• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 6
  • 2
  • 1
  • Tagged with
  • 19
  • 14
  • 13
  • 9
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The role of Mg-Al hydrotalcite derived mixed oxides as catalytic support materials : Applications in the transesterification of vegetable oils for biodiesel production and in the steam reforming of glycerol for hydrogen production / Le rôle des oxydes mixtes Mg-Al préparés par voie hydrotalcite comme supports catalytiques : Applications dans la transestérification d'huiles végétales pour la production de biodiesel et le vaporeformatage du glycérol pour la production d'hydrogène

Dahdah, Eliane 17 December 2018 (has links)
Ce travail vise à étudier la transestérification de l'huile de tournesol pour la production de biodiesel et le vaporeformage du glycérol pour la production d'hydrogène renouvelable. Les oxydes mixtes Mg-Al prépares par voie hydrotalcite ont été choisis comme supports catalytiques. Pour la production de biodiesel, les effets du traitement thermique et de la méthode de préparation pour l'incorporation de calcium ont été étudiés. Le catalyseur Ca600/Mg₄Al₂HT calciné à 600°C, préparé par imprégnation de 40 wt% de Ca sur le support Mg₄Al₂ non calciné, a montré les meilleures performances catalytiques en raison de ses propriétés basiques améliorées. Pour le vaporeformage catalytique du glycérol, l'activité des oxydes de métaux purs imprégnés par le Ni a d'abord été étudiée, puisque les oxydes de métaux purs sont souvent utilisés comme supports catalytiques. Le catalyseur Ni/ZrO₂ s'est révélé le plus efficace pour la production d'hydrogène. Pour le vaporeformage du glycérol en présence d'oxydes mixtes obtenus par voie hydrotalcite, les catalyseurs au Ru-Mg-Al ont été étudiés. L'effet de la méthode de préparation (imprégnation ou greffage) sur l'activité catalytique a été étudié. Le catalyseur préparé par imprégnation permettait une plus grande accessibilité à la phase active. Pour des catalyseurs Ni-Mg-Al, les supports ont été modifiés par du lanthane. Le catalyseur Ni/Mg₆Al₁.₆La₀.₄ était le plus performant en raison de sa basicité accrue et de son interaction métal-support. Les activités des catalyseurs Ni/ZrO₂ et Ni/Mg₆Al₁.₆La₀.₄ ont été comparées. Les deux catalyseurs ont produit des rendements en hydrogène similaires. Moins de coke a été produit sur le catalyseur préparé par voie hydrotalcite, en raison de sa basicité supérieure. Un test de stabilité à 600°C a montré la désactivation du catalyseur Ni/Mg₆Al₁.₆La₀.₄ après 6 heures. Lors de l'optimisation des conditions de réaction sur le catalyseur Ni/Mg₆Al₁.₆La₀.₄, une amélioration significative de la stabilité a été observée, étendant ainsi sa durée de vie à 24 heures. / This work aims to study the transesterification of sunflower oil for biodesel production and the steam reforming of glycerol for renewable hydrogen production. Mg-Al hydrotalcite derived mixed oxides were chosen as catalytic support materials given their known basicity, thermal stability and low cost. Only one active phase was studied for biodiesel production (Ca) and two different active phases (Ru and Ni) for glycerol steam reforming. The various prepared catalysts were characterized by different techniques such as X-Ray Diffraction (XRD), specific surface area determination by BET method, Fourier Transform Infrared Spectroscopy (FTIR), H₂-Temperature Programmed Reduction (H₂-TPR), CO₂-Temperature Programmed Desorption (CO₂-TPD) and Simultaneous Thermogravimetric-Differential Scanning Calorimetry (TG-DSC). For biodiesel production, the effects of thermal treatment and the preparation method for Ca incorporation were both studied. The catalyst that showed the best catalytic performance was an uncalcined Mg₄Al₂ support impregnated with 40 wt% Ca followed by a calcination at 600°C (Ca/600Mg₄Al₂HT) due to its enhanced basic properties. After several optimization steps over this catalyst, the optimum conditions for biodiesel synthesis were: a methanol to oil molar ratio of 15:1, a catalyst to oil ratio of 2.5 wt% and a reaction time of 6 hours which gave a FAME yield of 95%. The properties of the produced biodiesel were studied and found to be in good agreement with ASTM (American Society for Testing and Materials) requirements. For the catalytic steam reforming of glycerol, the activity of NI-based pure metal oxides (Ni/CeO₂, Ni/Y₂O₃, Ni/ZrO₂) was first studied as pure metal oxides are commonly used as support materials. The effect of the support was evaluated and the Ni/ZrO₂ catalyst was found to be the most efficient for hydrogen production. To study the effect of the zirconia phase, a tetragonal Ni/ZrO₂ was also prepared. The tetragonal catalyst was less active for hydrogen production compared to the monoclinic catalyst. A stability test at 600°C also showed the desactivation of the tetragonal Ni/ZrO₂ after 6 hours on stream. For the catalytic steam reforming of glycerol using Mg-Al hydrotalcite derived mixed oxides, Ru-based Mg-Al catalysts were first studied. The effect of the preparation method (impregnation vs grafting) on the catalytic activity of Ru-Mg-Al catalysts was studied. The catalyst prepared by the impregnation method resulted in a better catalytic activity than the catalyst prepared by the grafting method as it allowed a higher accessibility of the active phase. For the Ni-based Mg-Al catalysts, the hydrotalcite supports were modified with La to study the effects of promoter addition on catalytic properties and activity. The bimetallic effect (1%Ru-5%Ni) and effect of a higher Ni loading (15 wt%) were also studied. The 5 wt% Ni impregnated on a La modified Mg-Al support (Ni/Mg₆Al₁.₆La₀.₄) catalyst was the most efficient for hydrogen production due to its enhanced basicity and metal-support interaction. The activities of the most efficient catalysts, Ni/ZrO₂ and Ni/Mg₆Al₁.₆La₀.₄, were compared. Both catalysts produced similar hydrogen yields. Differences in glycerol conversion to gaseous products were attributed to a higher formation of liquid by-products over the hydrotalcite support compared to the zirconia support. Nevertheless, less coke was produced over the hydrotalcite catalyst given its higher basicity. A stability test at 600°C showed the desactivation of the Ni/Mg₆Al₁.₆La₀.₄ catalyst after 6 hours on stream. Upon optimization of the reaction conditions on Ni/Mg₆Al₁.₆La₀.₄, a significant improvement in the stability was observed as the catalyst lasted for 24 hours on steam.Therefore, Ni/Mg₆Al₁.₆La₀.₄ could be a promising candidate for industrial application.
12

