Spelling suggestions: "subject:"variational 3methods"" "subject:"variational 4methods""
81 |
Existência e multiplicidade de soluções para uma classe de problemas quasilineares com crescimento crítico exponencial / Existence and multiplicity of solutions for a class of quasilinear problems with exponential critical growthFreitas, Luciana Roze de 09 December 2010 (has links)
Neste trabalho, mostramos a existência e multiplicidade de soluções para a seguinte classe de equações elípticas quasilineares { - \'DELTA IND. \'NÜ\' POT. \'upsilon\' + \'|\'upsilon\'| POT. \'NÜ\' - 2 \'upsilon\' = f(x, u), \'upsilon\' \'DIFERENTE\' 0, \'upsilon\' \'PERTENCE A >>: Nu + jujN2 u = f(x; u); x 2 ; u 6= 0; u 2 W1;N( ); onde e um domnio em RN, N 2, N e o operador N-Laplaciano e f e uma func~ao que possui um crescimento crtico exponencial. Para obter nossos resultados utilizamos o Princpio Variacional de Ekeland, Teorema do Passo da Montanha, Categoria de Lusternik- Schnirelman, Ac~ao de Grupo e tecnicas baseadas na Teoria do G^enero. Palavras chaves: Problemas elpticos quasilineares, Metodo Variacional, N-Laplaciano, crescimento crtico exponencial, Princpio Variacional de Ekeland, Categoria de Lusternik- Schnirelman, Desigualdade de Trudinger-Moser / In this work, we show the existence and multiplicity of solutions for the following class of quasilinear elliptic equations { - \'DELTA\' IND. \'NÜ\' \'upsilon\'\' + |\'upsilon\'| POT. \'NÜ\' - 2 = f(x, \'upsilon\'), x \"IT BELONGS\' \'OMEGA\', \'upsilon\' \'DIFFERENT\' 0, \'upsilon\' \'IT BELONGS\' W POT. 1, \'NÜ\' ( OMEGA), where \'OMEGA\' is a domain in \' R POT. \'NÜ\' > OR = 2, \'DELTA\' IND. \'NÜ\' is the N-Laplacian operator and f is a function with exponential critical growth. To obtain our results we utilize the Ekeland Variational Principle, the Mountain Pass Theorem, Lusternik-Schnirelman of Category, Group Action and techniques based on Genus Theory
|
82 |
Analytic and Numerical Studies of a Simple Model of Attractive-Repulsive SwarmsRonan, Andrew S. 01 May 2011 (has links)
We study the equilibrium solutions of an integrodifferential equation used to model one-dimensional biological swarms. We assume that the motion of the swarm is governed by pairwise interactions, or a convolution in the continuous setting, and derive a continuous model from conservation laws. The steady-state solution found for the model is compactly supported and is shown to be an attractive equilibrium solution via linear perturbation theory. Numerical simulations support that the steady-state solution is attractive for all initial swarm distributions. Some initial results for the model in higher dimensions are also presented.
|
83 |
Mathematical imaging tools in cancer research : from mitosis analysis to sparse regularisationGrah, Joana Sarah January 2018 (has links)
This dissertation deals with customised image analysis tools in cancer research. In the field of biomedical sciences, mathematical imaging has become crucial in order to account for advancements in technical equipment and data storage by sound mathematical methods that can process and analyse imaging data in an automated way. This thesis contributes to the development of such mathematically sound imaging models in four ways: (i) automated cell segmentation and tracking. In cancer drug development, time-lapse light microscopy experiments are conducted for performance validation. The aim is to monitor behaviour of cells in cultures that have previously been treated with chemotherapy drugs, since atypical duration and outcome of mitosis, the process of cell division, can be an indicator of successfully working drugs. As an imaging modality we focus on phase contrast microscopy, hence avoiding phototoxicity and influence on cell behaviour. As a drawback, the common halo- and shade-off effect impede image analysis. We present a novel workflow uniting both automated mitotic cell detection with the Hough transform and subsequent cell tracking by a tailor-made level-set method in order to obtain statistics on length of mitosis and cell fates. The proposed image analysis pipeline is deployed in a MATLAB software package called MitosisAnalyser. For the detection of mitotic cells we use the circular Hough transform. This concept is investigated further in the framework of image regularisation in the general context of imaging inverse problems, in which circular objects should be enhanced, (ii) exploiting sparsity of first-order derivatives in combination with the linear circular Hough transform operation. Furthermore, (iii) we present a new unified higher-order derivative-type regularisation functional enforcing sparsity of a vector field related to an image to be reconstructed using curl, divergence and shear operators. The model is able to interpolate between well-known regularisers such as total generalised variation and infimal convolution total variation. Finally, (iv) we demonstrate how we can learn sparsity promoting parametrised regularisers via quotient minimisation, which can be motivated by generalised Eigenproblems. Learning approaches have recently become very popular in the field of inverse problems. However, the majority aims at fitting models to favourable training data, whereas we incorporate knowledge about both fit and misfit data. We present results resembling behaviour of well-established derivative-based sparse regularisers, introduce novel families of non-derivative-based regularisers and extend this framework to classification problems.
