• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 121
  • 62
  • 28
  • 16
  • 5
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 303
  • 303
  • 111
  • 109
  • 101
  • 75
  • 75
  • 62
  • 51
  • 40
  • 33
  • 31
  • 30
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Diazocetonas α,β-insaturadas como reagentes multifuncionais: aplicação na síntese de alcaloides piperidínicos e pirrolidínicos / αβ-unsatured diazoketones as multifunctional reagents: Application to total synthesis of piperidine and pyrrolidine alkaloids

Rosset, Isac George 13 March 2015 (has links)
p>O primeira parte do trabalho descreve a preparação de um novo reagente de olefinação de HWE para o preparo de diazocetonas α, β-insaturadas com geometria Z e aplicação na síntese de núcleos piperidínicos funcionalizados. Através da otimização da reação de HWE empregando o benzaldeído como aldeído padrão foi possível maximizar a obtenção do isômero Z desejado (92%, Z:E 9:1). As reações-chave para a formação dos núcleos piperidínicos foram a de olefinação de HWE utilizando amino-aldeídos, obtendo-se bons rendimentos e boa seletividade, seguida de uma reação de inserção N-H catalisada por metais. A versatilidade da metodologia foi demostrada com a aplicação na síntese total de um produto natural: (±)-3,4,5-triidroxipiperidina e em estudos visando a síntese de outro produto natural, a (-)-1-deoxi-altronojirimicina. A química das diazocetonas α,β-insaturadas como intermediários avançados foi também empregada na síntese de um outro produto natural, a (±)-preussina. A rota empregada apresentou alta estereosseletividade na reação-chave (Rearranjo de Stevens) e posteriormente na redução da cetona formada com um redutor volumoso (L-selectride), obtendo um rendimento global de 40% em três etapas. Tentou-se também estender a metodologia para o preparo de diazocetonas α,β-insaturadas trissubstituídas, aplicando os reagentes de olefinação em reações com cetonas. No entanto, diversas tentativas foram feitas e não foi obtido as olefinas de interesse. / The first part of this work describes the preparation of a new HWE olefination reagent to prepare diazoketones α, β-unsaturated with Z geometry and its application in the synthesis of functionalized piperidine cores. After the optimization of the HWE reaction using benzaldehyde as a standard it was possible to prepare the desired Z isomer in 92% (Z:E 9:1). The key reaction for formation of the piperidine cores, N-H metal-catalyzed insertion performed to give a yield of up to 70%. The versatility of the methodology was demonstrated by an application to the synthesis of the natural product (±)-3,4,5-triidroxypiperidine and studies in the synthesis of (-)-1-deoxy-altronojirimicine. The chemistry of α, β-unsaturated diazoketones was also employed in the synthesis of another natural product, the alkaloid (±)-preussine. The employed route showed high stereoselectivity in the key-reaction (Stevens Rearrangement) as well as in the subsequent reduction of the formed ketone with a reducing agent (L-Selectride) giving an overall yield of 40%. We also tried to extend the methodology to prepare trisubstituted α, β-unsaturated diazoketones from the reaction with the olefination reagent and ketones. However, after several attempts no fruitful results were abtained.
92

Diazocetonas α,β-insaturadas como reagentes multifuncionais: aplicação na síntese de alcaloides piperidínicos e pirrolidínicos / αβ-unsatured diazoketones as multifunctional reagents: Application to total synthesis of piperidine and pyrrolidine alkaloids