Vaporeformage catalytique du méthane : amélioration de la production et de la sélectivité en hydrogène par absorption in situ du CO2 produit

Cesário, Moisés Rômolos 29 April 2013 (has links) (PDF)
La thèse étudie le vaporeformage catalytique du méthane avec captage de CO2. Les catalyseurs bi-fonctionnels choisis se composent de nickel, efficace en vaporeformage, de CaO pour la sorption de CO2 et d'aluminate de calcium (Ca12Al14O33) pour permettre une bonne dispersion du métal et de CaO. La méthode de synthèse privilégiée était la méthode d'autocombustion assisté par microondes. Le rapport Ca/Al a été optimisé et un large excès de CaO est nécessaire (75%CaO ; 25%Ca12Al14O33) pour la sorption de CO2. Le reformage du méthane est total dès 650 °C (H2O/CH4 de 1 ou 3) et la sélectivité en hydrogène de 100% durant 7h ou 16h selon les conditions opérationnelles, validant le concept de vaporeformage du méthane assisté par l'absorption de CO2.
13

Reformage des huiles pyrolytiques sur un catalyseur fait d'un résidu minier fonctionnalisé au nickel

Bali, Amine January 2017 (has links)
Actuellement la production d’huile pyrolytique (ou bio-huile) est destinée à en faire un carburant pour les moyens de transport. Cependant, le liquide issu de la pyrolyse est de piètre qualité, il est nécessaire de faire une opération d’hydrodéoxygénation (HDO), très coûteuse et énergivore, pour aboutir à un produit ayant les spécificités d’un carburant. Une des idées proposées, plus économique, consiste à faire de la bio-huile une source de biosyngas (CO+H2) ou biohydrogène renouvelables via du vaporeformage (VR). Ce projet de maitrise étudie le reformage à la vapeur d’eau de deux bio-huiles (MemU et WOU) sans apport externe de vapeur sur un nouveau catalyseur à base de nickel, Ni-UGSO, développé par le GRTP-C à partir du résidu minier UGSO. Les expériences de reformage ont été réalisées à pression atmosphérique, dans un réacteur différentiel et pour une durée de 500 min en faisant varier la température (750-850 °C) et la vélocité spatiale (WHSV= 1.7-7.1 g/gcat/h) en plus d’un test longue durée à 105h. Des tests supplémentaires ont été réalisés aussi avec un catalyseur commercial à titre de comparaison en plus d’un test de régénérabilité. La caractérisation du catalyseur s’est faite par DRX, MEB-FEG, BET et TPR. Les résultats des tests de VR de l’huile MemU entre 750 et 850 °C à WHSV ~1.8 g/gcat/h montrent une bonne production de biosyngas avec une concentration entre 90-95% et une sélectivité en H2 entre 80-95%. Le VR de l’huile WOU dans les mêmes conditions a donné moins de biosyngas et de H2 en raison de la teneur élevée en eau de l’huile. Le catalyseur est resté actif pendant toute la durée des tests, la DRX et la MEB ne montrent aucune trace de carbone. Cependant à WHSV > 6 g/gcat/h du carbone filamenteux sur le catalyseur a été observé par MEB après le VR de l’huile MemU mais pas après le VR de l’huile WOU. La DRX a permis aussi de montrer qu’après le VR des huiles, les oxydes de Fe et Ni qui constituent le catalyseur se réduisent et se combinent pour donner du Ni métallique et des alliages Ni-Fe. Le test BET indique que le catalyseur a une surface spécifique, après activation, de 10 m2/g. La TPR montre qu’il y a plus d’espèces oxydées sur le Ni-UGSO après le VR de la bio-huile WOU qu’après le VR de la bio-huile MemU, d’où les faibles rendements en H2/biosyngas. Les tests de VR réalisés avec le catalyseur commercial montrent des résultats similaires que ceux réalisés avec Ni-UGSO à faible WHSV. Cependant à WHSV élevée le catalyseur