• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 73
  • 24
  • 8
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 252
  • 69
  • 64
  • 46
  • 40
  • 32
  • 30
  • 24
  • 24
  • 23
  • 23
  • 20
  • 18
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Integrated Analysis of miRNA/mRNA Expression in the Neurocircuitry Underlying Nicotine Dependence

Casserly, Alison P. 16 August 2018 (has links)
Nicotine dependence is responsible for perpetuating the adverse health effects due to tobacco use, the leading cause of preventable death worldwide. Nicotine is an agonist for nicotinic acetylcholine receptors, which are enriched in the mesocorticolimbic and habenulo-interpeduncular circuitries, underlying nicotine reward and withdrawal, respectively. Drugs of abuse, including nicotine, induce stable neuroadaptations, requiring protein synthesis through regulation of transcription factors, epigenetic mechanisms, and non-coding RNAs. It also been shown that miRNAs in brain are regulated by nicotine and that miRNA dysregulation contributes to brain dysfunction, including drug addiction. While much is known about the neurocircuitry responsible for the behaviors associated with nicotine reward or withdrawal, the underlying molecular mechanisms of how these changes in behavior are induced are less clear. Using miRNA-/mRNA-Seq, we demonstrate that there are widespread changes in both miRNA and mRNA expression in brain regions comprising the mesocorticolimbic circuit after chronic nicotine treatment, and the habenulo-interpeduncular circuit during acute nicotine withdrawal. Conserved, differentially expressed miRNAs were predicted to target inversely regulated mRNAs. We determined that expression of miR-106b-5p is up-regulated and Profilin 2 (Pfn2), an actin-binding protein enriched in the brain, is down-regulated in the interpeduncular nucleus (IPN) during acute nicotine withdrawal. Further we show that miR-106b-5p represses Pfn2 expression. We demonstrate that knockdown of Pfn2 in the IPN is sufficient to induce anxiety, a symptom of withdrawal. This novel role of Pfn2 in nicotine withdrawal-associated anxiety is a prime example of this dataset’s utility, allowing for the identification of a multitude of miRNAs/mRNA which may participate in the molecular mechanisms underlying the neuroadaptations of nicotine dependence.
212

GESTATIONAL STRESS – A TRANSLATIONAL MODEL FOR POSTPARTUM DEPRESSION

Haim, Achikam 11 August 2016 (has links)
No description available.
213

Effects of Cognitive Behavioral Therapy on Neural Processing of Agoraphobia-Specific Stimuli in Panic Disorder and Agoraphobia

Wittmann, André, Schlagenhauf, Florian, Guhn, Anne, Lueken, Ulrike, Elle, Manja, Stoy, Meline, Liebscher, Carolin, Bermpohl, Felix, Fydrich, Thomas, Pfleiderer, Bettina, Bruhn, Harald, Gerlach, Alexander L., Straube, Benjamin, Wittchen, Hans-Ulrich, Arolt, Volker, Heinz, Andreas, Ströhle, Andreas, Kircher, Tilo 19 May 2020 (has links)
Background: Patients suffering from panic disorder and agoraphobia are significantly impaired in daily life due to anxiety about getting into a situation due to apprehension about experiencing a panic attack, especially if escape may be difficult. Dysfunctional beliefs and behavior can be changed with cognitive behavioral therapy; however, the neurobiological effects of such an intervention on the anticipation and observation of agoraphobia-specific stimuli are unknown. Methods: We compared changes in neural activation by measuring the blood oxygen level-dependent signal of 51 patients and 51 healthy controls between scans before and those after treatment (group by time interaction) during anticipation and observation of agoraphobia-specific compared to neutral pictures using 3-T fMRI. Results: A significant group by time interaction was observed in the ventral striatum during anticipation and in the right amygdala during observation of agoraphobia-specific pictures; the patients displayed a decrease in ventral striatal activation during anticipation from pre- to posttreatment scans, which correlated with clinical improvement measured with the Mobility Inventory. During observation, the patients displayed decreased activation in the amygdala. These activational changes were not observed in the matched healthy controls. Conclusions: For the first time, neural effects of cognitive behavioral therapy were shown in patients suffering from panic disorder and agoraphobia using disorderspecific stimuli. The decrease in activation in the ventral striatum indicates that cognitive behavioral therapy modifies anticipatory anxiety and may ameliorate abnormally heightened salience attribution to expected threatening stimuli. The decreased amygdala activation in response to agoraphobia-specific stimuli indicates that cognitive behavioral therapy can alter the basal processing of agoraphobia-specific stimuli in a core region of the fear network.
214