|
84 |
Sobre operadores integro-diferenciais e aplicaçõesDuarte, Ronaldo César 28 July 2017 (has links)
Submitted by Leonardo Cavalcante (leo.ocavalcante@gmail.com) on 2018-05-03T15:45:01Z
No. of bitstreams: 1
Arquivototal.pdf: 9156008 bytes, checksum: 3a0383788f4458b1f695b8a3838f47bf (MD5) / Made available in DSpace on 2018-05-03T15:45:01Z (GMT). No. of bitstreams: 1
Arquivototal.pdf: 9156008 bytes, checksum: 3a0383788f4458b1f695b8a3838f47bf (MD5)
Previous issue date: 2017-07-28 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Abstract indisponível neste campo - O PDF foi entregue protegido para cópia / Resumo indisponível neste campo - O PDF foi entregue protegido para cópia
|
85 |
On lattice Boltzmann method for solving fluid-structure interaction problemsValdez, Andrés Ricardo 18 September 2017 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-01-11T14:54:52Z
No. of bitstreams: 1
andresricardovaldez.pdf: 6592036 bytes, checksum: 23a86a3d84f13bffa421f219e7e4501d (MD5) / Rejected by Fabíola Rubim (fabiola.rubim@ufjf.edu.br), reason: on 2018-01-12T11:05:10Z (GMT) / Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-01-12T11:46:32Z
No. of bitstreams: 1
andresricardovaldez.pdf: 6592036 bytes, checksum: 23a86a3d84f13bffa421f219e7e4501d (MD5) / Rejected by Adriana Oliveira (adriana.oliveira@ufjf.edu.br), reason: Favor corrigir: Membro da banca: Filho, José Karam on 2018-01-23T14:01:35Z (GMT) / Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-01-23T14:06:58Z
No. of bitstreams: 1
andresricardovaldez.pdf: 6592036 bytes, checksum: 23a86a3d84f13bffa421f219e7e4501d (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-01-23T14:22:22Z (GMT) No. of bitstreams: 1
andresricardovaldez.pdf: 6592036 bytes, checksum: 23a86a3d84f13bffa421f219e7e4501d (MD5) / Made available in DSpace on 2018-01-23T14:22:22Z (GMT). No. of bitstreams: 1
andresricardovaldez.pdf: 6592036 bytes, checksum: 23a86a3d84f13bffa421f219e7e4501d (MD5)
Previous issue date: 2017-09-18 / Neste trabalho são apresentados aspectos de modelagem computacional para o estudo de Interação Fluido-Estrutura (FSI). Numericamente, o Método de Lattice Boltzmann (LBM) é usado para resolver a mecânica dos fluidos, em particular as equações de Navier-Stokes incompressíveis. Neste contexto, são abordados problemas de escoamentos complexos, caracterizado pela presença de obstáculos. A imposição das restrições na interface fluido-sólido é feita utilizando princípios variacionais, empregando o Princípio de Balanço de Potências Virtuais (PVPB) para obter as equações de Euler-Lagrange. Esta metodologia permite determinar as dependências entre carregamentos cinematicamente compatíveis e o estado mecânico adotado. Neste sentido, as condições de interface fluido-sólido são abordadas pelo Método de Fronteira Imersa (IBM) visando técnicas computacionais de baixo custo. A metodologia IBM trata o equilíbrio das equações na interface fluido-sólido através da interpolação entre os nós Lagrangianos (sólidos) e os nós Eulerianos (fluidos). Neste contexto, uma modificação desta estratégia que fornece soluções mais precisas é estudada. Para mostrar as capacidades do acoplamento LBM-IBM são apresentados vários experimentos computacionais que demonstram grande fidelidade entre as soluções obtidas