Isac George Rosset 13 March 2015 (has links)
p>O primeira parte do trabalho descreve a preparação de um novo reagente de olefinação de HWE para o preparo de diazocetonas α, β-insaturadas com geometria Z e aplicação na síntese de núcleos piperidínicos funcionalizados. Através da otimização da reação de HWE empregando o benzaldeído como aldeído padrão foi possível maximizar a obtenção do isômero Z desejado (92%, Z:E 9:1). As reações-chave para a formação dos núcleos piperidínicos foram a de olefinação de HWE utilizando amino-aldeídos, obtendo-se bons rendimentos e boa seletividade, seguida de uma reação de inserção N-H catalisada por metais. A versatilidade da metodologia foi demostrada com a aplicação na síntese total de um produto natural: (±)-3,4,5-triidroxipiperidina e em estudos visando a síntese de outro produto natural, a (-)-1-deoxi-altronojirimicina. A química das diazocetonas α,β-insaturadas como intermediários avançados foi também empregada na síntese de um outro produto natural, a (±)-preussina. A rota empregada apresentou alta estereosseletividade na reação-chave (Rearranjo de Stevens) e posteriormente na redução da cetona formada com um redutor volumoso (L-selectride), obtendo um rendimento global de 40% em três etapas. Tentou-se também estender a metodologia para o preparo de diazocetonas α,β-insaturadas trissubstituídas, aplicando os reagentes de olefinação em reações com cetonas. No entanto, diversas tentativas foram feitas e não foi obtido as olefinas de interesse. / The first part of this work describes the preparation of a new HWE olefination reagent to prepare diazoketones α, β-unsaturated with Z geometry and its application in the synthesis of functionalized piperidine cores. After the optimization of the HWE reaction using benzaldehyde as a standard it was possible to prepare the desired Z isomer in 92% (Z:E 9:1). The key reaction for formation of the piperidine cores, N-H metal-catalyzed insertion performed to give a yield of up to 70%. The versatility of the methodology was demonstrated by an application to the synthesis of the natural product (±)-3,4,5-triidroxypiperidine and studies in the synthesis of (-)-1-deoxy-altronojirimicine. The chemistry of α, β-unsaturated diazoketones was also employed in the synthesis of another natural product, the alkaloid (±)-preussine. The employed route showed high stereoselectivity in the key-reaction (Stevens Rearrangement) as well as in the subsequent reduction of the formed ketone with a reducing agent (L-Selectride) giving an overall yield of 40%. We also tried to extend the methodology to prepare trisubstituted α, β-unsaturated diazoketones from the reaction with the olefination reagent and ketones. However, after several attempts no fruitful results were abtained.
93

Reagentes de telúrio em síntese orgânica estudos visando a síntese total do siphonodiol / Studies aiming the total synthesis of Siphonodiol

Ellensohn, Ricardo Machado 06 October 2000 (has links)
O objetivo do presente projeto é a síntese do total Siphonodiol, utilizando algumas das reações já estudadas sistematicamente no laboratório. Trata-se de um produto natural do grupo dos poliacetilenos que apresenta uma potente atividade fungicida. A síntese enantiosseletiva da porção diol pode ser efetuada em três etapas a partir do ácido ascórbico, por uma seqüência de reações de redução e oxidação já descritas na literatura. Os demais fragmentos a serem preparados consistem em reações de abertura de éteres cíclicos em meio ácido, reações de proteção e desproteção com reagentes de silício, reações de transmetalações e acoplamentos de teluretos vinílicos e, como etapa chave para a obtenção do Siphonodiol, reações de acoplamento do tipo Cadiot-Chodkiewicz. A estratégia sintética para a preparação do Siphonodiol é apresentada abaixo. / The main objective of this project consists in the total synthesis of Siphonodiol using reactions already systematically studied in our group. Siphonodiol is a natural product of the group of polyacetylenes which exhibits a potent antifungal activity. The enantioselective synthesis of the diol fragment was effected in three steps from ascorbic acid by means of a sequence of reduction-oxidation reactions already described in the literature. The others fragments were synthesized by cyclic ether ring opening reaction in acid media, protection/deprotecting reactions with silicon reagents, transmetalation reactions and coupling reactions with vinylic tellurides and, the key step to obtain the Siphonodiol, the Cadiot-Chodkiewicz coupling reaction. The synthetic strategy to the synthesis of Siphonodiol is presents bellow.
94

Acylations radicalaires diastéréocontrôlées : application à la synthèse de tétrahydrofuranes et pyrrolidines polysubstitués / Diastereoselective radical acylations : application to the synthesis of polysubstituted tetrahydrofurans and pyrrolidines