The Role of Mesointerpeduncular Circuitry in Anxiety

Degroot, Steven R. 14 May 2019 (has links)
Anxiety is an affective state defined by heightened arousal and unease in the absence of a clear and present fear-inducing stimulus. Chronic and inappropriate anxiety leads to anxiety disorders, the most common class of human mental disorder. Recent work suggests projections to the ventral tegmental area (VTA), are critical for anxiety behavior expression. However, the relationship between efferent VTA projections and anxiety is unclear. This thesis resolves anxiety circuitry connecting the dopaminergic (DAergic) VTA to the interpeduncular nucleus (IPN), coined the mesointerpeduncular circuit. I hypothesize the mesointerpeduncular circuit affects anxiety through the release of anxiogenic corticotropin releasing factor (CRF) during nicotine withdrawal and anxiolytic dopamine (DA) during drug naïve behavior. Electrophysiological and pharmacological data suggest CRF release from the DAergic VTA during nicotine withdrawal activates CRF receptor 1 (CRFR1) potentiating the glutamatergic activation of “Type 2” neurons and anxiety-like behavior in mice. However, in nicotine naïve conditions CRF production is negligible. Instead, in vivo DA release is anticorrelated with anxiety-like behaviors. Optogenetic stimulation and inhibition drives decreased and increased anxiety-like behaviors, respectively. Electrophysiological experiments reveal a complex interpeduncular microcircuit where D1-like DA receptor expressing “Type C” neurons in the caudal IPN (cIPN) regulate glutamatergic release in the ventral IPN (vIPN) through presynaptic GABA receptors. The result is propagation of the signal to excite “Type A” and inhibit “Type B” vIPN neurons. Finally, pharmacological activation or inhibition of interpeduncular D1-like DA receptors is sufficient to decrease and increase anxiety-like behaviors respectively. Thus, this circuit is important for modulating anxiety-like behavior.
215

Contribution of tachykinin and kinin receptors in central autonomic control of blood pressure and behavioural activity in hypertensive rats

De Brito Pereira, Helaine 05 1900 (has links)
No description available.
216

Přínosy rehabilitace u pacientů s abdominální hernií / Benefits of rehabilitation in patients with abdominal hernia

Bártová, Barbora January 2021 (has links)
The thesis summarizes available information about the possibilities of rehabilitation in patients with abdominal hernia. The theoretical part presents current approach to prehabilitation and postoperative rehabilitation in patients with abdominal hernia. In the theoretical part of the thesis is brief list of risk factors which increase probability of occurrence of the postoperative complications. The possibilities of modification of these risk factors by prehabilitation are presented. The approaches supporting as well as questioning prescription of prehabilitation are discussed. The thesis also contains the guidelines for early postoperative period and guidelines for long-term postoperative programs. These guidelines are proceeded from foreign literature. Long-term training programs intensity is based on the preoperative examination results. Determining preoperative performance reduces the risk of overloading the patient and maximizes the benefits which the physical activity has to offer. In the experimental part of the thesis are presented data obtained from group of patients who underwent the Preoperative program for patients with hernia on the Clinic of Rehabilitation and Sport Medicine the Motol University Hospital. The comparison of data before and after therapy is concluded. Another...
217

Nicotine Use in Schizophrenia: a part of the cure or the disease?

Berg, Sarah A. 16 March 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Nicotine use among individuals with schizophrenia occurs at extremely high rates. The prevailing theory is that individuals with schizophrenia smoke as a form of self-medication to ameliorate sensory and cognitive deficits. However, these individuals also have enhanced rates of addiction to several drugs of abuse and may therefore smoke as a result of enhanced addiction liability. The experiments described herein explored these two hypotheses by assessing the effect that nicotine has on working memory, addiction vulnerability (locomotor sensitization and self-administration), and nicotinic acetylcholine receptor (nAChR) expression as well as the developmental expression of these characteristics in the neonatal ventral hippocampal (NVHL) neurodevelopmental animal model of schizophrenia. The results from these studies indicate that NVHLs had working memory impairments in both adolescence and adulthood, with nicotine having a negligible effect. Additionally, NVHLs displayed enhanced locomotor sensitization to nicotine which emerged in adulthood as well as an enhanced acquisition of nicotine self-administration, administering more nicotine overall. These behavioral differences cannot be attributed to nAChR expression as nicotine upregulated nAChR to a similar extent between NVHL and SHAM control animals. These data indicate that the enhanced rates of nicotine use among individuals with schizophrenia may occur as a result of an enhanced vulnerability to nicotine addiction.
218

Neuronal and Molecular Adaptations of GABA Neurons in the Ventral Tegmental Area to Chronic Alcohol