e as soluções disponíveis na literatura. / This work presents computational modeling aspects for studying Fluid-Structure Interaction (FSI). The Lattice Boltzmann Method (LBM) is employed to solve the fluid mechanics considering the incompressible Navier-Stokes equations. The flows studied are complex due to the presence of arbitrary shaped obstacles. The obstacles alters the bulk flow adding complexity to the analysis. In this work the Euler-Lagrange equations are obtained employing the Principle of Virtual Power Balance (PVPB). Consequently, the functional dependencies between the mechanical state and every kinematic compatible loadings are established employing variational arguments. This modeling technique allows to study the fluid-solid boundary constraint. In this context the fluid-solid interface is handled employing the Immersed Boundary Method (IBM). The IBM deals with the fluid-solid interface equilibrium equations performing an interpolation of forces between Lagrangian nodes (solid domain) and Eulerian Lattice grid (fluid domain). In this work a different version of this methodology is studied that allows to obtain more accurate solutions. To show the capabilities of the implemented LBM-IBM solver several experiments are done showing the agreement with the benchmarks results available in literature.
|
86 |
Problemas elípticos semilineares com não linearidades do tipo côncavo-convexo / Semilinear elliptic problems with concave-convex nonlinearitiesSousa, Karla Carolina Vicente de 01 March 2017 (has links)
Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2017-03-03T18:04:36Z
No. of bitstreams: 2
Dissertação - Karla Carolina Vicente de Sousa 2017.pdf: 802534 bytes, checksum: b021fd17684c91eaed58191b3674afd7 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-03-06T10:40:35Z (GMT) No. of bitstreams: 2
Dissertação - Karla Carolina Vicente de Sousa 2017.pdf: 802534 bytes, checksum: b021fd17684c91eaed58191b3674afd7 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-03-06T10:40:35Z (GMT). No. of bitstreams: 2
Dissertação - Karla Carolina Vicente de Sousa 2017.pdf: 802534 bytes, checksum: b021fd17684c91eaed58191b3674afd7 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2017-03-01 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / In this work we study the existence of positive solutions for the following semilinear
elliptic problem with concave-convex nonlinearities
−∆u = λa(x)u
q +b(x)u
p
, x ∈ Ω
u = 0, x ∈ ∂Ω
where Ω is a bounded domain in R
N with smooth boundary and 0 < q < 1 < p < 2
∗−1
(where 2∗−1 = +∞, if N = 1 or N = 2 and 2∗−1 = N+2
N−2
, where N ≥ 3). Furthermore,
λ > 0 is a parameter and a,b : Ω → R are continuous functions which are somewhere
positives, however, such functions may change sign in Ω. / Neste trabalho estudaremos a existência de soluções positivas para o seguinte
problema elíptico semilinear com não linearidades do tipo côncavo-conexo
−∆u = λa(x)u
q +b(x)u
p
, x ∈ Ω
u = 0, x ∈ ∂Ω
onde Ω é uma domínio limitado de R
N , com bordo regular e 0 < q < 1 < p < 2
∗ −1
(onde 2∗ −1 = +∞, se N = 1 ou N = 2 e 2∗ −1 = N+2
N−2
, quando N ≥ 3). Além disso,
λ > 0 é um parâmetro e a,b : Ω → R são funções contínuas que assumem valores
positivos, porém, tais funções podem mudar de sinal em Ω.
