Spelling suggestions: "subject:"cotransport coefficients"" "subject:"detransport coefficients""
11 |
Microscopic Chaos, Fractals, and Transport in Nonequilibrium Steady States. - (Die Veröffentlichung einer ergänzten und überarbeiteten Version bei "World Scientific Publishing" ist für 2005/06 geplant.)Klages, Rainer 28 June 2004 (has links)
A fundamental challenge is to understand nonequilibrium statistical mechanics starting from microscopic chaos in the equations of motion of a many-particle system. In this thesis we summarize recent theoretical advances along these lines. We focus on two different approaches to nonequilibrium transport: One considers Hamiltonian dynamical systems under nonequilibrium boundary conditions, another one suggests a non-Hamiltonian approach to nonequilibrium situations created by external electric fields and by temperature or velocity gradients. A surprising result related to the former approach is that in simple low-dimensional periodic models the deterministic transport coefficients are typically fractal functions of control parameters. These fractal transport coefficients yield the first central theme of this thesis. We exemplify this phenomenon by deterministic diffusion in a simple chaotic map. We then construct an arsenal of analytical and numerical methods for computing further transport coefficients such as electrical conductivities andchemical reaction rates. These methods are applied to hierarchies of chaotic dynamical systems that are successively getting more complex, starting from abstract one-dimensional maps generalizing a simple random walk on the line up to particle billiards that should be directly accessible in experiments. In all cases, the resulting transport coefficients turn out to be either strictly fractal, or at least to be profoundly irregular. The impact of random perturbations on these quantities is also investigated. We furthermore provide some access roads towards a physical understanding of these fractalities. The second central theme is formed by a critical assessment of the non-Hamiltonian approach to nonequilibrium transport. Here we consider situations where the nonequilibrium constraints pump energy into a system, hence there must be some thermal reservoir that prevents the system from heating up. For this purpose a deterministic and time-reversible modeling of thermal reservoirs was proposed in form of Gaussian and Nose-Hoover thermostats. This approach yielded simple relations between fundamental quantities of nonequilibrium statistical mechanics and of dynamical systems theory. Our goal is to critically assesses the universality of these results. As a vehicle of demonstration we employ the driven periodic Lorentz gas, a toy model for the classical dynamics of an electron in a metal under application of an electric field. Applying different types of thermal reservoirs to this system we compare the resulting nonequilibrium steady states with each other. Along the same lines we discuss an interacting many-particle system under shear and heat. Finally, we outline an unexpected relationship between deterministic thermostats and active Brownian particles modeling biophysical cell motility.
|
12 |
General Projective Approach to Transport Coefficients of Condensed Matter Systems and Application to an Atomic WireBartsch, Christian 16 March 2010 (has links)
We present a novel approach to the investigation of transport coefficients in condensed matter systems, which is based on a pertinent time-convolutionless (TCL) projection operator technique. In this context we analyze in advance the convergence of the corresponding perturbation expansion and the influence of the occurring inhomogeneity.
The TCL method is used to establish a formalism for a consistent derivation of a Boltzmann equation from the underlying quantum dynamics, which is meant to apply to non-ideal quantum gases. We obtain a linear(ized) collision term that results as a finite non-singular rate matrix and is thus adequate for further considerations, e.g., the calculation of transport coefficients. In the work at hand we apply the provided scheme to numerically compute the diffusion coefficient of an atomic wire and especially analyze its dependence on certain model properties, in particular on the width of the wire.