Hales, Kimberly 03 December 2007 (has links) (PDF)
The purpose of this thesis project was to examine the effects of chronic alcohol on the excitability and molecular adaptation of GABA neurons of the ventral tegmental area (VTA). GABA neurons are of interest with regards to ethanol intoxication, reinforcement, and dependence due to their widespread distribution and connectivity to mesocorticolimbic dopamine (DA) neurons implicated in alcohol reward and addiction. Since we have previously shown adaptation of VTA GABA neuron firing rate to chronic ethanol (Gallegos, Criado et al. 1999) and suppression of gap-junction (GJ) mediated coupling between these neurons by acute ethanol (Stobbs, Ohran et al. 2004), we wanted to further characterize the effects of chronic ethanol on VTA GABA neuron excitability, electrical coupling and molecular adaptation. In particular, we analyzed the GJ mediated coupling and protein regulation of VTA GABA neurons following a three week period of continuous ethanol exposure via liquid diet. Although some animals showed tolerance, there was no significant tolerance to ethanol inhibition of GJ-mediated electrical coupling. In addition, we were able to characterize differences in mRNA expression levels for the DA synthesizing enzyme tyrosine hydroxylase (TH), the DA D2 receptor and the NMDAR2B receptor subunit in DA versus GABA neurons, all three of which were expressed at higher levels in DA neurons. We also determined the effects of chronic ethanol on mRNA levels of these same proteins as well as μ-opioid receptors (μORs) and connexin-36 (Cx36) GJs. Most significantly, we found a down-regulation of the DA D2 receptor, confirming that molecular modification occurs in these VTA GABA neurons with chronic alcohol. While we reject our hypothesis that acute ethanol inhibition of VTA GABA neuron electrical coupling would undergo tolerance to chronic ethanol in these non-dependent rats, which was the focus of this thesis, it remains to be determined if tolerance to chronic ethanol might be obtained in ethanol-dependent rats.
219

Mechanoreceptor Activation in the Treatment of Drug-Use Disorders: Mechanism and Outcome

Bills, Kyle 01 August 2019 (has links)
The therapeutic benefits attributed to activation of peripheral mechanoreceptors are poorly understood. There is growing evidence that mechanical stimulation modulates substrates in the supraspinal central nervous system (CNS) that are outside the canonical somatosensory circuits. This work demonstrates that activation of peripheral mechnoreceptors via mechanical stimulation (MStim) is sufficient to increase dopamine release in the nucleus accumbens (NAc), alter neuron firing rate in the ventral tegmental area (VTA) and increase membrane translocation of delta opioid receptors (DORs) in the NAc. Further, we demonstrate that these effects are dependent on DORs and acetylcholine receptors. Additionally, MStim can block neuronal markers of chronic ethanol dependence including ethanol-induced changes to VTA GABA neuron firing during withdrawal, and DA release profiles after reinstatement ethanol during withdrawal. These are presented in tandem with evidence that MStim also ameliorates behavioral indices of ethanol withdrawal. Finally, exercise, a modality that includes a mechanosensory component, is shown to alter expression of kappa opioid receptors (KORs) in the NAc. This change substantively depresses KORs influence over evoked DA release in direct contraversion to the effects of chronic ethanol. These changes translate into reduced drinking behavior.
220

Effets motivationnels des cannabinoïdes dans un modèle animal de la schizophrénie