|
87 |
Existência e multiplicidade de soluções de problemas elípticos com termo semilinear côncavo-convexoGuimarães , Angelo 01 March 2017 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2017-03-06T14:33:05Z
No. of bitstreams: 2
Dissertação - Angelo Guimarães - 2017.pdf: 2117097 bytes, checksum: dec3403d71344aacfe3834890266b503 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-03-06T14:33:53Z (GMT) No. of bitstreams: 2
Dissertação - Angelo Guimarães - 2017.pdf: 2117097 bytes, checksum: dec3403d71344aacfe3834890266b503 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-03-06T14:33:53Z (GMT). No. of bitstreams: 2
Dissertação - Angelo Guimarães - 2017.pdf: 2117097 bytes, checksum: dec3403d71344aacfe3834890266b503 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2017-03-01 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we study existence and multiplicity of weak solutions for the eliptic problem with semilinear concave convex term, in a limited domain of a N-dimensional euclidean space. If we take f=0 and σ=1 we have a problem homogeneous with critical Sobolev exponent in which we use the Mountain Pass Theorem to find existence of a solution when p<q<p* , and when 1<q<p we use the genus of Krasnoselskii finding infinitely many solutions. If f is not null and σ=0 we have a non homogeneous problem that we prove to have infinitely many solutions, using a method developed by P. Rabinowitz. / Neste trabalho estudaremos existência e multiplicidade de soluções fracas do problema elíptico com termo semilinear côncavo-convexo, em um domínio limitado de um espaço euclidiano de dimensão N. Ao tomarmos f=0 e σ=1 temos um problema homogêneo com expoente crítico de Sobolev em que utilizamos o Teorema do Passo da Montanha para encontrar existência de uma solução quando p<q<p*. Utilizamos o gênero de Krasnoselskii para encontrar infinitas soluções quando 1<q<p. Quando f não é nula e σ=0 temos um problema do tipo não homogêneo que provamos possuir infinitas soluções utilizando um método desenvolvido por P. Rabinowitz.
|
88 |
Existência e multiplicidade de soluções para uma classe de problemas quasilineares com crescimento crítico exponencial / Existence and multiplicity of solutions for a class of quasilinear problems with exponential critical growthLuciana Roze de Freitas 09 December 2010 (has links)
Neste trabalho, mostramos a existência e multiplicidade de soluções para a seguinte classe de equações elípticas quasilineares { - \'DELTA IND. \'NÜ\' POT. \'upsilon\' + \'|\'upsilon\'| POT. \'NÜ\' - 2 \'upsilon\' = f(x, u), \'upsilon\' \'DIFERENTE\' 0, \'upsilon\' \'PERTENCE A >>: Nu + jujN2 u = f(x; u); x 2 ; u 6= 0; u 2 W1;N( ); onde e um domnio em RN, N 2, N e o operador N-Laplaciano e f e uma func~ao que possui um crescimento crtico exponencial. Para obter nossos resultados utilizamos o Princpio Variacional de Ekeland, Teorema do Passo da Montanha, Categoria de Lusternik- Schnirelman, Ac~ao de Grupo e tecnicas baseadas na Teoria do G^enero. Palavras chaves: Problemas elpticos quasilineares, Metodo Variacional, N-Laplaciano, crescimento crtico exponencial, Princpio Variacional de Ekeland, Categoria de Lusternik- Schnirelman, Desigualdade de Trudinger-Moser / In this work, we show the existence and multiplicity of solutions for the following class of quasilinear elliptic equations { - \'DELTA\' IND. \'NÜ\' \'upsilon\'\' + |\'upsilon\'| POT. \'NÜ\' - 2 = f(x, \'upsilon\'), x \"IT BELONGS\' \'OMEGA\', \'upsilon\' \'DIFFERENT\' 0, \'upsilon\' \'IT BELONGS\' W POT. 1, \'NÜ\' ( OMEGA), where \'OMEGA\' is a domain in \' R POT. \'NÜ\' > OR = 2, \'DELTA\' IND. \'NÜ\' is the N-Laplacian operator and f is a function with exponential critical growth. To obtain our results we utilize the Ekeland Variational Principle, the Mountain Pass Theorem, Lusternik-Schnirelman of Category, Group Action and techniques based on Genus Theory
|
89 |
Soluções para problemas elípticos envolvendo o expoente crítico de SobolevAlmeida, Samuel Oliveira de 05 April 2013 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-05-11T15:47:00Z
No. of bitstreams: 1
samueloliveiradealmeida.pdf: 770018 bytes, checksum: 7270cb9d1478f3f95d8316be0a0c13aa (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-06-27T18:35:32Z (GMT) No. of bitstreams: 1
samueloliveiradealmeida.pdf: 770018 bytes, checksum: 7270cb9d1478f3f95d8316be0a0c13aa (MD5) / Made available in DSpace on 2016-06-27T18:35:32Z (GMT). No. of bitstreams: 1
samueloliveiradealmeida.pdf: 770018 bytes, checksum: 7270cb9d1478f3f95d8316be0a0c13aa (MD5)
Previous issue date: 2013-04-05 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho estudamos a existência de soluções para problemas elípticos
envolvendo o expoente crítico de Sobolev.
