• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 6
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 28
  • 28
  • 18
  • 8
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Apport des approches in silico aux études structure-fonction de la polymérase du virus de l'hépatite C / In silico structural studies applied to HCV NS5B activity and interactions

Ben ouirane, Kaouther 28 September 2018 (has links)
Le virus de l'hépatite C (HCV) est un virus à ARN qui synthétise ses nouveaux génomes dans les cellules hôtes infectées grâce à une ARN polymérase ARN dépendante (RdRp), appelée NS5B. Cette polymérase a été pendant longtemps une cible majeure dans la recherche d'antiviraux contre l'hépatite C. Aujourd'hui, de nombreux antiviraux ont été approuvés dans le traitement de l’hépatite C ciblant différentes protéines virales, entre autre, NS5B. Le sofosbuvir qui cible le site actif de NS5B est un antiviral qui a démontré une efficacité extraordinaire dans le traitement anti-HCV.Durant ces dernières années, les recherches sur NS5B ont permis de caractériser cette protéine, à la fois structuralement et biochimiquement. La richesse des connaissances ainsi accumulées fait de NS5B un excellent modèle pour les RdRp des virus à ARN.Toutefois, peu d'études portent sur le mécanisme d’acheminement et de sélection des ribonucléotides au site actif de NS5B, et de façon générale, sur la description atomique du mécanisme de réplication assuré par NS5B, qui implique deux dications magnésium pour la catalyse comme chez toutes les polymérases de cette famille.Durant ce travail, nous avons exploité les données structurales issues de complexes ternaires (NS5B+RNA+nucleotide) obtenus en 2015 par cristallographie à l'échelle atomique. Nous avons utilisé ces structures pour mener des études de modélisation moléculaire, essentiellement par dynamique moléculaire afin d’aborder la question de l'acheminement des nucléotides vers le site actif de NS5B.Nous avons eu recours à la fois à des méthodes de dynamiques moléculaires classiques et des méthodes de dynamiques moléculaires dites biaisées telles que différentes méthodes de dynamiques moléculaires dirigées (SMD et TMD) et la dynamique moléculaire accélérée (aMD).Nos résultats indiquent que l’acheminement du nucléotide au site actif associé à un magnésium Mg(B) est contrôlé tout au long du tunnel par différents éléments de NS5B. Initialement, le nucléotide se lie à une région proche de la boucle qui surplombe le tunnel lui permettant, grâce aux interactions qu’il établit avec sa partie triphosphate, de s’orienter base en avant. Ensuite, le nucléotide atteint un point de contrôle formé essentiellement par le motif F3 (R158) et le motif F1(E143). Le nucléotide reste lié à ce site jusqu’à l’arrivée du second dication magnésium (Mg(A)) qui provoque des réarrangements structuraux, notamment au niveau du motif F3, entrainant l’avancée du nucléotide vers le site actif. Une fois ce point de contrôle passé, le nucléotide interroge alors la base du brin d’ADN matrice sans s’insérer entièrement dans le site actif.Nos simulations ont clairement établi que les dernières étapes d’entrée du nucléotide sont finement régulées par l’arrivée du second dication magnésium qui a donc un rôle de coordinateur en plus de son rôle connu dans la catalyse.Ce mécanisme d’entrée semble être spécifique aux RdRp virales et permet de comprendre pourquoi les analogues de nucléotides peuvent être aussi efficaces contre les virus à ARN. / The hepatitis C virus is an RNA virus that synthesises its new genomes in the infected host cells thanks to an RNA-dependent RNA polymerase (RdRp) termed NS5B. This polymerase has been a prime target for antiviral therapy. Numerous direct antiviral drugs are now approved in the HCV treatment and allow very high rates of treatment success. These drugs target among others the HCV NS5B RdRp with the sofosbuvir being one of the most successful drugs.Tremendous efforts have been made in the past decades to characterize NS5B, in particular structurally and biochemically. However, there is little information about the molecular mechanisms of NS5B ribonucleotides entry and selection and in general on the atomistic details of the RNA replication mechanism, although the involvement of two magnesium dications in catalysis is well established in this family of polymerases. Since 2015, structures of ternary complexes of NS5B have been resolved by crystallography offering very valuable details about the binding of nucleotides at the NS5B active site.In this work, we took advantage of these structural data to address the ribonucleotides entry and to further explore the nucleotide addition cycle in NS5B using molecular modelling and molecular dynamics simulations. We used both conventional molecular dynamics techniques and biased simulations that enhance sampling such as Steered Molecular Dynamics (SMD), Targeted Molecular Dynamics (TMD) or accelerated Molecular dynamics (aMD).Based on our modelling results, we found that the access to the active site through the nucleotides tunnel is checked by successive NS5B elements. First, the entering ribonucleotide together with an associated magnesium Mg(B) binds next to a loop that overhangs the nucleotide tunnel and interactions with its triphosphate moiety orient it base-first towards the active site. Second, the ribonucleotide encounters a checkpoint constituted by the residues of motif F3(R158) and motif F1(E143) where it is blocked until the arrival of a second magnesium ion, the Mg(A). This allowed the motif F3 to undergo small structural rearrangements leading to the advancement of the nucleotide towards the active site to interrogate the RNA template base prior to the complete nucleotide insertion into the active site.Our simulations pointed out that these dynamics are finely regulated by the second magnesium dication, thus coordinating the entry of the correct magnesium-bound nucleotide with shuttling of the second magnesium necessary for the two-metal ion catalysis. This entry mechanism is specific to viral RdRps and may explain why modified ribonucleotides can be so successful as drugs against RNA viruses.
22

