• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 7
  • 1
  • Tagged with
  • 18
  • 18
  • 18
  • 18
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Optimisation du coût de revient global (TCO) d’un véhicule utilitaire électrique 3,5t ; modélisation multi-physique, dimensionnement et recharge intelligente / Total Cost of Ownership optimization of an electric light commercial vehicle 3.5t; multi-physics modeling, sizing and intelligent recharge

Babin, Anthony 28 November 2018 (has links)
Le véhicule électrique est une des solutions de transport respectueuses de l’environnement, n’émettant pas de polluant lors de son utilisation. Gruau, constructeur carrossier pour véhicules utilitaires, se lance activement dans le transport écologique sur le segment de l’utilitaire 3,5t. Afin d’accroitre les ventes de véhicules utilitaires électriques, il est nécessaire d’en réduire le coût total de possession (ou TCO (Total Cost of Ownership)). L’objectif de cette thèse est d’étudier et de modéliser le comportement des composants de ce véhicule électrique pour simuler des calculs de TCO. Le composant principal étudié est la batterie, dont la durée de vie limitée conditionne la rentabilité du véhicule. La première partie des travaux fut consacrée à la modélisation du comportement du véhicule en fonction d’une mission client donnée. Une étude des cellules de batterie est réalisée dans le but de construire un modèle multi-physique complet en prenant en considération le vieillissement calendaire et le vieillissement en cyclage. Un modèle énergétique global, comprenant ce modèle batterie, permet de déterminer l’énergie nécessaire pour un parcours donné et de simuler le vieillissement des cellules électrochimiques afin de calculer le TCO. Une seconde partie est orientée vers le calcul du TCO. La mise en oeuvre d’un algorithme d’optimisation avec une méthodologie d’accélération des calculs a permis de réaliser les calculs dans des temps raisonnables (passage de 13h à 15min par itération). Après étude de l’impact du dimensionnement de la batterie sur le TCO, il en ressort que la réduction de la capacité n’entraine pas systématiquement la réduction du TCO. Il existe pour chaque mission un point de TCO optimal (jusqu’à 17% d’éconnomie). Afin d’améliorer le TCO, des stratégies de recharge intelligentes sont élaborées et permettent rentabilité accrue du VUE (jusqu’à 29%). Ce travail a été intégré dans un logiciel d’aide à la décision de la capacité de la batterie suivant les besoins du client, destiné aux forces de ventes commerciales. / The electric vehicle is one of the environmentally friendly transport solutions that emit no pollutant during its use. Gruau, manufacturer-converter for light commercial vehicles (LCV), is actively involved in green transport in the 3.5t segment. In order to increase sales of electric LCV, it is necessary to reduce its total cost of ownership (TCO). The objective of this thesis is to study and model the behavior of the components of this electric vehicle in order to simulate TCO. The main component studied is the battery, whose limited lifetime will determine the profitability of the vehicle. The first part of the work was devoted to modeling the behavior of the vehicle according to a given customer mission. The study of battery cells was done with the aim of building a complete multi-physics model taking into account calendar aging and cycling aging. Then, this battery model is integrated in a complete energy model taking into account all the components of the studied vehicle. Then a global model, including this battery model, makes it possible to determine the energy required for a given path and to simulate the aging of the electrochemical cells in order to calculate the TCO. A second part is oriented towards the calculation of the TCO. The implementation of an optimization algorithm, with a methodology of computing acceleration, allowed to achieve the computations in reasonable times (reduction from 13h to 15min by iteration). After studying the impact of battery sizing on the TCO, it appears that the reduction of the battery capacity does not systematically lead to the reduction of the TCO. There is therefore an optimum TCO point for each mission (up to 17% savings). In order to improve the TCO, smart recharging strategies are developed and allow increasing e-LCV profitability (up to 29%). This work is integrated into a decision support software relative to the battery capacity according to customer needs, intended for commercial sales forces.
12

High Performance Drivetrains for Powerful Mobile Machines

Schumacher, Andreas, Rahmfeld, Robert, Laffrenzen, Heiko January 2016 (has links)
This paper discusses the current and future drivetrain perspectives of powerful mobile machines, especially in regards to TCO and drive performance. For the TCO-impact, the power losses of the components plays a big role and, if they are designed for efficiency, they have a significant and measurable influence. From the braking function point of view, this paper demonstrates not only the advantages of a valve-based over a control algorithm based solution, but also its innovative development directions towards a more sophisticated engine speed controller with optimized heat conversion into the oil. Also for the drivetrain subsystems, innovative components are discussed, like the hybrid control, combining the benefits of a non-feedback and a displacement control in one single assembly, or the variable charge system for further reduced energy consumption of the overall drivetrain.
13

