Spelling suggestions: "subject:"12v"" "subject:"v2v""
51 |
Predictable and Scalable Medium Access Control for Vehicular Ad Hoc NetworksSjöberg Bilstrup, Katrin January 2009 (has links)
This licentiate thesis work investigates two medium access control (MAC) methods, when used in traffic safety applications over vehicular ad hoc networks (VANETs). The MAC methods are carrier sense multiple access (CSMA), as specified by the leading standard for VANETs IEEE 802.11p, and self-organizing time-division multiple access (STDMA) as used by the leading standard for transponders on ships. All vehicles in traffic safety applications periodically broadcast cooperative awareness messages (CAMs). The CAM based data traffic implies requirements on a predictable, fair and scalable medium access mechanism. The investigated performance measures are channel access delay, number of consecutive packet drops and the distance between concurrently transmitting nodes. Performance is evaluated by computer simulations of a highway scenario in which all vehicles broadcast CAMs with different update rates and packet lengths. The obtained results show that nodes in a CSMA system can experience unbounded channel access delays and further that there is a significant difference between the best case and worst case channel access delay that a node could experience. In addition, with CSMA there is a very high probability that several concurrently transmitting nodes are located close to each other. This occurs when nodes start their listening periods at the same time or when nodes choose the same backoff value, which results in nodes starting to transmit at the same time instant. The CSMA algorithm is therefore both unpredictable and unfair besides the fact that it scales badly for broadcasted CAMs. STDMA, on the other hand, will always grant channel access for all packets before a predetermined time, regardless of the number of competing nodes. Therefore, the STDMA algorithm is predictable and fair. STDMA, using parameter settings that have been adapted to the vehicular environment, is shown to outperform CSMA when considering the performance measure distance between concurrently transmitting nodes. In CSMA the distance between concurrent transmissions is random, whereas STDMA uses the side information from the CAMs to properly schedule concurrent transmissions in space. The price paid for the superior performance of STDMA is the required network synchronization through a global navigation satellite system, e.g., GPS. That aside since STDMA was shown to be scalable, predictable and fair; it is an excellent candidate for use in VANETs when complex communication requirements from traffic safety applications should be met.
|
52 |
Real-Time Visualization of Construction Equipment Performance / Realtidsvisualisering av materialhantering på bergtäcktPalomeque, Carlos January 2014 (has links)
This thesis is a proof-of-concept project that aims at modify and reuse existing communication protocols of wireless vehicle to vehicle communication in order to build a prototype of a real time graphical application that runs in an embedded environment. The application is a 2D visualization of the flow of material at a quarry and is built on top of existing communication protocols that enable wireless vehicle to vehicle communication according to the 802.11p standard for intelligent transport solutions. These communication protocols have already been used within the Volvo group in other research rojects, but not in a context of a real-time graphical 2D visualization. The application runs on an ALIX embedded motherboard and combined with the necessary hardware represent one node that makes the communication network. The visualization monitors the position of every active node in the network and the flow of material between material locations and crusher that process the material at the quarry. The visualization is implemented in C/C++ using Qt 4.6.2 Graphics View framework.
|
53 |
Improving Autonomous Vehicle Safety using Communicationsand Unmanned Aerial VehiclesDowd, Garrett E. January 2019 (has links)
No description available.
|
54 |
Heavy Truck Modeling and Estimation for Vehicle-to-Vehicle Collision Avoidance SystemsWolfe, Sage M. 20 October 2014 (has links)
No description available.
|
55 |
Eco-Driving of Connected and Automated Vehicles (CAVs)Kavas Torris, Ozgenur 23 September 2022 (has links)
No description available.
|
Page generated in 0.0254 seconds