Grélaud, Simon 09 December 2016 (has links)
Cette thèse décrit un nouvel accès au motif tétrahydrofurane (THF)2,3,5-trisubstitué. Cette stratégie est basée sur une première étape d’addition d’un radical acyle nucléophile sur une oléfine activée de type adduit de Baylis-Hillman,suivie d’une cyclisation réductrice du motif céto-alcool-1,4 ainsi formé. De hauts niveaux de diastéréocontrôles-1,2 et -1,3 ont pu être atteints en utilisant dans ces deux étapes le tris(triméthylsilyl)silane comme agent de transfert d’hydrogène. Cette méthodologie a ensuite été appliquée à la synthèse du fragment THF de la gymnodimine puis à la première synthèse totale d’une molécule naturelle tricyclique : le no.2106A. Dans un dernier temps, l’utilisation d’adduits de type aza-Baylis-Hillman a permis d’accéder efficacement à des homologues azotés telles que les pyrrolidines mais également à des composés bicycliques tels que les indolizidinones ou les pyrrolizidines. / This thesis describes a new access to the 2,3,5-trisubstituted tetrahydrofuran moiety. This strategy includes as a first step an addition of an acylradical on to an activated olefin (Baylis-Hillman adduct), followed by a reductive cyclization of the corresponding 1,4-keto-alcohol. High levels of 1,2- and 1,3-stereocontrol were attained using, in these two steps, tris(trimethylsilyl)silane as an hydrogen transfer agent. This methodology was then applied to the synthesis of the Gymnodimine THF fragment and to the first total synthesis of a tricyclic naturalcompound : no.2106A. Finally, the use of aza-Baylis-Hillman adducts led to an efficient access to nitrogen analogues, including pyrrolidines and bicyclic compounds such as indolizidinones or pyrrolizidines.
95

Studies towards the total synthesis of madeirolide A

Yip, Adam Christopher Loy January 2018 (has links)
Madeirolide A (1) is a structurally novel polyketide natural product first isolated from the deep-sea sponge Leiodermatium sp. by Wright in 2009. Initial biological investigations of madeirolide A revealed potent inhibition of the fungal pathogen Candida albicans but failed to determine any appreciable cytotoxicity when tested against a limited range of cancer cell lines. The unusual bioactivity of madeirolide A coupled with uncertainty over the true stereostructure of the natural product makes it a compelling target for synthesis. This thesis discloses synthetic efforts towards the total synthesis of madeirolide A with an emphasis on the construction of the all-cis C21 - C27 eastern tetrahydropyran. Chapters 1 and 2 provide an introduction to the importance of natural products in drug discovery and outline the context of this project with details of the isolation and biological activity of madeirolide A. Previous synthetic efforts are also reviewed including those from within the group which formed the basis of the present studies. Chapter 3 describes the synthesis of a fully elaborated C1 - C11 fragment, building upon previously published work in the group. Specifically, it details the successful completion of a modified approach designed to avoid some of the major challenges previously encountered such as undesired migration of protecting groups and challenges in selectively installing an (E)-vinyl iodide. Chapter 4 discusses ongoing efforts towards the challenging C12 - C27 fragment of madeirolide A. The stereocontrolled synthesis of several linear C19 - C27 precursors is outlined, followed by details of screening reactions conducted to affect the desired oxy- Michael cyclisation. Additionally, extensive computational studies have been undertaken in an attempt to rationalise the frustrating lack of reactivity observed with the goal of developing a substrate suitably elaborated to cyclise. Finally, the asymmetric synthesis of the C13 - C17 subfragment is outlined, which will provide eventual access to the eastern tetrahydrofuran. Chapter 5 summarises the synthetic work carried out thus far and explores potential strategies for the future completion of the natural product with a focus on alternative disconnections of the eastern tetrahydropyran.
96

Cascade cyclizations & the schweinfurthins

Topczewski, Joseph John 01 December 2011 (has links)
Cancer is a serious family of disease that continues to cripple and claim those afflicted. For the last several decades, America has invested in a national program to alleviate cancer and cancer related suffering, ultimately seeking a cure. As part of this goal, the National Cancer Institute (NCI) has spent significant effort scouring the globe with the hope of finding naturally occurring compounds that can successfully combat cancer. Presently, this effort has uncovered many natural products with chemotherapeutic potential and many of the lead agents used in the fight against cancer are either natural products themselves or are compounds inspired by a natural product. This work describes one family of natural products uncovered by the NCI that is being explored for chemotherapeutic applications, namely the schweinfurthins. The schweinfurthins were isolated by the NCI; however the natural source, Macaranga schweinfurthii, did not provide these compounds in ample quantity to permit further study. The paucity of natural material indicated that a chemical synthesis of these compounds would be the most reliable method to provide meaningful amounts of schweinfurthins. The present work describes the chemical synthesis of four of the most potent schweinfurthins, describes the synthesis of numerous structural analogues, and details advances to the field of cascade cyclizations which makes their synthesis possible.
97