Investigating the replacement of old passenger cars with modern less emission intensive cars in Sweden using Total Cost of Ownership approach

Zafar, Shahab January 2022 (has links)
Purpose. In Sweden, private commuting accounts for two third of total transportation emissions and 21% of the country’s total. To become net-zero by 2045, Sweden plans to have 2 million electric cars on the roads by 2030. Whereas with current pace, there will be 1 million electric cars by the end of the decade. Cars registered before 2016 (referred to as old cars in the study) make up nearly half of the Swedish car fleet. Thus, replacing the old emission intensive cars with the modern lower or zero emission cars will catalyze the decarbonization of Swedish transport sector. Therefore, the purpose of this study is to probe if it is economical to keep using an old car in the future or to replace it with a new one. Methods. This study first compares the next 13-year Total Cost of Ownership (TCO) of old V70 (having current milage 200,000 km) with that of new replacement cars. The (selected) replacement are the most registered modern-day cars in Sweden by fuel type having same size as that of V70: V60 (ICE), V60 (PHEV) and Tesla Model 3 (BEV). Moreover, using TCO framework, the study also estimates if the replacement is more economical now or sometime in the future with either new replacement cars or their (4-year) used models. Results. The results show that for next 13-years in Sweden, it is more economical to replace the old V70 with any of the replacement cars. However, Tesla Model 3 is the cheapest option among the new cars and V60 (PHEV) among the used cars. Overall, it is more economical to replace with a used car. In addition, the replacement is most economical if done immediately (in 2022) and gets more expensive by each year of delay- because the owner will have to incur relatively higher V70 costs (vis-à-vis the replacement cars) for an additional year. Sensitivity analysis shows that with higher current salvage value, a V70 gets more expensive to own in next 13 years (due to higher depreciation) whereas the replacement becomes cheaper (utilizing higher salvage value to buy the replacement car). Discussion. The study can be expanded to suggest economical and emission efficient replacement options for other old cars to accelerate the decarbonization of Swedish private transport sector. Furthermore, this study was done in collaboration with Mekonomen Group to see the financial worth of old ICE car replacement by its customers. The study results reinforce the group’s diversification strategy from ICE cars-oriented business model to BEVs as the top focus. Finally, this study is based on the assumption that the total number of cars in Sweden will not increase in future- the old gets replaced by the new. Therefore, from a holistic perspective, the study discusses that a sustainable transportation model should move away from private ownership towards shared mobility to avoid the rebound effects of technological efficiency that increase the overall resource consumption.
14

What are the value and implications of two-car households for the electric car?

Karlsson, Sten 17 November 2020 (has links)
The major barriers to a more widespread introduction of battery electric vehicles (BEVs) beyond early adopters are the limited range, charging limitations, and costly batteries. An important question is therefore where these effects can be most effectively mitigated. An optimization model is developed to estimate the potential for BEVs to replace one of the conventional cars in two-car households and to viably contribute to the households’ driving demand. It uses data from 1 to 3 months of simultaneous GPS logging of the movement patterns for both cars in 64 commuting Swedish two-car households in the Gothenburg region. The results show that, for home charging only, a flexible vehicle use strategy can considerably increase BEV driving and nearly eliminate the unfulfilled driving in the household due to the range and charging limitations with a small battery. The present value of this flexibility is estimated to be on average $6000–$7000 but varies considerably between households. With possible near-future prices for BEVs based on mass production cost estimates, this flexibility makes the total cost of ownership (TCO) for a BEV advantageous in almost all the investigated households compared to a conventional vehicle or a hybrid electric vehicle. Because of the ubiquity of multi-car households in developed economies, these families could be ideal candidates for the initial efforts to enhance BEV adoptions beyond the early adopters. The results of this research can inform the design and marketing of cheaper BEVs with small but enough range and contribute to increased knowledge and awareness of the suitability of BEVs in such households.
15

Capital and Operational Cost Evaluation of Selected Powertrain configurations in Heavy-duty Fuel Cell Trucks / Kapital och driftskostnadsutvärdering av utvalda drivlinakonfigurationer i tunga bränslecellstruckar