Compartmentalization, adaptive evolution and therapeutic response of HIV-1 in the gastrointestinal tract (GIT) of African patients infected with Subtype C: implications for the enhancement of therapeutic efficacy

Mahasha, Phetole Walter January 2014 (has links)
Background: Due to its continuous exposure to food antigens and microbes, the gastrointestinal tract (GIT) is in a constant state of low level immune activation and contains an abundance of activated CCR5+CD4+ T lymphocytes, the primary target HIV-1. As a result, the GIT is a site of intense viral replication and severe CD4+ T cell depletion, a process that begins during primary HIV-1 infection and continues at a reduced rate during chronic infection in association with increased production of pro-inflammatory cytokines, a breakdown in the epithelial barrier, microbial translocation, systemic immune activation and the continued recruitment and infection of new target cells. AntiRetroviral Therapy (ART) is only partially effective in reversing these pathogenic changes. Despite the importance of the GIT in HIV-1 pathogenesis, and as a reservoir of persistent virus during ART, little is known about the diversity of HIV-1 in the GIT, or how different tissues in the GIT respond to ART. Objectives: Primary objectives of this thesis were to: 1) characterize the diversity of HIV-1 RNA variants in different parts of the GIT; 2) determine whether there is compartmentalized evolution of HIV-1 RNA variants in the GIT and whether these variants are likely to have different biological properties; 3) investigate the impact of ART on immune restoration in the GIT. Methods: A prospective study of the duodenum, jejunum, ileum and colon of African AIDS patients with chronic diarrhea and/or weight loss, sampled before and during 6 months of ART. RNA extracted from gut biopsies was reverse transcribed and PCR amplified. Env and gag PCR fragments were cloned, sequenced and subjected to extensive phylogenetic analysis; pol PCR fragments were analyzed for drug resistance. CD4+, CD8+ and CD38+CD8+ T cells levels in biopsies collected at baseline (duodenum, jejunum, ileum and colon) and after 3 (duodenum) and 6 (duodenum and colon) months of ART were quantified by flow cytometry and immunohistochemistry, plasma and tissue VL by the Nuclisens assay. Results: Viral diversity varied in different regions of the GIT with env HIV-1 RNA variants being significantly more diverse than gag variants. Gag HIV-1 RNA variants were widely dispersed among all tissue compartments. Some env variants formed tight monophyletic clusters of closely related viral quasispecies, especially in the colon, a finding that is suggestive of compartmentalized viral replication and adaptive evolution. CD4+ T cell and VL levels were significantly lower, while CD8+ including activated CD38+CD8+ T cell levels were higher in the duodenum and jejunum versus the colon. After 6 months of ART, a significant but incomplete recovery of CD4+ T cells was observed in the colon but not in the duodenum. Failed restoration of CD4+ T cells in the duodenum was associated with non-specific enteritis and CD8+ T cell activation. Conclusions: These results advance our understanding of the GIT as a host-pathogen interface by providing new insights into the diversity, evolution and dissemination of HIV-1 variants in the GIT. Strategies aimed at decreasing immune activation, especially in the small intestine, may be highly beneficial in enhancing the therapeutic efficacy of ART. / Thesis (PhD)--University of Pretoria, 2014. / lk2014 / Immunology / PhD / Unrestricted
23