Biomimetic Approaches to the Synthesis of Polyketide Derived Marine Natural Products; (-)-Maurenone and the Spiculoic Acids

Crossman, Julia Stephanie, julia.crossman@flinders.edu.au January 2007 (has links)
This thesis describes the total synthesis of the polyketide derived marine natural product (-)-maurenone (14) and synthetic studies of a model system for the marine polyketides, the spiculoic acids (20, 22-24). A biomimetic approach involving cyclisation of linear polyketide precursors to install the complex chemical frameworks was employed. Maurenone is a polypropionate derived metabolite isolated from pulmonate molluscs collected off the coast of Costa Rica. While structural assignment following isolation revealed a relatively uncommon tetra-substituted dihydropyrone moiety the only stereochemical information deduced was the trans-relative relationship between the C8 and C9 protons. The total synthesis of a series of eight stereoisomeric putative structures was achieved in order to assign the stereochemistry of (-)-maurenone (14), as that depicted above. A time and cost efficient strategy was developed utilising common intermediates providing access to the eight stereoisomeric structures in a convergent manner. Six key fragments, four aldehydes (109) and two ketones (110), were synthesised using highly diastereoselective syn- and anti-boron aldol reactions and were coupled using a lithium-mediated aldol reaction. Trifluoroacetic acid-promoted cyclisation/dehydration enabled installation the ƒ×-dihydropyrone ring. All eight isomers of one enantiomeric series were synthesised by coupling two ketones with each of four aldehydes. By comparison of the NMR data for the eight isomers with that reported for the natural product, the relative stereochemistry was established as shown. The (-)-enantiomer of maurenone was synthesised in nine linear steps (13 % overall yield) from (R)-2-benzylpentan-3-one ((R)-40) and (R)-2-benzoyloxypentan-3-one ((R)-39). The spiculoic acid family of polyketide derived natural products, isolated from plakortis sponges, possess a unique [4.3.0]-bicyclic core which is proposed to be formed via an enzyme catalysed Intramolecular Diels-Alder (IMDA) cycloaddition reaction of linear polyene precursors 25. Model linear precursors (114), possessing various olefin geometries at C2 and both stereochemical orientations of the C5 stereocentre, were synthesised in order to examine stereoselectivity of the thermally induced IMDA cycloaddition reaction. The two alternative C4-C6 stereotriads of the linear precursors 114 were achieved by employing highly diastereoselective substrate-controlled aldol reactions; an anti-boron aldol reaction, controlled by the facial preference of (R)-2-benzoyloxypentan-3-one ((R)-39), and a syn-titanium aldol reaction, under the control of chiral N-acylthiazolidinethione ((R)-43a). The diene and dienophile moieties were installed using either standard Wittig, H.W.E. or ¡§modified¡¨ Julia olefination reactions. A thorough stereochemical assignment of the cycloadducts of the thermally induced IMDA reaction of each linear precursor was accomplished employing 2D NMR techniques. Comparison of the stereochemistry of each of the cycloadducts with the spiculoic acids revealed that the linear precursor (2E,5S)-114 produced a cycloadduct 232 with stereochemistry analogous to the natural products in 94 % diastereoselectivity. Thus, a synthetic approach to the spiculoic acids via synthesis of a linear precursor 285 possessing a TBS ether at C5 in the S configuration was proposed. Unfortunately, problems encountered in the synthesis of the proposed linear precursors to the spiculoic acids ultimately prevented the total synthesis from being achieved.
98

2-Iodoxybenzoic Acid: Acidity Investigations and The Total Synthesis of 5,14-bis-epi-Spirovibsanin A

