfort. Therefore, the results confirm the initial hypothesis, emphasizing that elements allowing the opening operation, especially the ones connected to the balcony, namely external glazing, door between balcony and living room and external shade element, must be available to be operated by the user, who must be able to perceive the best possible operation and perform it.
350

Badrumsrenovering i bostäder : Jämförelse mellan radiatorsystem och golvvärmesystem ur energi-, fukt- och komfortaspekt i Västerås

Davidsson, Lukas, Alsterlund, Isak January 2019 (has links)
This degree project cover renovation of sanitary rooms with focus on an exchange from a radiator system to an underfloor heating system out of the three aspects energy, moisture and thermal comfort. The used method is literature study, interview, case study and calculations. When a radiator system is replaced with an underfloor heating system the energy demand will decrease due to a possible temperature reduction. The power requirement for the bathrooms will be reduced if the finish material have a higher density and the volume of the room is small. The moisture aspect can in some cases deteriorate with the replacement of systems. It is possible to achieve the same thermal comfort with any system, but it is easier to adjust with an underfloor heating system. An exchange from a radiator system to an underfloor heating system is possible. The energy and thermal comfort aspects improves, but the moisture aspect will potentially degrade.

Page generated in 0.301 seconds