Étude des déterminants viraux et cellulaires impliqués dans la réponse à l’interféron lors de l’infection par des variants du réovirus de mammifères

Després, Guillaume David 12 1900 (has links)
Le réovirus de mammifères est un virus oncolytique à l’étude pour sa capacité à infecter et détruire préférentiellement les cellules cancéreuses. Les liens entre le potentiel oncolytique du réovirus et son induction des voies de signalisation de l’interféron méritent des éclaircissements. Encore à ce jour, les déterminants viraux et les composantes cellulaires impliqués dans la réponse interféron lors de l’infection par ce virus demeurent à être mieux caractérisés. Des virus mutants ont préalablement été générés à partir d’un virus fortement inducteur d’interféron (T3DK) dans le fond génétique d’un virus faiblement inducteur d’interféron (T3DS) afin d’étudier les effets de certains polymorphismes. Cependant, les mécanismes de ces déterminants viraux et comment leurs polymorphismes les modifient pour amplifier ou restreindre l’induction d’interféron sont encore incertains. Notre approche a permis de révéler que les protéines μ2 et λ1 du réovirus modulent les événements précoces menant à la reconnaissance virale et à la réponse interféron. Nous avons découvert que le phénotype d’induction d’interféron sous l’effet de μ2, λ1 ou μ2 et λ1 provenant de T3DK était corrélé entre les niveaux protéiques et transcriptionnels. De plus, la présence simultanée de μ2 et λ1 (de T3DK) avait un effet synergique provoquant des niveaux d’interféron plus qu’additifs par rapport à la présence de μ2 ou de λ1 seuls. D’autre part, la transfection d’ARN extrait tôt de cellules infectées (mais pas celle d’ARN extrait tardivement) provoque une induction d’interféron qui suit cette même tendance. Par conséquent, les résultats démontrent que plusieurs protéines du réovirus pourraient s’acquitter de rôles multiples qui convergent vers la modulation de la réponse interféron. Cela laisse paraître les rôles envisageables de μ2 et λ1 dans le désassemblage, la participation à l’exposition du génome viral et/ou dans la contribution au sein du complexe de transcription viral. L’analyse comparative de virus mutants conçus par génétique inverse et qui sont à même de contrôler la réponse interféron semble une piste intéressante pour mieux appréhender les implications des polymorphismes dont ils sont porteurs. Cette approche pourrait fournir une meilleure compréhension du réovirus et être utile dans la perspective d’optimisation du potentiel oncolytique du réovirus. / The mammalian reovirus is an oncolytic virus under study for its ability to preferentially infect and destroy cancer cells. The links between the oncolytic potential of reovirus and its induction of interferon signaling pathways require clarification. Still to this day, the viral determinants and cellular components involved in the interferon response upon infection with this virus remain to be better characterized. Mutant viruses were previously generated from a high interferon-inducing virus (T3DK) in the genetic background of a low interferon-inducing virus, (T3DS) to study the effect of certain polymorphisms. However, the mechanisms of these viral determinants and how their polymorphism modify them to amplify or limit interferon induction are still unclear. Our approach revealed that the μ2 and λ1 proteins modulate early events leading to viral recognition and interferon response. We found that the phenotype of interferon induction under the effect of μ2, λ1 or μ2 and λ1 from T3DK showed a correlation between protein and transcriptional levels. Furthermore, the simultaneous presence of μ2 and λ1 (from T3DK) had a synergistic effect causing more than additive interferon levels compared with the presence of μ2 or λ1 alone. On the other hand, transfection of RNA extracted from early-infected cells (but not RNA extracted from late-infected cells) caused interferon induction following this same trend. Therefore, the results demonstrate that several proteins from reovirus could have multiple roles that converge to modulate the interferon response. This suggests potential roles for μ2 and λ1 in disassembly, participation in viral genome exposure, and/or contribution within the viral transcription complex. The comparative analysis of mutant viruses engineered by reverse genetics, and which are able to modulate the interferon response, would be an interesting avenue to better understand the implications of the polymorphisms they carry. This approach could provide a better understanding of the reovirus and be useful in the perspective of optimizing the oncolytic potential of this virus.
24