|
13 |
Investigations of transport phenomena and dynamical relaxation in closed quantum systemsKhodja, Abdellah 17 March 2015 (has links)
The first part of the present Phd thesis is devoted to transport investigations in disordered quantum systems. We aim at quantitatively determining transport parameters like conductivity, mean
free path, etc., for simple models of spatially disordered and/or percolated quantum systems in the limit of
high temperatures and low fillings using linear response theory. We find the transport behavior for some models to be in accord with a Boltzmann equation, i.e., long mean free paths, exponentially decaying currents although there are no band-structures to start from, while this does not apply to other models even though they are also almost completely delocalized. The second part of the present PhD thesis addresses the issue of initial state independence (ISI) in closed quantum system. The relevance of the eigenstate thermalization hypothesis (ETH) for the emergence of ISI equilibration is to some extent addressed. To this end, we investigate the Heisenberg spin-ladder and check the validity of the ETH for the energy difference operator by examining the scaling behavior of the corresponding ETH-fluctuations, which we compute using an innovative numerical method based on typicality related arguments. While, the ETH turns out to hold for the generic non-integrable models and may therefore serve as the key mechanism for ISI for this cases, it does not hold for the integrable Heisenberg-chain. However, close analysis on the dynamic of substantially out-of-equilibrium initial states indicates the occurrence of ISI equillibration in the thermodynamic limit regardless of whether the ETH is violated. Thus, we introduce a new parameter $v$, which we propose as an alternative of the ETH to indicate ISI equillibration in cases, in which the ETH does not strictly apply.
|
14 |
Dilute Solution Properties of Poly( n-hexyl isocyanate)and Poly(diisopropyl fumarate) / ポリ-n-ヘキシルイソシアナートおよびポリジイソプロピルフマレートの稀薄溶液物性Nakatsuji, Masayuki 25 March 2019 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(工学) / 乙第13241号 / 論工博第4179号 / 新制||工||1720(附属図書館) / 京都大学大学院工学研究科高分子化学専攻 / (主査)教授 吉崎 武尚, 教授 中村 洋, 教授 古賀 毅 / 学位規則第4条第2項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
15 |
Calcul des coefficients de transport dans des plasmas hors de l'équilibre / Calculation of transport coefficients in plasmas out of equilibriumMahfouf, Ali 18 July 2016 (has links)
Les propriétés de transport à haute température dans les gaz et/ou dans les plasmas ont une importance capitale dans différents domaines, à savoir dans le domaine de technologie de coupure à arc, plasmas de coupure, de soudure ou de gravure. La connaissance des coefficients de transport est nécessaire pour toute modélisation faisant intervenir les équations hydrodynamiques. Dans le cadre de la théorie cinétique des gaz dilués, une solution approchée de l’équation intégro-différentielle de Boltzmann régissant les fonctions de distribution a été proposée par Chapman-Enskog. Les coefficients de transport sont calculés classiquement par la méthode de Chapman-Enskog via les intégrales de collision. Dans le cadre de notre étude nous avons développé, dans un premier temps, un code numérique permettant l’obtention de ces intégrales de collision en tenant compte des singularités qui peuvent apparaître dans le calcul des sections efficaces relatives aux interactions entre les particules constituant les gaz et/ou les plasmas. Dans un second temps nous avons étudié l’influence du choix des paramètres des potentiels d’interaction sur les coefficients de transport. Par la suite, nous avons utilisé le code numérique ainsi développé pour évaluer les coefficients de transport du plasma d’hélium en étudiant l’influence du choix de la méthode de calcul de composition chimique sur ces coefficients. Enfin, un modèle simplifié d’une interaction entre une onde électromagnétique et un plasma d’hélium a été proposé comme une application directe des coefficients de transport. / Transport properties at high temperature in gases and/or in plasmas are of very importance in various fields, namely in the field of breaking technology in arc, cutting plasma, welding or burning. Knowledge of transport coefficients is necessary for any modeling involving hydrodynamic equations. As part of the kinetic theory of diluted gas, an approximate solution of the integro-differential Boltzmann equation governing distribution functions was proposed by Chapman-Enskog. Transport coefficients are classically computed using the method of Chapman-Enskog through the collision integrals. In our study we have developed, initially, a numerical code to obtain these collision integral taking into account the singularities that may occur in the calculation of the cross sections relating to interactions between particles forming the gas and/or plasmas. Secondly, we have studied the influence of the choice of parameters of interaction potentials on transport coefficients. Subsequently, we have used the numerical code developed for evaluating and helium plasma transport coefficients by studying the influence of the choice of method for calculating chemical composition on these coefficients. Finally, a simplified model of an interaction between an electromagnetic wave and a helium plasma has been proposed as a direct application of the transport coefficients.