commercial a été plus résiliant et plus performant du fait de sa grande surface spécifique. Le test de régénérabilité montre que Ni-UGSO ne peut que partiellement être régénéré et sa structure initiale n’est pas retrouvée Les résultats positifs confirment que la production de biosyngas/biohydrogène par VR de bio-huiles est viable techniquement dans une bioraffinerie. Le procédé est plus économique que l’HDO. De plus, l’huile pyrolytique se trouve être une bonne matière première pour le reformage car on a un bon rendement en biosyngas (ou H2). Le catalyseur Ni-UGSO développé par le GRTP-C a montré des performances similaires que celles de catalyseurs actuellement sur le marché mais nécessite d’être encore optimisé. / Abstract : Currently the production of pyrolysis oil (or bio-oil) is intended to be transformed to transportation fuel. However, the produced liquid is of bad quality and it needs a hydrodeoxygenation (HDO) process which is very expensive and lot of energy is consumed to obtain a final product with the right fuel specifications. One of the ideas proposed, more economical, consists on producing renewable biosyngas (CO+H2) or biohydrogen from biooil by steam reforming (SR). This master project study the steam reforming of two bio-oils (MemU and WOU) without external steam addition over a new nickel based catalyst, Ni-UGSO, developed by the GRTP-C from the mining residue UGSO. The reforming tests were carried out at atmospheric pressure in a differential reactor during 500 min varying the temperature (750- 850 °C) and the weigh hourly space velocity (WHSV= 1.7-7.1 g/gcat/h), a long term test of 105h was also performed. In addition, Supplementary tests were done with a commercial catalyst in order of comparison plus one regenerability test. The catalyst characterization was done by XRD, FEG-SEM, BET and TPR. Test results of bio-oil MemU SR at 750-850 °C and WHSV ~ 1.8 g/gcat/h show a good production of biosyngas with a concentration range of 90-95% and a H2 selectivity of 80- 95%. The SR of bio-oil WOU in the same conditions resulted in less biosyngas and H2 produced because of high water content in the bio-oil. The catalyst was active for the whole duration of tests, XRD and SEM indicate that no carbon deposit was formed. However at WHSV > 6 g/gcat/h filamentous carbon was observed on the catalyst by SEM after the SR of bio-oil MemU but not after the SR of bio-oil WOU. The XRD showed also that after biooils SR Fe and Ni oxides that constitute the catalyst are reduced to metallic Ni and Ni-Fe alloys. BET test indicate that after activation the catalyst has a specific area of 10 m2 /g. TPR shows that more oxidized species are present in Ni-UGSO after bio-oil WOU SR than after bio-oil MemU SR which explains low H2/biosyngas yield. The tests of SR performed with the commercial catalyst show similar results as those performed with Ni-UGSO at low WHSV. However, at high WHSV the commercial catalyst was more resilient and better due to its high specific area. Regenerability test shows that NiUGSO is partially regenerated but its initial structure is not recovered. The positive results confirm that the production of biosyngas/biohydrogen from SR of biooils is technically viable for a biorefinery. The process is economically better than the HDO. The pyrolysis oil is a good feedstock for the reforming, we obtain an appreciable yield of biosyngas (or H2). The catalyst Ni-UGSO developed by the GRTP-C exhibits similar performances than commercial catalysts actually available in the market but needs more optimisation.
14