Chimeric Virus Like Particles as Nanocarriers for Antibody Delivery in Mammalian Cells & Role of Groundnut Bud Necrosis Virus NSs in Viral Life Cycle

Abraham, Ambily January 2015 (has links) (PDF)
Knowledge of the dissociation constants of the ionizable protons of weak acids in aqueous media is of fundamental importance in many areas of chemistry and biochemistry. The pKa value, or equilibrium dissociation constant, of a molecule determines the relative concentration of its protonated and deprotonated forms at a specified pH and is therefore an important descriptor of its chemical reactivity. Considerable efforts have been devoted to the determination of pKa values by different experimental techniques. Although in most cases the determination of pKa values from experimental is straightforward, there are situations where interpretation is difficult and the results ambiguous. It is, therefore, not surprising that the capability to provide accurate estimates of the pKa value has been a central goal in theoretical chemistry and there has been a large effort in developing methodologies for predicting pKa values for a variety of chemical systems by differing quantum chemical techniques. A prediction accuracy within 0.5 pKa units of experiment is the desirable level of accuracy. This is a non-trivial exercise, for an error of 1 kcal/mol in estimates of the free energy value would result in an error of 0.74 pKa units. In this thesis ab initio Car-Parrinello molecular dynamics (CPMD) has been used for investigating the Brϕnsted acid-base chemistry of weak acids in aqueous solution. A key issue in any dissociation event is how the solvating water molecules arrange themselves spatially and dynamically around the neutral and dissociated acid molecule. Ab initio methods have the advantage that all solvent water molecules can, in principle, be con- sidered explicitly. One of the factors that has inhibited the widespread use of ab initio MD methods to study the dissociation reaction is that dissociation of weak acids are rare events that require extremely long simulation times before one is observed. The metady- namics formalism provides a solution to this conundrum by preventing the system from revisiting regions of configuration space where it has been in the past. The formalism allows the system to escape the free-energy minima by biasing the dynamics with a history dependent potential (or force) that acts on select degrees of freedom, referred to as collective variables. The bias potentials, modeled by repulsive inverted Gaussians that are dropped during propagation, drive the system out of any free-energy minima and allow it to explore the configurational space by a relatively quick and efficient sampling. The the- sis deals with a detailed investigation of the Brϕnsted acid-base chemistry of weak acids in aqueous solutions by the CPMD-metadynamics procedure. In Chapter 1, current approaches for the theoretical estimation of pKa values are summarized while in Chapter 2 the simulation methodology and the metadynamics sampling techniques used in this study are described. The potential of the CPMD-metadynamics procedure to provide estimates of the acid dissociation constant (pKa) is explored in Chapter 3, using acetic acid as a test sys- tem. Using the bond-distance dependent coordination number of protons bound to the dissociating carboxylic groups as the collective variable, the free-energy profile for the dissociation reaction of acetic acid in water was computed. Convergence of the free-energy profiles and barriers for the simulations parameters is demonstrated. The free-energy profiles exhibit two distinct minima corresponding to the dissociated and neutral states of the acid and the deterrence in their values provides the estimate for pKa. The estimated value of pKa for acetic acid from the simulations, 4.80, is in good agreement with the experiment at value of 4.76. It is shown that the good agreement with experiment is a consequence of the cancellation of errors, as the pKa values are computed as the divergence in the free energy values at the minima corresponding to the neutral and dissociated state. The chapter further explores the critical factors required for obtaining accurate estimates of the pKa values by the CPMD-metadynamics procedure. It is shown that having water molecules sufficient to complete three hydration shells as well as maintaining water density in the simulation cell as close to unity is important. In Chapter 4, the CPMD-metadynamics procedure