|
16 |
Electronic transport properties of thermoelectric materials with a focus on clathrate compoundsTroppenz, Maria 12 October 2021 (has links)
Thermoelektrische Bauelemente ermöglichen die Erzeugung von Elektrizität aus überschüssiger Wärme, wie sie in großen Mengen in Geräten und Prozessen entsteht. Effiziente Thermoelektrika benötigen eine hohe thermoelektrische Gütezahl, die durch elektronische und thermische Transporteigenschaften der Materialien bestimmt wird. Die Dissertation untersucht zunächst die elektronischen Transporteigenschaften zweier hochaktueller thermoelektrischer Materialien, des Schichtsystems SnSe und einer komplexen Klathrat-Legierung. Deren theoretische Beschreibung benötigt unterschiedliche Methoden, die während dieses Dissertationsprojektes implementiert, erweitert oder entwickelt wurden. Die Temperaturabhängigkeit der Leitfähigkeit von SnSe wurde mittels der Boltzmann-Transportmethode in Relaxationszeitnäherung untersucht. Wir zeigen, dass nur bei gleichzeitiger Einbeziehung von thermischer Ausdehnung des Kristallgitters und Elektron-Phonon-Streuprozessen eine gute Übereinstimmung mit Experimenten erreicht wird. Die Eigenschaften des Typ-I-Klathrats Ba8AlxSi46-x sind sowohl von der Stöchiometrie als auch von der Al-Konfiguration, d.h. der Anordnung der Al-Atome im Wirtsgitter, abhängig. Für x=16 wurde der Grundzustand als hableitend bestimmt, während Konfigurationen mit höheren Energien metallisch sind. Wir erhalten eine zuverlässige Beschreibung der elektronischen, strukturellen und Transporteigenschaften von Ba8AlxSi46-x bei endlichen Temperaturen durch Mittlungen über Konfigurationen. Mittels einer neu entwickelten Methode zur Berechnung der temperaturabhängigen effektiven Bandstruktur von Legierungen beobachten wir ein temperaturbedingtes Schließen der Bandlücke bei x=16, was mit einem Phasenübergang von partieller Ordnung zu Unordnung bei 582K einher geht. Basierend auf Gedächtnisfunktions-Modellen präsentieren wir ferner eine neue Ab-initio-Methode zur Berechnung der elektrischen Leitfähigkeit von Festkörpern mit einem Unordungspotential beliebiger Kopplungsstärke. / Thermoelectric devices convert heat into electricity, thus enabling the reuse of waste heat produced by all kinds of engines. To make this conversion process profitable, materials with a high thermoelectric figure of merit, ZT, are demanded. ZT depends on electronic and thermal transport properties. In this thesis, we study the electronic transport properties of two emerging thermoelectric materials, the layered material SnSe and a complex type-I clathrate alloy. Their reliable description requires different methodologies, that has been implemented, extended, or developed during this PhD project. For SnSe, the temperature dependence of the conductivity and the Seebeck coefficient is studied using the Boltzmann transport approach in the relaxation time approximation. We show that only by simultaneously accounting for thermal lattice expansion and electron-phonon coupling, a good agreement with experiment is reached. The properties of the type-I clathrate Ba8AlxSi46-x are determined, on the one hand, by its composition, and, on the other hand, by the configuration, i.e., the arrangement of the Al atoms in the host lattice. At the charge-compensated composition x=16, the ground-state configuration is found to be semiconducting, while configurations higher in energy are metallic. We obtain a realistic description of the electronic, structural, and transport properties of Ba8AlxSi46-x at finite temperature by using configurational thermodynamic averages. From a newly developed method to compute the finite-temperature effective band structure of alloys, we observe a temperature-driven closing of the band gap for x=16, which is concomitant with a partial order-disorder phase transition at 582K. We further present a novel ab initio memory-function approach for solids that enables the calculation of the electrical conductivity of solids in a disorder potential at arbitrary coupling strength. An application of the developed formalism is demonstrated with the example of sodium.
