• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tomographie discrète, calcul quantique et ordonnancement

Dürr, Christoph 24 October 2006 (has links) (PDF)
Cette habilitation décrit mes travaux en tomographie discrète, calcul quantique et ordonnancement.
2

Convexité dans le plan discret. Application à la tomographie

Daurat, Alain 11 December 2000 (has links) (PDF)
La première partie de cette thèse est consacrée à l'étude des convexes dans le plan discret Z2 ou plus généralement Zn. Il existe en fait plusieurs notions de convexité discrète : la convexité simple selon certaines directions, la convexité totale (la convexité usuelle du continu), etc. La Q-convexité est encore une nouvelle classe qui généralise à la fois les totalement convexes et les polyominos HV-convexes. On étudie les liens entre toutes ces différentes notions, et on donne des propriétés des points particuliers de ces ensembles comme les points médians et les points saillants.<br /><br />Toute la deuxième partie est dédiée au problème de la tomographie dans le plan discret Z2. Il s'agit simplement de reconstruire un ensemble à partir du nombre de points dans les droites parallèles à des directions données. L'algorithme polynomial, déjà connu pour les polyominos HV-convexes avec les directions horizontales et verticales, se généralise aux Q-convexes pour des directions quelconques. D'autre part, le théorème d'unicité qui montre en particulier que sept directions suffisent pour déterminer un totalement convexe se généralise aussi aux Q-convexes. On en déduit que lorsque l'on a assez de directions pour avoir unicité de la solution, la reconstruction des totalement convexes peut se faire en temps polynomial. On a aussi un algorithme polynomial de reconstruction approchée des Q-convexes.
3

Programmation mathématique en tomographie discrète

Tlig, Ghassen 13 November 2013 (has links) (PDF)
La tomographie est un ensemble de techniques visant à reconstruirel'intérieur d'un objet sans toucher l'objet lui même comme dans le casd'un scanner. Les principes théoriques de la tomographie ont été énoncéspar Radon en 1917. On peut assimiler l'objet à reconstruire à une image,matrice, etc.Le problème de reconstruction tomographique consiste à estimer l'objet àpartir d'un ensemble de projections obtenues par mesures expérimentalesautour de l'objet à reconstruire. La tomographie discrète étudie le cas où lenombre de projections est limité et l'objet est défini de façon discrète. Leschamps d'applications de la tomographie discrète sont nombreux et variés.Citons par exemple les applications de type non destructif comme l'imageriemédicale. Il existe d'autres applications de la tomographie discrète, commeles problèmes d'emplois du temps.La tomographie discrète peut être considérée comme un problème d'optimisationcombinatoire car le domaine de reconstruction est discret et le nombrede projections est fini. La programmation mathématique en nombres entiersconstitue un outil pour traiter les problèmes d'optimisation combinatoire.L'objectif de cette thèse est d'étudier et d'utiliser les techniques d'optimisationcombinatoire pour résoudre les problèmes de tomographie.
4

Programmation mathématique en tomographie discrète / Mathematical programming for discrete tomography

Tlig, Ghassen 13 November 2013 (has links)
La tomographie est un ensemble de techniques visant à reconstruirel’intérieur d’un objet sans toucher l’objet lui même comme dans le casd’un scanner. Les principes théoriques de la tomographie ont été énoncéspar Radon en 1917. On peut assimiler l’objet à reconstruire à une image,matrice, etc.Le problème de reconstruction tomographique consiste à estimer l’objet àpartir d’un ensemble de projections obtenues par mesures expérimentalesautour de l’objet à reconstruire. La tomographie discrète étudie le cas où lenombre de projections est limité et l’objet est défini de façon discrète. Leschamps d’applications de la tomographie discrète sont nombreux et variés.Citons par exemple les applications de type non destructif comme l’imageriemédicale. Il existe d’autres applications de la tomographie discrète, commeles problèmes d’emplois du temps.La tomographie discrète peut être considérée comme un problème d’optimisationcombinatoire car le domaine de reconstruction est discret et le nombrede projections est fini. La programmation mathématique en nombres entiersconstitue un outil pour traiter les problèmes d’optimisation combinatoire.L’objectif de cette thèse est d’étudier et d’utiliser les techniques d’optimisationcombinatoire pour résoudre les problèmes de tomographie. / The tomographic imaging problem deals with reconstructing an objectfrom a data called a projections and collected by illuminating the objectfrom many different directions. A projection means the information derivedfrom the transmitted energies, when an object is illuminated from a particularangle. The solution to the problem of how to reconstruct an object fromits projections dates to 1917 by Radon. The tomographic reconstructingis applicable in many interesting contexts such as nondestructive testing,image processing, electron microscopy, data security, industrial tomographyand material sciences.Discete tomography (DT) deals with the reconstruction of discret objectfrom limited number of projections. The projections are the sums along fewangles of the object to be reconstruct. One of the main problems in DTis the reconstruction of binary matrices from two projections. In general,the reconstruction of binary matrices from a small number of projections isundetermined and the number of solutions can be very large. Moreover, theprojections data and the prior knowledge about the object to reconstructare not sufficient to determine a unique solution. So DT is usually reducedto an optimization problem to select the best solution in a certain sense.In this thesis, we deal with the tomographic reconstruction of binaryand colored images. In particular, research objectives are to derive thecombinatorial optimization techniques in discrete tomography problems.
5