described in Chapter-3 has been used to investigate the dissociation of a series of weak organic acids in aqueous solutions. The acids studied were chosen to highlight some of the major factors that influence the dissociation constant. These include the influence of the inductive effect, the stabilization of the dissociated anion by H-bonding as well as the presence of multiple ionizable groups. The acids investigated were aliphatic carboxylic acids, chlorine-substituted carboxylic acids, cis- and trans-butenedioic, the isomers of hydroxybenzoic acid and ophthalmic acids and its isomers. It was found that in each of these examples the CPMD-metadynamics procedure correctly estimates the pKa values, indicating that the formulism is capable of capturing these influences and equally importantly indicating that the cancellation of errors is indeed universal. Further, it is shown that the procedure can provide accurate estimates of the successive pKa values of polypro tic acids as well as the subtle difference in their values for different isomers of the acid molecule. Changes in protonation-deprotonation of amino acid residues in proteins play a key role in many biological processes and pathways. It is shown that CPMD simulations in conjunction with metadynamics calculations of the free energy profile of the protonation- deprotonation reaction can provide estimates of the multiple pKa values of the 20 canonical α-amino acids in aqueous solutions in good agreement with experiment (Chapter 5). The distance-dependent coordination number of the protons bound to the hydroxyl oxygen of the carboxylic and the amine groups is used as the collective variable to explore the free energy profiles of the Brϕnsted acid-base chemistry of amino acids in aqueous solutions. Water molecules, sufficient to complete three hydration shells surrounding the acid molecule were included explicitly in the computation procedure. The method works equally well for amino acids with neutral, acidic and basic side chains and provides estimates of the multiple pKa values with a mean relative error with respect to experimental results, of 0.2 pKa units. The tripeptide Glutathione (GSH) is one of the most abundant peptides and the major repository for non-protein sulfur in both animal and plant cells. It plays a critical role in intracellular oxidative stress management by the reversible formation of glutathione disulfide with the thioldisulfide pair acting as a redox buffer. The state of charge of the ionizable groups of GSH can influences the redox couple and hence the pKa value of the cysteine residue of GSH is critical to its functioning. In Chapter 6, it has been reported that ab initio Car-Parrinello Molecular Dynamics simulations of glutathione solvated by 200 water molecules, all of which are considered in the simulation. It is shown that the free-energy landscape for the protonation - deprotonation reaction of the cysteine residue of GSH computed using metadynamics sampling provides accurate estimates of the pKa and correctly predicts the shift in the dissociation constant values as compared to the isolated cysteine amino acid. The dissociation constants of weak acids are commonly determined from pH-titration curves. For simple acids the determination of the pKa from the titration curves using the Henderson-Hasselbalch equation is relatively straightforward. There are situations, however, especially in polyprotic acids with closely spaced dissociation constants, where titration curves do not exhibit clear inflexion and equivalence stages and consequently the estimation of multiple pKa values from a single titration curve is no longer straightfor- ward resulting in uncertainties in the determined pKa values. In Chapter 7, the multiple dissociation constant of the hexapeptide glutathione disulfide (GSSG) with six ionizable groups and six associated dissociation constants has been investigated. The six pKa values of GSSG were estimated using the CPMD-metadynamics procedure from the free-energy profiles for each dissociation reaction computed using the appropriate collective variable. The six pKa values of GSSG were estimated and the theoretical pH-titration curve was then compared with the experimentally measured pH-titration curve and found to be in excellent agreement. The object of the exercise was to establish whether interpretation of pH-titration curves of complex molecules with multiple ionizable groups could be facilitated using results of ab initio molecular dynamics simulations.
25