|
17 |
Modélisation des propriétés de transport des ions moléculaires de krypton et xénon pour l'optimisation des générateurs de plasma froids utilisant les gaz rares / Modeling the transport properties of molecular ions of krypton and xenon for the optimization of cold plasma generators using rare gasesVan de Steen, Cyril 11 December 2018 (has links)
L'utilisation de plasmas froids à base de gaz rares (Rg) dans des applications biomédicales ainsi que dans la propulsion spatiale est en nette évolution. Pour optimiser ces réacteurs plasmas, une compréhension fine des processus ayant lieu dans ces réacteurs est nécessaire. Ce travail de thèse a pour objectif de fournir les données manquantes dans la littérature (coefficients de transport et réaction) en passant par des données mésoscopiques (sections efficaces) obtenues à partir de données microscopiques (potentiels d'interaction) pour le xénon et krypton dans leur gaz parent. Seul des plasmas froids composés d'un seul type d'atome sont considérés. Comme le krypton et le xénon sont des gaz rares, et ont donc, à l'état de neutralité peu/pas d'interaction entre eux. Par conséquent, seules les collisions ion - atome seront considérées. Du fait des faibles énergies des ions dans le plasma froid, seul les 6 premiers états excités du couple Rg2+ seront pris en compte. Ces 6 états seront classés en deux groupes, 2P1/2 et 2P3/2. Lors de ce travail, deux potentiels d'interaction différents disponibles dans la littérature sont utilisés et comparés pour les systèmes collisionnels Kr+/Kr et Xe+/Xe dans le calcul des sections efficaces. Pour les collisions impliquant des dimères ioniques (Kr2+/Kr et Xe2+/Xe), les potentiels d'interaction sont calculés à partir du modèle DIM (Diatomics In Molecules) qui est une combinaison des potentiels atomiques d'interaction neutre - neutre et ion - neutre. Les sections efficaces, requises pour obtenir les données mésoscopiques manquantes, sont calculées à partir de trois méthodes différentes. La première méthode est la méthode quantique qui permet, par une résolution de l'équation de Schrödinger, d'obtenir de manière exacte les sections efficaces à partir des potentiels d'interaction. Cette méthode exacte, étant grande consommatrice de temps de calcul, est utilisée en tant que référence pour valider les deux autres méthodes approchées. La seconde méthode, nommée semi-classique, est basée sur la même expression que la section efficace quantique mais utilise un déphasage approché (approximation JWKB), induit par le potentiel d'interaction, entre l'onde diffusée et l'onde incidente. [...] / The use of cold plasmas based on rare gases (Rg) in biomedical applications as well as in space propulsion is clearly evolving. To optimize these plasma reactors, a fine understanding of the processes taking place in these reactors is necessary. This thesis aims to provide the missing data in the literature (transport coefficients and reaction rates) through mesoscopic data (cross-sections) obtained from microscopic data (interaction potentials) for xenon and krypton in their parent gas. Only cold plasmas composed of a single type of atom are considered. As krypton and xenon are rare gases, and so have, in the neutral state little / no interaction between them. Therefore, only ion - atom collisions will be considered. Due to the low ion energies in the cold plasma, only the first 6 excited states of the Rg2+ pair will be taken into account. These 6 states will be classified in two groups, 2P1/2 and 2P3/2. In this work, two different interaction potentials available in the literature are used and compared for the Kr+/Kr and Xe+/Xe collision systems in the calculation of cross-sections. For collisions involving ionic dimers (Kr2+/Kr and Xe2+/Xe), the interaction potentials are calculated from the DIM model (Diatomics In Molecules) which is a combination of the atomic potentials of neutral - neutral and ionic - neutral interactions. The cross-sections required to obtain the missing mesoscopic data are calculated from three different methods. The first method is the quantum method which allows, by a resolution of the Schrödinger equation, to obtain exactly the cross-sections from the interaction potentials. This exact method, which consumes a lot of computation time, is used as a reference to validate the two other approximate methods. The second method, called semi-classical, is based on the same expression as the quantum cross section but uses an approximate phase shift (JWKB approximation), induced by the interaction potential, between the scattered wave and the incident wave. [...]
|
Page generated in 0.0817 seconds