Intensification du procédé de vaporeformage du gaz naturel : fonctionnalisation catalytique d'échangeurs-réacteurs / Steam methane reforming process intensification : catalyst functionalization of exchanger-reactor

Croissant, Baptiste 21 December 2018 (has links)
Le vaporeformage du méthane (SMR) est encore aujourd’hui la méthode industrielle de synthèse d’hydrogène la plus rentable. L’efficacité globale de ce procédé est cependant limitée par les contraintes techniques intrinsèques au design des unités de production actuelles. Dans un souci constant d’intensification des procédés, des échangeurs-réacteurs intensifiés sont à l’étude chez AIR LIQUIDE. Les progrès dans le domaine des techniques de fabrication additive métallique ont permis d’envisager des unités de production sous formes d’équipements compacts, présentant des canaux millimétriques, qui optimisent les transferts de masse et de chaleur. Pour atteindre des taux de conversion élevés, et ce malgré des temps de contacts réduits, ces structures obligent à développer de nouvelles architectures de catalyseurs. Des phases actives supportées stables et très actives pour la réaction SMR à base de rhodium ont été préparés à partir de supports MgAl2O4 commerciaux. L’étude de l’impact du taux de métal noble, des propriétés des supports, ainsi que des traitements thermiques a permis de comprendre les interactions existantes entre les phases actives et les supports oxydes. Les propriétés catalytiques en condition de reformage ont pu être reliées aux morphologies des phases actives synthétisées. La fonctionnalisation des canaux des échangeurs-réacteurs millistructurés par une méthode proche du dip-coating est détaillée dans cette thèse. Des formulations de suspensions adaptées, aux comportements rhéologiques maîtrisés, ont permis avec des protocoles de dépôt adéquats, de rendre fonctionnel des échangeurs-réacteurs de taille semi-industrielle qui ont été testés avec succès durant plusieurs centaines d’heures. / The Steam Methane Reforming (SMR) process is still today the most profitable industrial synthesis process of hydrogen. The efficiency of this technique is however facing intrinsically technical limitations due to the design of production units. In order to intensify the global process, exchangers-reactors are under investigation at AIR LIQUIDE. Thanks to recent progresses in metallic additive manufacturing, new compact equipment can be designed. Structures made of millimetric channels allow optimizing heat and mass transfers. New catalyst architecture design needs to be developed to reach high conversion rates despite extreme low contact times in such devices. Stable and highly active rhodium-based catalysts supported on spinel MgAl2O4 have been prepared in this aim. The impact of rhodium loading, properties of supports, as well as thermal treatments have allowed us understanding active phase and support interactions. Catalyst properties under SMR conditions have been linked to active phase morphologies. Functionalization of exchangers-reactors channels through a dip-coating technique has been detailed in this thesis. The formulations of suspensions of washcoat have been optimized thanks to rheological behavior characterizations to achieve very low viscosities. A procedure to deposit homogeneous coatings with controlled thicknesses on the internal channels has been validated on a pilot structure. These new intensified exchangers-reactors have been successfully tested for methane conversion during several hundred of hours.
15

Synthesis, characterization and industrial applicability of combined sorbent-catalyst materials for sorption enhanced steam methane reforming / Synthèse, caractérisation et applicabilité industrielle de matériaux combinés absorbants-catalyseurs pour le vaporeformage du méthane amélioré par absorption de CO2