Gallo, Alexandra 06 1900 (has links)
Depuis quelques décennies, la consommation de cannabis et son usage thérapeutique sont le sujet de nombreux débats. Le cannabis est la drogue illicite la plus consommée au monde et cette consommation se trouve dix fois plus élevée chez les patients atteints de schizophrénie que dans la population générale. L’hypothèse d’une automédication initialement proposée afin d’expliquer la consommation élevée de cannabis chez les patients atteints de schizophrénie est maintenant remise en question. En effet, les rapports indiquant une aggravation des symptômes plutôt qu’une amélioration suite à une consommation à long terme sont de plus en plus nombreux. Sachant que le cannabis peut induire des effets soit plaisants soit aversifs, la question se pose à savoir si une prédominance de la valence motivationnelle positive ou une diminution de la valence négative du cannabis peut expliquer la consommation élevée parmi les individus ayant un diagnostic de schizophrénie? Bien qu’un grand nombre de recherches pré-cliniques aient été menées chez l’animal normal pour évaluer l’effet motivationnel du Δ9-tétrahydrocannabinol (THC) et autres cannabinoïdes synthétiques, aucune n’a abordé cette problématique dans un modèle animal de la schizophrénie. Cette lacune nous a donc amené à étudier la valence motivationnelle du THC et de l’agoniste cannabinoïde WIN55,212-2 (WIN) dans un modèle animal de la schizophrénie: la lésion néonatale de l’hippocampe ventral (NVHL). Dans le premier article, nous présentons les résultats de quatre expériences. Une première avait pour objectif de déterminer si la procédure expérimentale que nous avons utilisée permettait de reproduire des signes distinctifs du modèle animal de la schizophrénie. Par la suite, nous avons évalué i) l’effet d’une dose de WIN sur l’activité locomotrice spontanée et ii) la valence motivationnelle du THC (0.5 mg/kg, i.p) et du WIN (1 mg/kg, i.p) chez les rats adolescents (jour post-natal 28-40, PD28-40) et adultes (PD56) au moyen du paradigme de préférence de place conditionnée (PPC). Tel qu’attendu, la réponse locomotrice à l’amphétamine (0.75 et 1.5 mg/kg) chez les rats NVHL adultes était supérieure à celle des rats contrôles (test distinctif du modèle). Le THC a induit une tendance aversive chez les rats contrôles adultes. Enfin, le WIN a stimulé l’activité locomotrice et induit une aversion significative chez les rats adultes NVHL. Dans un deuxième article, nous avons évalué la valence motivationnelle du THC (0.5 mg/kg), du WIN (1 et 3 mg/kg) et l’effet de l’amphétamine au moyen du paradigme d’autostimulation électrique intracérébrale (ASI). Les résultats montrent que : i) l’effet amplificateur de l’amphétamine sur l’ASI était de plus courte durée chez les rats NVHL; ii) le THC produit une légère atténuation de la récompense chez les rats contrôles tandis que le WIN a produit une atténuation plus prononcée de la récompense chez les rats NVHL, un effet qui a été bloqué par l’antagoniste aux récepteurs CB1, le AM251 (3 mg/kg). Pour la première fois les résultats suggèrent une altération du système endocannabinoïde dans un modèle animal de la schizophrénie. Ils indiquent qu’une exposition aigüe conduit à une prédominance de la valence négative. Bien qu’en apparente contradiction avec les études cliniques, ces résultats soulignent l’importance du contexte socio-environnemental pour expliquer les effets du cannabis chez les patients. De plus ils encouragent les futures études à évaluer cette valence sur un modèle d’exposition chronique. / Over the past few decades, the cannabis consumption and its therapeutic use have been the subject of many debates. Cannabis is the most widely used illicit drug and among patients with a diagnosis of schizophrenia, its consumption is ten times higher than in the general population. The self-medication hypothesis that has been initially proposed to account for the co-morbidity schizophrenia – cannabis is now questioned on the basis of several reports showing that long term cannabis consumption worsen schizophrenia symptoms in patients. Knowing that cannabis can provoke both rewarding and aversive effects in human and in animal, the following question can be raised: can co-morbidity schizophrenia – cannabis be explained by a salient positive or a blunted negative motivational valence of cannabis? Even though many pre-clinical studies have been carried out in normal animals on the motivational effects of Δ9-Tetrahydrocannabinol (THC) or other synthetic cannabinoids, none has measured these effects in an animal model of schizophrenia. On the basis of this, we undertook a series of studies on the motivational valence of THC and the cannabinoid agonist WIN55,212-2 (WIN) in an animal model of schizophrenia : the neonatal ventral hippocampus lesion (NVHL). In the first report, we present the results of four studies. The first was aimed at showing that the experimental procedures that we used reproduced some abnormal features of the animal model. Then we evaluated i) the effect of WIN (1 mg/kg) on spontaneous locomotor activity and ii) the motivational valence of THC (0.5 mg/kg) and WIN (1 mg/kg) in the young (post-natal day 28-40, PD28-40) and adult (PD56) rats with the conditioned place-preference paradigm (CPP). As expected, amphetamine produced a higher locomotor activity in NVHL rats, an effect observed at PD56 and not at PD35 (NVHL usual test). THC tended to induce an aversion in control rats at PD56 while WIN produced a significant aversion at PD56 in NVHL rats only. We also assessed, in a second report, the valence of THC (0.5 mg/kg) and WIN (1 and 3 mg/kg), and amphetamine (0.75 mg/kg) using the brain stimulation reward paradigm. Results show that i) the enhancement effect of amphetamine on reward was shorter in adult NVHL rats; ii) THC induced a weak reward attenuation in control rats while WIN produced a marked dose-dependent attenuation in NVHL rats; this effect of WIN was blocked by AM251 (3 mg/kg), an antagonist at CB1 receptors. For the first time, these results suggest that the endogenous cannabinoid system is altered in this animal model of schizophrenia. They indicate that an acute exposure leads to a predominance of negative valence. Even if this seems contradictory with clinical studies, these results highlight the interconnection between the drug and the socio-environment aspects. In addition, they encourage future studies to evaluate this valence on a chronic exposure paradigm with this animal model of schizophrenia.

Page generated in 0.075 seconds