Unravelling The Regulators Of Translation And Replication Of Hepatitis C Virus

Ray, Upasana January 2011 (has links) (PDF)
Unravelling the regulators of translation and replication of Hepatitis C virus Hepatitis C virus (HCV) is a positive sense, single stranded RNA virus belonging to the genus Hepacivirus and the family Flaviviridae. It infects human liver cells predominantly. Although, the treatment with α interferon and ribavirin can control HCV in some cases, they fail to achieve sustained virological response in others, thus emphasizing the need of novel therapeutic targets. The viral genome is 9.6 kb long consisting of a 5’ untranslated region (5’UTR), a long open reading frame (ORF) that encodes the viral proteins and the 3’ untranslated region (3’UTR). The 5’UTR contains a cis acting element, the internal ribosome entry site (IRES) that mediates the internal initiation of translation. The HCV 5’UTR is highly structured and consists of four major stem-loops (SL) and a pseudoknot structure. HCV proteins are synthesized by the IRES mediated translation of the viral RNA, which is the initial obligatory step after infection. The viral proteins are synthesized in the form of a long continuous chain of proteins, the polyprotein, which is then processed by the host cell and the viral proteases. Once viral proteins are synthesized sufficiently, the viral RNA is replicated. However the mechanism of switch from translation to viral RNA replication is not well understood. Several host proteins as well as the viral proteins help in the completion of various steps in the HCV life cycle. In this thesis, the role of two such factors in HCV RNA translation and replication has been characterized and exploited to develop anti-HCV peptides. The HCV proteins are categorized into two major classes based on the functions broadly: the non structural and the structural proteins. HCV NS3 protein (one of the viral non structural proteins) plays a central role in viral polyprotein processing and RNA replication. In the first part of the thesis, it has been demonstrated that the NS3 protease (NS3pro) domain alone can specifically bind to HCV-IRES RNA, predominantly in the SLIV region. The cleavage activity of the NS3 protease domain is reduced upon HCV-RNA binding owing to the participation of the catalytic triad residue (Ser 139) in this RNA protein interaction. More importantly, NS3pro binding to the SLIV region hinders the interaction of La protein, a cellular IRES-trans acting factor required for HCV IRES-mediated translation, thus resulting in the inhibition of HCV-IRES activity. Moreover excess La protein could rescue the inhibition caused by the NS3 protease. Additionally it was observed that the NS3 protease and human La protein could out-compete each other for binding to the HCV SL IV region indicating that these two proteins share the binding region near the initiator AUG which was further confirmed using RNase T1 foot printing assay. Although an over expression of NS3pro as well as the full length NS3 protein decreased the level of HCV IRES mediated translation in the cells, replication of HCV RNA was enhanced significantly. These observations suggested that the NS3pro binding to HCV IRES reduces translation in favour of RNA replication. The competition between the host factor (La) and the viral protein (NS3) for binding to HCV IRES might contribute in the regulation of the molecular switch from translation to replication of HCV. In the second part the interaction of NS3 protease and HCV IRES has been elucidated in detail and the insights obtained were used to target HCV RNA function. Computational approach was used to predict the putative amino acid residues within the protease that might be involved in the interaction with the HCV IRES. Based on the predictions a 30-mer peptide (NS3proC-30) was designed from the RNA binding region. This peptide retained the RNA binding ability and also inhibited IRES mediated translation. The NS3proC-30 peptide was further shortened to 15-mer length (NS3proC-C15) and demonstrated ex vivo its ability to inhibit translation as well as replication. Additionally, its activity was tested in vivo in a mice model by encapsulating the peptide in Sendai virus based virosome followed by preferential delivery in mice liver. This virosome derived from Sendai virus F protein has terminal galactose moiety that interacts with the asialoglycoprotein receptor on the hepatocytes leading to membrane fusion and release of contents inside the cell. Results suggested that this peptide can be used as a potent anti-HCV agent. It has been shown earlier from our laboratory, that La protein interacts with HCVIRES near initiator AUG at GCAC motif by its central RNA recognition motif, the RRM2 (residues 112-184). A 24 mer peptide derived from this RRM2 of La (LaR2C) retained RNA binding ability and inhibited HCV RNA translation. NMR spectroscopy of the HCV-IRES bound peptide complex revealed putative contact points, mutations at which showed reduced RNA binding and translation inhibitory activity. The residues responsible for RNA recognition were found to form a turn in the RRM2 structure. A 7-mer peptide (LaR2C-N7) comprising this turn showed significant translation inhibitory activity. The bound structure of the peptide inferred from transferred NOE (Nuclear Overhauser Effect) experiments suggested it to be a βturn. Interestingly, addition of hexa-arginine tag enabled the peptide to enter Huh7 cells and showed inhibition HCV-IRES function. More importantly, the peptide significantly inhibited replication of HCVRNA. Smaller forms of this peptide however failed to show significant inhibition of HCV RNA functions suggesting that the 7-mer peptide as the smallest but efficient anti-HCV peptide from the second RNA recognition motif of the human La protein. Further, combinations of the LaR2C-N7 and NS3proC-C15 peptide showed better inhibitory activity. Both the peptides were found to be interacting at similar regions of SLIV around the initiator AUG. The two approaches have the potential to block the HCV RNA-directed translation by targeting the host factor and a viral protein, and thus can be tried in combination as a multi drug approach to combat HCV infection. Taken together, the study reveals important insights about the complex regulation of the HCV RNA translation and replication by the host protein La and viral NS3 protein. The interaction of the NS3 protein with the SLIV of HCV IRES leads to dislodging of the human La protein to inhibit the translation in favour of the RNA replication. These two proteins thus act as the regulators of the translation and the replication of viral RNA. The peptides derived from these regulators in turn regulate the functions of these proteins and inhibit the HCV RNA functions.
26