Di Giuliano, Andrea 19 December 2017 (has links)
SESMR (Sorption Enhanced Steam Methane Reforming), SMR (Steam Methane Reforming) avec capture de CO2 in situ par un adsorbant solide, peut amener à une exploitation durable du gaz naturel pour la production de H2. La thèse, partie du projet de recherche ASCENT (Advanced Solid Cycles with Efficient Novel Technologies), concerne le développement de matériaux combinés adsorbants catalyseurs Ni-CaO-mayenite pour le SESMR, aux fins d’étudier les influences dues à la fraction de Ni, aux sels précurseurs du Ni (Ni acétate ou Ni nitrate), et à la fraction de CaO disponible. Les techniques ICP AES, XRD, BET/BJH, SEM/EDS, TEM/EDS, TPR et TGA ont été utilisés pour caractériser les matériaux synthétisés. La réactivité a été évaluée par des tests en lit fixe à l’échelle du microréacteur, qui ont aussi permis une sélection des matériaux les plus prometteurs pour une étude de l’applicabilité industrielle par tests multi cycliques SESMR/régénération de solides par un réacteur automatisé à lit fixe. / Sorption enhanced steam methane reforming (SESMR), steam methane reforming (SMR) with in situ CO2 sorption by a solid sorbent, can lead to a sustainable exploitation of natural gas to produce H2. (CSCM). This thesis, as a part of ASCENT (Advanced Solid Cycles with Efficient Novel Technologies) project, deals with Ni-CaO-mayenite combined sorbent-catalyst material for SESMR, to study the effect of Ni fraction, its precursor salt (Ni nitrate or Ni acetate), and free CaO fraction. ICP AES, XRD, BET and BJH methods, SEM EDS, TEM EDS, TPR and TGA were used to characterize synthesized materials. Their reactivity was evaluated by tests in a packed bed microreactor, which served also as a screening tool to choose the most promising materials. Their industrial applicability was assessed by multicycle SESMR/regeneration tests in an automated packed bed bench scale rig.
16

Génération d’hydrogène par vaporeformage oxydant de l’éthanol à basse température sur des catalyseurs cérium-nickel et aluminium ou zirconium / Hydrogen generation by low temperature oxidative steam reforming of ethanol on cerium-nickel based catalysts, with aluminum or zirconium

Romani, Yann, Mikey 19 December 2017 (has links)
Un des enjeux actuels pour la production d’énergie propre est la transformation de la biomasse en hydrogène. Dans cette optique, la production d’hydrogène est étudiée par vaporeformage oxydant de l’éthanol (OSRE) à basse température sur des catalyseurs oxydes mixtes CeNixOy, dopés ou non avec Al ou Zr. Ces catalyseurs ont été synthétisés par coprécipitation puis caractérisés via différentes techniques physico-chimiques. L’influence de différents paramètres a été étudiée comme les rapports O2/EtOH et H2O/EtOH, ou la teneur en nickel dans les catalyseurs. De bons résultats ont été obtenus en vaporeformage autotherme de l’éthanol à 300°C. A une température de four de 50°C, ces catalyseurs nano-oxyhydrures riches en espèces hydrures permettent une activité extrêmement intéressante du catalyseur même avec des concentrations élevées en eau. En effet, dans les conditions EtOH/H2O/O2 égales à 1:7:1,6, les catalyseurs ternaires CeNixM0,5Oy (M = Al ou Zr), prétraités sous H2, permettent une conversion en éthanol supérieure à 90 % avec un pourcentage d’H2 de 50 à 60% dans la distribution de produits. L’augmentation du rapport en eau diminue cependant la température du catalyseur, ce qui diminue le pourcentage de CO dans la distribution de produits en augmentant la formation de carbone. Les caractérisations mettent en évidence l’importance de la présence d’interactions fortes entre Ce et Ni (et Al ou Zr dans le cas des catalyseurs ternaires), en accord avec la présence d’une solution solide Ce-Ni-(M)-O (M = Al ou Zr). Finalement, un site actif comportant des cations en interaction forte et un mécanisme réactionnel faisant intervenir des espèces hydrures peuvent être proposé / Nowadays, one of the main challenges for green energy production is biomass transformation into hydrogen. To this purpose, hydrogen production is studied by low temperature oxidative steam reforming of ethanol (OSRE) over CeNixOy (with or without Al or Zr) mixed oxide catalysts. These catalysts have been synthesized by coprecipitation and characterized by different physicochemical characterizations. The influence of different parameters has been studied such as O2/EtOH and H2O/EtOH ratios as well as the nickel content in the catalysts. Good results are obtained in autothermal steam reforming of ethanol at 300°C. With an oven temperature at 50°C, the nano-oxyhydrides catalysts containing high amounts of hydride species allow very interesting activities even in presence of high concentration of water. Indeed, in EtOH/H2O/O2 = 1:7:1.6 conditions, pretreated in H2 CeNixM0.5Oy (M = Al or Zr) ternary catalysts, allow an ethanol conversion higher than 90%, with a H2 formation between 50 to 60% in the products distribution. A high water content (H2O/EtOH) decreases the catalyst temperature, and leads to low CO formation but raises carbon formation. The characterizations evidence the importance of the presence of strong interactions between Ce and Ni species (and Zr or Al for ternary catalysts), in agreement with the presence of a Ce-Ni-(M)-O (M = Al or Zr) solid solution. Finally, an active site involving cations in strong interaction and a mechanism involving hydride species can be proposed.
17