Vivek Venkatesh, Shenoy January 2021 (has links)
The automotive and heavy-duty trucking industries are heading towards research and development of alternative powertrain solutions to meet the United Nations sustainability goals and cleaner solutions to aid climate change actions. This thesis project aligns with the vision of finding greener and sustainable modes of transport in the heavy long haulage trucking industry. This project aims to find and develop a method for creating drive cycles, getting the vehicular power requirements to drive on these selected routes and finally calculating the TCO of a vehicle. The scripts for these mentioned steps are developed in MATLAB. The approach used in this work could help both the vehicle manufacturer and the vehicle operator to predict or cater to upcoming customer demand on, in our case, routes pan EU, to receive information about energy, power and vehicular configuration needed to fulfil the mission, and also, optimize the powertrain configuration in collaboration with a parallel thesis work done here at Scania, and finally calculate a somewhat simplified TCO of the vehicle.  In this work, two different driving conditions has been used; summer or winter, and two different payload conditions, as well as two types of vehicle powertrains; FCEV and BEV. Finally, a comparison regarding TCO for FCEV and BEV has been done. / Fordonsindustrin, inklusive den kommersiella lastbilsindustrin, driver utvecklingen av alternativa drivlinor för att kunna uppfylla FN:s hållbarhetsmål kring miljövänligare lösningar, nödvändiga för att stödja det globala klimatarbetet. Detta examensarbete utgår från visionen att hitta miljövänligare fordonstyper inom den kommersiella lastbilssektorn. Detta projekt siktar på att utveckla och använda metoder för att kunna ta fram relevanta körcykler, fastställa nödvändig framdrivningseffekt för att fordonen ska kunna köra på utvalda rutter, samt att beräkna total ägandekostnad (TCO) för fordonsoperatören.  Skripten för dessa nämnda steg har utvecklats i MATLAB inom projektet. Tillvägagångssättet som har använts i detta arbete kan hjälpa både fordonstillverkare och fordonsoperatörer att förutspå framtida krav. I vårt fall har information om nödvändig energimängd, effekt och komponentkonfiguration, inklusive drivlineoptimering, tagits fram för rutter inom EU, tillsammans med ett parallellt examensarbete som också utförts på Scania. Slutligen beräknades den totala ägandekostnaden (TCO) för kunden.  I detta arbete har två olika användarfall analyserats; sommar och vinter, för två olika nyttolaster, samt två typer av drivlinor; FCEV och BEV. Slutligen, har en jämförelse gjorts gällande TCO för FCEV och BEV.
16

Policy Tools for the Decarbonisation of Urban Freight Transport in Brazil

Mandana, Raghav Somayya January 2021 (has links)
There has been an increase in the carbon dioxide (CO2) emissions in the last 3 decades. A large share of these emissions is produced by the transport sector. In 2010 alone, global transport accounted for 7 GtCO2 eq and approximately 23% of total energy-related CO2 emissions. In order for the decarbonisation of the transport sector, one of the most important strategies is to reduce the use of fossil fuels. Fossil fuel consumption can be reduced by rolling out more battery electric vehicles (BEVs) on public roads. This is one of the methods by which the concept of electromobility is promoted. In order to increase the share of EVs, many countries have implemented different policies that promote the electrification of the transport sector. With respect to freight transport, electric commercial vans are one of the feasible choices.  This Master thesis involves a quantitative study which focus on the “total cost of ownership” (TCO) of light commercial vehicles (LCVs). Two diesel vans currently used in Curitiba, Brazil were selected - the Sprinter van by Mercedes-Benz and the Master van by Renault. In addition, their electric counterparts were also chosen; in conjunction, a sensitivity analysis with respect to fuel prices and annual distance driven was conducted. The results showed that the TCO of the electric LCVs is around 1.6 to 1.7 times higher than their diesel versions. As far as the two van model types were concerned, the Mercedes-Benz Sprinter had a higher TCO than the Renault Master over the chosen vehicle lifetime for both the diesel and electric versions, with the difference around 7.5% for the diesel versions and approximately 13% for the electric versions.  Based on the results of the TCO study, possible economic policies and fiscal instruments were recommended with regards to light commercial freight transport for Curitiba. / Det har skett en ökning av koldioxidutsläppen (CO2) under de senaste 3 decennierna. En stor del av dessa utsläpp produceras av transportsektorn. Bara 2010 svarade, global transport för 7 GtCO2 ekvivalenter och cirka 23% av de totala energirelaterade koldioxidutsläppen. För att avkolning av transportsektorn är en av de viktigaste strategierna att minska användningen av fossila bränslen. Fossil bränsleförbrukning kan minskas genom att rulla ut fler elektriska fordon (EF) på allmänna vägar när det gäller transportsektorn i allmänhet. Detta är en av metoderna som begreppet elektromobilitet främjas. För att öka andelen elbilar har många länder genomfört olika policyer som främjar elektrifiering av transportsektorn. När det gäller godstransport, är elektriska kommersiella lastbilar och skåpbilar två av de möjliga valen.  Detta examensarbete involverar en kvantitativ studie som fokuserar på “totala ägandekostnaderna” (TÄK) för lätta nyttofordon. Två dieselbilar som för närvarande används i Curitiba, Brasilien valdes - Sprinter-skåpbilen från Mercedes-Benz och Master-skåpbilen av Renault. Dessutom valdes deras elektriska motsvarigheter; i samband med detta genomfördes en känslighetsanalys avseende bränslepriser och årlig körd distans. Resultaten visade att T för elektriska LCV är cirka 1.6 till 1.7 gånger högre än deras dieselversioner. När det gäller de två typerna av skåpbilar hade Mercedes-Benz Sprinter en högre TCO än Renault Master under den valda fordonstiden för både diesel - och elektriska versioner, med skillnaden cirka 7.5% för dieselversionerna och cirka 13% för de elektriska versionerna.  Baserat på resultaten av TCO-studien rekommenderades möjlig ekonomisk politik och finanspolitiska instrument när det gäller lätt kommersiell godstransport för Curitiba.
17