Binary tomography reconstruction of bone microstructures from a limited number of projections / Reconstruction tomographique binaire de microstructures de l'os à partir d'un nombre limité de projections

Wang, Lin 08 June 2016 (has links)
La reconstruction en tomographie discrète de la microstructure de l’os joue un role très important pour le diagnostic de l’ostéoporse, une maladie des os très fréquente. Le diagnostic clinique est basé sur l’absortiométrie duale de rayons X. Avec la tomographie de rayons X, une résolution spatiale élevée avec des images reconstruites in vivo requiert une dose d’irradiation élevée et un temps de balayage long, ce qui est dangereux pour le patient. Une des méthodes pour résoudre ce problème est de limiter le nombre de projections. Cependant, avec cette méthode le problème de reconstruction devient mal posé. Deux types de régularisation par Variation Totale minimisées avec la méthode Alternate Direction of Minimization Method (ADMM) et deux schémas basés sur les méthodes de régularisation Level-set sont appliquées à deux images d’os expérimentales acquises avec un synchrotron (pixel size: 15 μm). Des images de tailles variées et avec différents niveaux de bruit Gaussien additifs ajoutés aux projections sont utlisées pour étudier l’efficacité des méthodes de régularisation. Des minima locaux sont obtenus avec ces méthodes déterministes. Une approche globale d’optimisation est nécessaire pour améliorer les résultats. Des perturbations stochastiques peuvent être un moyen très utile pour échapper aux minima locaux. Dans une première approche, une équation différentielle stochastique basée sur la régularisation level-set est étudiée. Cette méthode améliore les résultats de reconstruction mais ne modifie que les frontières entre les régions 0 et 1. Ensuite une équation aux dérivées partielles stochastique est obtenue avec la régularisation TV pour améliorer la méthode stochastique level-set. A la fin de notre travail, nous avons étendu la méthode de régularisation à des images 3D avec des données réelles. Cette algorithme a été implémenté avec RTK. Nous avons aussi étendu l’approche level-set utilisée pour la tomographie binaire au cas multi-level. / Discrete tomography reconstruction of bone microstructure is important in diagnosis of osteoporosis. One way to reduce the radiation dose and scanning time in CT imaging is to limit the number of projections. This method makes the reconstruction problem highly ill-posed. A common solution is to reconstruct only a finite number of intensity levels. In this work, we investigate only binary tomography reconstruction problem. First, we consider variational regularization methods. Two types of Total Variation (TV) regularization approaches minimized with the Alternate Direction of Minimization Method (ADMM) and two schemes based on Level-set (LS) regularization methods are applied to two experimental bone cross-section images acquired with synchrotron micro-CT. The numerical experiments have shown that good reconstruction results were obtained with TV regularization methods and that level-set regularization outperforms the TV regularization for large bone image with complex structures. Yet, for both methods, some reconstruction errors are still located on the boundaries and some regions are lost when the projection number is low. Local minima were obtained with these deterministic methods. Stochastic perturbations is a useful way to escape the local minima. As a first approach, a stochastic differential equation based on level-set regularization was studied. This method improves the reconstruction results but only modifies the boundaries between the 0 and 1 regions. Then partial stochastic differential equation obtained with the TV regularization semi-norm were studied to improve the stochastic level-set method. The random change of the boundary are performed in a new way with the gradient or wavelet decomposition of the reconstructed image. Random topological changes are included to find the lost regions in the reconstructed images. At the end of our work, we extended the TV regularization method to 3D images with real data on RTK (Reconstruction Toolkit). And we also extended the level-set to the multi-level cases.

Page generated in 0.0474 seconds