Vaporeformage catalytique du méthane : amélioration de la production et de la sélectivité en hydrogène par absorption in situ du CO2 produit / Catalytic steam reforming of methane : production and selectivity optimization in hydrogen by in situ sorption of produced CO2 / Reforma a Vapor Catalítica do Metano : Otimização da Produção e Seletividade em Hidrogênio por Absorção in situ do CO2 Produzido

Cesário, Moisés Rômolos 29 April 2013 (has links)
La thèse étudie le vaporeformage catalytique du méthane avec captage de CO2. Les catalyseurs bi-fonctionnels choisis se composent de nickel, efficace en vaporeformage, de CaO pour la sorption de CO2 et d'aluminate de calcium (Ca12Al14O33) pour permettre une bonne dispersion du métal et de CaO. La méthode de synthèse privilégiée était la méthode d’autocombustion assisté par microondes. Le rapport Ca/Al a été optimisé et un large excès de CaO est nécessaire (75%CaO ; 25%Ca12Al14O33) pour la sorption de CO2. Le reformage du méthane est total dès 650 °C (H2O/CH4 de 1 ou 3) et la sélectivité en hydrogène de 100% durant 7h ou 16h selon les conditions opérationnelles, validant le concept de vaporeformage du méthane assisté par l'absorption de CO2. / This thesis investigates the catalytic steam reforming of methane with CO2 capture. The selected bi-functional catalysts consist of nickel, effective in steam reforming, CaO for sorption of CO2, and calcium aluminate (Ca12Al14O33) to allow good dispersion of metal and CaO. The synthesis method privileged was microwave assisted self-combustion. The Ca/Al ratio was optimized and a large excess of CaO is required (75% CaO, 25% Ca12Al14O33) for the sorption of CO2. Reforming of methane at 650 °C is total (H2O/CH4 1 or 3) and the hydrogen selectivity of 100% during 7h or 16 h according to operational conditions, validating the concept of steam methane reforming with CO2 sorption.
18

Surface composition of cobalt catalysts for steam reforming of ethanol / Étude de la composition de la surface des catalyseurs à base de cobalt pour le reformage des vapeurs d'éthanol