Migration Towards Next Generation Optical Access and Transport Networks

Wang, Kun January 2017 (has links)
By 2020 there will be 50 billion connected devices over the Internet. With the fast-increasing data traffic demand in both fixed and mobile networks, network operators need to migrate networks towards next generation solutions. The network migration requires the enormous investment in equipment and infrastructure, while the revenues are not expected to grow significantly. Therefore, one of the main challenges for network operators is to find out a proper cost-effective optical network solution that can match future high capacity demand and flexibly support multiple network services on a common network infrastructure. The first part of the thesis addresses the Active Optical Network (AON) and its migration strategies towards Next Generation Optical Access (NGOA) solutions. Several migration strategies are proposed from the perspective of network topology, data plane and control plane. A general methodology for Techno-Economic analysis has been developed and applied to the Total Cost of Ownership (TCO) calculation of different NGOA solutions. The thesis provides a complete cost evaluation of AON migration paths, which can be used by network operators to assess the economic feasibility of network migration. A converged Optical Transport Network (OTN) that can serve both fixed and mobile network services is beneficial from the cost-saving perspective. However, the different types of services, require different network performance. The second part of the thesis focuses on the investigation of the converged OTN that can be flexibly and timely adjusted to satisfy varying service conditions. A programmable OTN featured with Wavelength Division Multiplexing (WDM) in the data plane and Software Defined Networking (SDN) in control plane has been proposed. To demonstrate the benefits of the converged OTN, the thesis also provides a multi-domain orchestration architecture for the multiple network services.  The resource orchestration, across three network domains: OTN, mobile network and cloud, enables agile service creation and optimized resource allocation among the multiple domains. / <p>QC 20170512</p>
18

Life Cycle Analysis of Different Powertrain Technologies for Decarbonising Road Transportation