Mr Michael Gallen Unknown Date (has links)
No description available.
99

Synthetic studies toward the total synthesis of azaspiracid-1

Su, Dong 31 May 2012 (has links)
Azaspiracid-1, a novel marine toxin that contains 9 rings and 20 stereogenic centers, has drawn considerable attention from synthetic groups worldwide due to its structural complexity, which includes a unique trioxabisspiroketal fused to a tetrahydrofuran ring (ABCD rings), a piperidine-tetrahydrofuran spiroaminal system fused to a 2,9-dioxabicyclo[3.3.1]nonane system (FGHI rings), a connecting six-membered cyclic hemiketal bridge (E ring) and a ��,��-unsaturated terminal carboxylic acid side chain. Our efforts toward the total synthesis of azaspiracid-1 led to the completion of both C1-C26 northern and C27-C40 southern halves of azaspiracid-1. Herein, our improved and scalable synthetic studies toward the total synthesis of azaspiracid-1 is described. In particular, an improved and scalable synthesis of sulfone 3.6 with a key one-pot ketalization and methylation of ketone 3.22 to methylated hemiketal 3.24 is illustrated. A total 19 mmol of sulfone 3.6 has been prepared by this approach. An improved and scalable synthesis of aldehyde 3.7 utilizing allyl bromide 3.31 to couple with Evans auxiliary 3.33 has been developed. A total of 10 mmol of aldehyde 3.7 has been prepared by this approach. An improved synthesis toward the ABC ring fragment 3.52 with a high yield Julia coupling step is shown. Large scale improved syntheses of the linkage fragment 3.2, the aldehyde fragment 4.9 and the azide fragment 4.10 of the southern portion of (���)-azaspiracid-1 have been described. With an abundant material prepared by this scalable improved approach, we are confident that completing the total synthesis of (���)-azaspiracid-1 will occur in the near future. / Graduation date: 2013
100

Natural products from nonracemie building blocks : synthesis of pine sawfly pheromones