Primeiramente, investigamos a existência de soluções para um problema
superlinear do tipo Ambrosetti-Prodi com ressonância em 1, onde 1 é o primeiro
autovalor de (−Δ,1
0 (Ω)).
Além disso, estudamos resultados de multiplicidade para uma classe de equações
elípticas críticas relacionadas com o problema de Brézis-Nirenberg, com condição
de contorno de Neumann sobre a bola. / In this work we study the existence of solutions for elliptic problems involving
critical Sobolev exponent.
Firstly we investigate the existence of solutions for an Ambrosetti-Prodi
type superlinear problem with resonance at 1 , where 1 is the first eigenvalue of
(−Δ,1
0 (Ω)).
Besides, we study multiplicity results for a class of critical elliptic equations
related to the Brézis-Nirenberg problem with Neumann boundary condition on a
ball.
|
90 |
Nonlinear Schrödinger equation and Schrödinger-Poisson system in the semiclassical limit / Equation de Schrödinger non-linéaire et système de Schrödinger-Poisson dans la limite semi-classiqueDi Cosmo, Jonathan 29 September 2011 (has links)
The nonlinear Schrödinger equation appears in different fields of physics, for example in the theory of Bose-Einstein condensates or in wave propagation models. From a mathematical point of view, the study of this equation is interesting and delicate, notably because it can have a very rich set of solutions with various behaviours.<p><p>In this thesis, we have been interested in standing waves, which satisfy an elliptic partial differential equation. When this equation is seen as a singularly perturbed problem, its solutions concentrate, in the sense that they converge uniformly to zero outside some concentration set, while they remain positive on this set.<p><p>We have obtained three kind of new results. Firstly, under symmetry assumptions, we have found solutions concentrating on a sphere. Secondly, we have obtained the same type of solutions for the Schrödinger-Poisson system. The method consists in applying the mountain pass theorem to a penalized problem. Thirdly, we have proved the existence of solutions of the nonlinear Schrödinger equation concentrating at a local maximum of the potential. These solutions are found by a more general minimax principle. Our results are characterized by very weak assumptions on the potential./<p><p>L'équation de Schrödinger non-linéaire apparaît dans différents domaines de la physique, par exemple dans la théorie des condensats de Bose-Einstein ou dans des modèles de propagation d'ondes. D'un point de vue mathématique, l'étude de cette équation est intéressante et délicate, notamment parce qu'elle peut posséder un ensemble très riche de solutions avec des comportements variés. <p><p>Dans cette thèse ,nous nous sommes intéressés aux ondes stationnaires, qui satisfont une équation aux dérivées partielles elliptique. Lorsque cette équation est vue comme un problème de perturbations singulières, ses solutions se concentrent, dans le sens où elles tendent uniformément vers zéro en dehors d'un certain ensemble de concentration, tout en restant positives sur cet ensemble. <p><p>Nous avons obtenu trois types de résultats nouveaux. Premièrement, sous des hypothèses de symétrie, nous avons trouvé des solutions qui se concentrent sur une sphère. Deuxièmement, nous avons obtenu le même type de solutions pour le système de Schrödinger-Poisson. La méthode consiste à appliquer le théorème du col à un problème pénalisé. Troisièmement, nous avons démontré l'existence de solutions de l'équation de Schrödinger non-linéaire qui se concentrent en un maximum local du potentiel. Ces solutions sont obtenues par un principe de minimax plus général. Nos résultats se caractérisent par des hypothèses très faibles sur le potentiel. / Doctorat en sciences, Spécialisation mathématiques / info:eu-repo/semantics/nonPublished
|
Page generated in 0.1179 seconds