Tripathi, Shashwat 06 September 2023 (has links)
[ES] Los estudios realizados en el pasado han demostrado que, a pesar de tener cero emisiones del tubo de escape, un vehículo completamente eléctrico tiene emisiones durante el ciclo de vida. El desarrollo tecnológico a lo largo de los años por parte de la humanidad ha llevado constantemente a un aumento de la dependencia energética. Desafortunadamente, esta energía proviene principalmente de fuentes fósiles. Uno de los principales consumidores de energía de origen fósil es la industria del transporte, que utiliza petróleo y diesel como combustibles. Estos combustibles se queman en motores de combustión interna para producir energía debido a su alto poder calorífico. Dado que estos son combustibles a base de carbono, genera dióxido de carbono durante el proceso, que es un gas de efecto invernadero. Por lo tanto, ha habido un seguimiento y una regulación muy estrictos de los tubos de escape de los automóviles a lo largo de los años. Recientemente, diferentes regiones del mundo han planeado prohibir la venta de vehículos convencionales basados en motores de combustión interna. Por lo tanto, vender solo vehículos con cero emisiones de escape, como vehículos eléctricos de batería y vehículos eléctricos de pila de combustible. Esto se debe principalmente a la intensidad de las emisiones de la combinación de electricidad, para alimentar las baterías y el proceso de fabricación de baterías para vehículos eléctricos de batería. Mientras que los vehículos eléctricos de pila de combustible dependen de la intensidad de emisión de la producción de hidrógeno. Dado que la producción actual de hidrógeno es muy limitada y tiene un alto contenido de carbono, los vehículos eléctricos de batería son los preferidos para reemplazar a los vehículos con motor de combustión interna. Otra razón detrás del impulso de este cambio es la alta eficiencia de los sistemas de propulsión eléctricos. A pesar de eso, es muy difícil para los vehículos eléctricos de batería igualar el rango de conducción de los vehículos con motor de combustión interna debido a la gran diferencia en la densidad de energía de las baterías y los combustibles líquidos. En condiciones reales de conducción, este rango de conducción es aún más reducido, a pesar de tener grandes paquetes de baterías a bordo. Esta es una limitación importante para el uso de vehículos eléctricos de batería, hasta que se desarrolle una infraestructura de carga extensa. Por ello, en esta tesis se evalúa el potencial de reducción de emisiones de los vehículos eléctricos con un enfoque de ciclo de vida para turismos y autobuses. Esto se hace comparando sus emisiones con las de los vehículos diésel convencionales y eléctricos híbridos para ciclos de conducción reales utilizando simulaciones numéricas 0D. Esto se complementa con estudios del costo del ciclo de vida de los diferentes vehículos para ver qué opción de tren motriz puede ser más eficiente. Además, los combustibles sintéticos bajos en carbono también se están evaluando como una solución alternativa para reemplazar el combustible diesel y ver el cambio que puede traer al ciclo de vida de los vehículos con motor de combustión interna. Estas evaluaciones se realizan para diferentes ubicaciones a nivel mundial para observar los factores locales que afectan los resultados. Por lo tanto, este trabajo tiene como objetivo evaluar los resultados del ciclo de vida para los responsables políticos y los fabricantes de automóviles a nivel mundial, tanto de las emisiones como del costo, asociados con cada opción de tren motriz. Como resultado de esta investigación, se observan varios desafíos relacionados con los vehículos eléctricos de batería que deben abordarse antes de su adopción masiva. Por lo tanto, se propone el uso de vehículos híbridos como una solución a corto plazo para abordar la urgencia de reducción de emisiones globales. Lo cual, de hecho, también puede considerarse una solución a largo plazo si funciona con combustibles bajos en carbono. / [CA] Els estudis realitzats en el passat han demostrat que, malgrat tenir zero emissions del tub d'escapament, un vehicle completament elèctric té emissions durant el cicle de vida. El desenvolupament tecnològic al llarg dels anys per part de la humanitat ha portat constantment a un augment de la dependència energètica. Desafortunadament, aquesta energia prové principalment de fonts fòssils. Un dels principals consumidors denergia dorigen fòssil és la indústria del transport, que utilitza petroli i dièsel com a combustibles. Aquests combustibles es cremen en motors de combustió interna per produir energia a causa del seu alt poder calorífic. Atès que són combustibles a base de carboni, genera diòxid de carboni durant el procés, que és un gas d'efecte hivernacle. Per tant, hi ha hagut un seguiment i una regulació molt estrictes dels tubs de fuga dels automòbils al llarg dels anys. Recentment, diverses regions del món han planejat prohibir la venda de vehicles convencionals basats en motors de combustió interna. Per tant, vendre només vehicles amb zero emissions d'escapament, com ara vehicles elèctrics de bateria i vehicles elèctrics de pila de combustible. Això es deu principalment a la intensitat de les emissions de la combinació delectricitat, per alimentar les bateries i el procés de fabricació de bateries per a vehicles elèctrics de bateria. Mentres que els vehicles elèctrics de pila de combustible depenen de la intensitat d'emissió de la producció d'hidrogen. Atès que la producció actual dhidrogen és molt limitada i té un alt contingut de carboni, els vehicles elèctrics de bateria són els preferits per reemplaçar els vehicles amb motor de combustió interna. Una altra raó darrere de l¿impuls d¿aquest canvi és l¿alta eficiència dels sistemes de propulsió elèctrics. Tot i això, és molt difícil per als vehicles elèctrics de bateria igualar