Larsson, Michael January 2005 (has links)
This thesis describes a number of synthetic approaches for obtaining chiral, enantiomerically pure natural products, in particular some semiochemicals. This has been accomplished by using various strategies; by starting from compounds from the chiral pool, by using chiral auxiliaries, via enzymatic resolutions or by chemical asymmetric synthesis. Hence, the sexual pheromone of Microdiprion pallipes, a propanoate ester of one or several isomers of 3,7,11-trimethyltridecan-2-ol, was synthesised, both as a mixture of all isomers and as the sixteen pure, individual stereoisomers. These compounds were obtained by joining different enantiopure building blocks stemming from the chiral pool. When compared with some synthetic blends, both the propanoate esters of the stereoisomeric erythro-3,7,11-trimethyltridecan-2-ols originally found in the extract from the female of M. pallipes, surprisingly, showed lower activities in biological studies. Indeed, the propanoates of two threo-isomers gave significantly higher responses in biological tests, than did the propanoates of the two natural erythro-ones. Because the synthetic strategy used earlier was not very efficient for the preparation of the threo-isomers of 3,7,11-trimethyltridecan-2-ol, we were encouraged to look for alternative synthetic approaches. The new synthetic strategy chosen led us to two key synthetic building blocks, an O-protected derivative of (2S,3S)-3-methyl-4-(phenylsulfonyl)butan-2-ol butanol and (3R,7R)-1-iodo-3,7-dimethylnonane. Deprotonation of the former followed by alkylation with the latter should give a compound with the desired carbon skeleton. For efficient preparation of the first building block, we developed a new diastereoselective addition reaction of dialkylzincs to some chiral aldehydes, the products of which were diastereomerically enriched 1,2-dialkyl-alkanols. Using this method, each enantiomer of the desired building block was obtained via efficient diastereoselective addition of dimethylzinc to each enantiomer of a 2-methylaldehyde. The resulting product, a diastereomerically and enantiomerically highly enriched 3-methyl-2-alkanol was further purified by enzyme catalysed acylation followed by some functional group interconversions. The second building block was prepared via convergent multistep synthesis, starting from a single, enantiomerically pure compound, (R)-2-methylsuccinic acid 4-t-butyl ester, derived from the chiral pool. The two enantiomerically pure building blocks, so obtained, were coupled together. Some additional functional group manipulations of the product produced furnished the desired isomer, which had shown the highest activity in field tests of the M. pallipes, namely the propanoate ester of (2S,3R,7R,11R)-3,7,11-trimethyltridecan-2-ol. This thesis describes a number of synthetic approaches for obtaining chiral, enantiomerically pure natural products, in particular some semiochemicals. This has been accomplished by using various strategies; by starting from compounds from the chiral pool, by using chiral auxiliaries, via enzymatic resolutions or by chemical asymmetric synthesis. Hence, the sexual pheromone of Microdiprion pallipes, a propanoate ester of one or several isomers of 3,7,11-trimethyltridecan-2-ol, was synthesised, both as a mixture of all isomers and as the sixteen pure, individual stereoisomers. These compounds were obtained by joining different enantiopure building blocks stemming from the chiral pool. When compared with some synthetic blends, both the propanoate esters of the stereoisomeric erythro-3,7,11-trimethyltridecan-2-ols originally found in the extract from the female of M. pallipes, surprisingly, showed lower activities in biological studies. Indeed, the propanoates of two threo-isomers gave significantly higher responses in biological tests, than did the propanoates of the two natural erythro-ones. Because the synthetic strategy used earlier was not very efficient for the preparation of the threo-isomers of 3,7,11-trimethyltridecan-2-ol, we were encouraged to look for alternative synthetic approaches. The new synthetic strategy chosen led us to two key synthetic building blocks, an O-protected derivative of (2S,3S)-3-methyl-4-(phenylsulfonyl)butan-2-ol butanol and (3R,7R)-1-iodo-3,7-dimethylnonane. Deprotonation of the former followed by alkylation with the latter should give a compound with the desired carbon skeleton. For efficient preparation of the first building block, we developed a new diastereoselective addition reaction of dialkylzincs to some chiral aldehydes, the products of which were diastereomerically enriched 1,2-dialkyl-alkanols. Using this method, each enantiomer of the desired building block was obtained via efficient diastereoselective addition of dimethylzinc to each enantiomer of a 2-methylaldehyde. The resulting product, a diastereomerically and enantiomerically highly enriched 3-methyl-2-alkanol was further purified by enzyme catalysed acylation followed by some functional group interconversions. The second building block was prepared via convergent multistep synthesis, starting from a single, enantiomerically pure compound, (R)-2-methylsuccinic acid 4-t-butyl ester, derived from the chiral pool. The two enantiomerically pure building blocks, so obtained, were coupled together. Some additional functional group manipulations of the product produced furnished the desired isomer, which had shown the highest activity in field tests of the M. pallipes, namely the propanoate ester of (2S,3R,7R,11R)-3,7,11-trimethyltridecan-2-ol. This thesis describes a number of synthetic approaches for obtaining chiral, enantiomerically pure natural products, in particular some semiochemicals. This has been accomplished by using various strategies; by starting from compounds from the chiral pool, by using chiral auxiliaries, via enzymatic resolutions or by chemical asymmetric synthesis. Hence, the sexual pheromone of Microdiprion pallipes, a propanoate ester of one or several isomers of 3,7,11-trimethyltridecan-2-ol, was synthesised, both as a mixture of all isomers and as the sixteen pure, individual stereoisomers. These compounds were obtained by joining different enantiopure building blocks stemming from the chiral pool. When compared with some synthetic blends, both the propanoate esters of the stereoisomeric erythro-3,7,11-trimethyltridecan-2-ols originally found in the extract from the female of M. pallipes, surprisingly, showed lower activities in biological studies. Indeed, the propanoates of two threo-isomers gave significantly higher responses in biological tests, than did the propanoates of the two natural erythro-ones. Because the synthetic strategy used earlier was not very efficient for the preparation of the threo-isomers of 3,7,11-trimethyltridecan-2-ol, we were encouraged to look for alternative synthetic approaches. The new synthetic strategy chosen led us to two key synthetic building blocks, an O-protected derivative of (2S,3S)-3-methyl-4-(phenylsulfonyl)butan-2-ol butanol and (3R,7R)-1-iodo-3,7-dimethylnonane. Deprotonation of the former followed by alkylation with the latter should give a compound with the desired carbon skeleton. For efficient preparation of the first building block, we developed a new diastereoselective addition reaction of dialkylzincs to some chiral aldehydes, the products of which were diastereomerically enriched 1,2-dialkyl-alkanols. Using this method, each enantiomer of the desired building block was obtained via efficient diastereoselective addition of dimethylzinc to each enantiomer of a 2-methylaldehyde. The resulting product, a diastereomerically and enantiomerically highly enriched 3-methyl-2-alkanol was further purified by enzyme catalysed acylation followed by some functional group interconversions. The second building block was prepared via convergent multistep synthesis, starting from a single, enantiomerically pure compound, (R)-2-methylsuccinic acid 4-t-butyl ester, derived from the chiral pool. The two enantiomerically pure building blocks, so obtained, were coupled together. Some additional functional group manipulations of the product produced furnished the desired isomer, which had shown the highest activity in field tests of the M. pallipes, namely the propanoate ester of (2S,3R,7R,11R)-3,7,11-trimethyltridecan-2-ol. / QC 20101026

Page generated in 0.0717 seconds