Turczyniak, Sylwia 28 September 2016 (has links)
L’objectif de cette thèse de doctorat a consisté à déterminer l’influence des conditions réactionnelles du vaporeformage de l’éthanol (ESR), de la dispersion du catalyseur et de la promotion par le potassium sur l’état de la surface. Ce travail a aussi aidé à comprendre l’influence de ces facteurs sur les propriétés catalytiques. Nous avons utilisé les catalyseurs à base de cobalt (promus et non promus par le potassium) supportés à l’oxyde de cérium et à l’oxyde de zirconium à faible et à forte dispersion. Les changements de l’état de la surface des catalyseurs pendant la réaction d’ERS ont été étudiés à travers la spectrométrie photoélectronique X (XPS), alors que les changements des produits ont été analisés en utilisant la spectrométrie de masse et la chromatographie en phase gazeuse. Le catalyseur supporté sur oxyde de cérium à forte dispersion a été caractérisé sous une basse pression (0.2-20 mbar) avec le rapport molaire eau/éthanol de 3/1 (420ºC). Les autres tests ont été faits sur tous les catalyseurs sous une pression totale de 1 atm avec les rapports molaires de 3/1, 9/1, 12/1 (420ºC). Nous avons utilisé un mélange eau/éthanol dans un rapport molaire de 12/1 pour étudier les changements de l’état de la surface de tous les catalyseurs dans le temps. Il a été démontré que la sélectivité d’ESR des catalyseurs pour produire des gaz et pour déposer le carbone est réglée par la concentration des groupes hydroxyles sur la surface. Quant aux catalyseurs promus, elle dépend aussi de la concentration Kδ+–Osurfδ-. / The aim of the thesis was determination the influence of the ethanol steam reforming (ESR) reaction conditions, catalyst’s dispersion and potassium promotion on a surface’s composition and understanding the influence of these changes on catalysts’ performance. Cobalt-based catalysts (unpromoted and promoted with potassium) with low- and high-dispersed ceria and zirconia supports were used. The changes of the surface state of catalysts during the ESR were studied by means of X-ray photoelectron spectroscopy, whereas the reaction products evolution was followed by mass spectrometer or gas chromatograph. Highly-dispersed ceria-supported catalyst was characterized under low pressure conditions (0.2–20 mbar) with the water/ethanol molar ratio equal to 3/1 (at 420ºC). The other tests were carried out over all catalysts under total pressure of 1 atm with 3/1, 9/1 and 12/1 molar ratios (at 420ºC). The water/ethanol ratio of 12/1 was chosen for studies of the surface state of all catalysts with time-on-stream. It was found that the ESR selectivity to gaseous products and carbon deposition is governed mainly by surface hydroxyl species concentration; in the promoted catalysts together with Kδ+–Osurfδ- surface sites.
19

Hydrogen production from steam reforming of ethanol over an Ir/ceria-based catalyst : catalyst ageing analysis and performance improvement upon ceria doping / Production d'hydrogène par vapo-reformage de l'éthanol sur catalyseurs à base d'iridium sur cérine : analyse du vieillissement et optimisation des performances par dopage de la cérine

Wang, Fagen 23 October 2012 (has links)
Ce travail rapporte l’étude des processus de désactivation et des modifications d’un catalyseur Ir supportésur cérine en vaporeformage de l’éthanol. Différentes causes de désactivation ont été identifiées selon lesconditions opératoires : température, temps de contact et temps de réaction. La désactivation initiale,rapide mais limitée a été attribuée à la restructuration de surface de la cérine et à la formation d’unemonocouche d’intermédiaires de type acetate, carbonate et hydroxyls. En parallèle, une désactivationlente et progressive a été mise en évidence, ayant pour origine les changements structurels de l’interfaceentre la cérine et l’iridium, liés au frittage des particules d’iridium et à la restructuration profonde de lacérine. Par contre, la formation continue, à température modérée, d’une couche de carbone encapsulantissu de la polymérisation d’intermédiaires C2 n’a pas semblé contribuer significativement à ladésactivation du catalyseur dans nos conditions opératoires. Pour limiter ce phénomène de désactivation,des modifications ont été apportées au catalyseur. Le dopage du catalyseur par PrOx a permis defortement améliorer la capacité de stockage de l’oxygène et la stabilité thermique du catalyseur,entraînant une augmentation de son activité et de sa stabilité en vaporeformage de l’éthanol. Lecatalyseur Ir/CeO2 a ensuite subi une mise en forme de la cérine (nano-tubes), avec une influencesignificative sur l'activité et la stabilité en vaporeformage de l’éthanol, liée à des effets structuraux. Unemodélisation simplifiée de ces divers phénomènes a également contribué à soutenir les propositionsoriginales de ce travail. / The objective of the thesis was to analyze the ageing processes and the modifications of an Ir/CeO2catalyst for steam reforming of ethanol. Over a model Ir/CeO2 catalyst, the initial and fast deactivationwas ascribed to ceria surface restructuring and the build-up of intermediates monolayer (acetate,carbonate and hydroxyl groups). In parallel, a progressive and slow deactivation was found to come fromthe structural changes at the ceria/Ir interface linked to Ir sintering and ceria restructuring. Theencapsulating carbon, coming from C2 intermediates polymerization, did not seem too detrimental to theactivity in the investigated operating conditions. By doping ceria with PrOx, the oxygen storage capacityand thermal stability were greatly promoted, resulting in the enhanced activity and stability. The Ir/CeO2catalyst was then modified by changing the shape of ceria. It was found that the shape and therefore thestructure of ceria influenced the activity and stability significantly. A simplified modeling of theseprocesses has contributed to support the new proposals of this work.

Page generated in 0.0412 seconds