el rang de conducció dels vehicles amb motor de combustió interna a causa de la gran diferència en la densitat denergia de les bateries i els combustibles líquids. En condicions reals de conducció, aquest rang de conducció encara és més reduït, tot i tenir grans paquets de bateries a bord. Aquesta és una limitació important per a lús de vehicles elèctrics de bateria, fins que es desenvolupi una infraestructura de càrrega extensa. Per això, en aquesta tesi s"avalua el potencial de reducció d"emissions dels vehicles elèctrics amb un enfocament de cicle de vida per a turismes i autobusos. Això es fa comparant les seves emissions amb les dels vehicles dièsel convencionals i elèctrics híbrids per a cicles de conducció reals utilitzant simulacions numèriques 0D. Això es complementa amb estudis del cost del cicle de vida dels diferents vehicles per veure quina opció de tren motriu pot ser més eficient. A més, els combustibles sintètics baixos en carboni també s'estan avaluant com a solució alternativa per reemplaçar el combustible dièsel i veure el canvi que pot portar al cicle de vida dels vehicles amb motor de combustió interna. Aquestes avaluacions es fan per a diferents ubicacions a nivell mundial per observar els factors locals que afecten els resultats. Per tant, aquest treball té per objectiu avaluar els resultats del cicle de vida per als responsables polítics i els fabricants d'automòbils a nivell mundial, tant de les emissions com del cost, associats amb cada opció de tren motriu. Com a resultat d'aquesta investigació, s'observen diversos desafiaments relacionats amb els vehicles elèctrics de bateria que cal abordar abans de la seva adopció massiva. Per tant, es proposa utilitzar vehicles híbrids com una solució a curt termini per abordar la urgència de reducció d'emissions globals. Això, de fet, també es pot considerar una solució a llarg termini si funciona amb combustibles baixos en carboni. / [EN] Several studies in the past have shown that despite having zero tailpipe emissions in a fully electric vehicle, it does have emissions when evaluated on a life cycle basis. Technology development over the years by humankind has constantly led to an increase in energy dependence. Unfortunately, this energy comes mainly from fossil-based sources that are limited. One major consumer of fossil-based energy sources is the transportation industry, which uses fossil-based petrol and diesel as fuels. These fuels are burned in internal combustion engines to produce energy due to their high calorific value. Since these are carbon-based fuels, it generates carbon dioxide during the combustion process, which is a greenhouse gas and leads to global warming. Therefore, there has been very strict monitoring and regulation of its emissions from the automotive tailpipes over the years. In recent years, different regions across the world have planned to completely stop the sale of conventional internal combustion engine-based vehicles. Thus, selling only zero tailpipe emission vehicles such as battery electric vehicles and fuel cell electric vehicles. This is primarily due to the emission intensity of the electricity mix used to power the batteries and from the battery manufacturing process for battery electric vehicles. At the same time, the fuel cell vehicle depends mainly on the emission intensity of hydrogen production. Since current hydrogen production is very limited and carbon-intensive, battery electric vehicles are highly favoured to replace internal combustion engine vehicles soon. Another reason behind the push for this shift is the high efficiency of electric powertrains. Despite that, it is very challenging for battery electric vehicles to match the driving range of internal combustion engine vehicles due to the large difference in the energy density of batteries and liquid fuels, currently. Further, in real driving conditions, this driving range is even more reduced for electric vehicles, even after having large battery packs on board. This is a major limitation for battery electric vehicles, especially for the ones meant for long haul routes, until an extensive charging infrastructure is developed. Therefore, in this thesis, the emission reduction potential of electric vehicles is evaluated following a life cycle approach for passenger cars and city buses. This is done by comparing their emissions with that of conventional diesel and hybrid electric vehicles for real driving cycles by means of 0D numerical simulations. This is complemented with life cycle cost studies for the different vehicles to see which powertrain option can be efficient in terms of emissions but also cost. Moreover, low-carbon synthetic fuels are also evaluated as an alternative drop-in solution to replace diesel fuel and see the change it can bring on a life cycle basis for hybrid and conventional internal combustion engine vehicles. These evaluations are done for different locations globally to observe the local factors that affect the results of each powertrain option for the two vehicle segments. Thus, this work is intended to evaluate the life cycle results for the policymakers and automobile manufacturers globally, for the emissions as well as the cost associated with each powertrain option. As an outcome of this research, several challenges are observed related to emissions and cost of the battery electric vehicles that need to be addressed before their mass adoption. Hence, the use of hybrid vehicles as a short-term solution to address the global emission reduction urgency is proposed for the road transportation sector. Which, in fact, may also be considered a long-term solution if powered with low-carbon fuels. / Tripathi, S. (2023). Life Cycle Analysis of Different Powertrain Technologies for Decarbonising Road Transportation [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/196725

Page generated in 0.0781 seconds