Strukturní a funkční charakterizace inhibice flavivirové methyltransferasy / Structural and functional characterization of a flaviviral methyltransferase

Kúdelová, Veronika January 2021 (has links)
Recently, non-cellular viral agents became the focus of a large number of scientific groups. A prominent and widespread group of these viruses are flaviviruses, which include, for example, Zika virus, Dengue fever virus, tick-borne encephalitis virus and West Nile virus. There is a considerable diversity among these viruses, however, highly conserved proteins can be found throughout this viral genus. The largest and most conserved protein encoded by flaviviruses is the nonstructural NS5 protein. Its N-terminal domain bears the methyltransferase (MTase) activity. Thanks to the methylation of its genome, it allows the virus to initiate translation and at the same time mask it from the host's immune system. By blocking the active site of this enzyme with a small molecule, viral infection could be stopped not only in one flavivirus, but, due to the high conservation of MTases, in all other flaviviruses. This diploma thesis deals with the aforementioned MTase domain of the NS5 protein, specifically of the West Nile virus (WNV). After designing an insert encoding the WNV MTase domain, amplifying it and ligating it into the vector, the MTase domain was prepared by a recombinant expression, followed by purification. Subsequently, complexes of the protein with small molecules (MTase ligands) were formed, in...
27

Spliceosome SNRNP200 promotes viral RNA sensing and IRF3 activation of antiviral response

Tremblay, Nicolas 11 1900 (has links)
No description available.
28

Characterization of Host Protein Interactions with HCV RNA : Implications in Viral Translation, Replication and Design of Antivirals

Bhat, Prasanna January 2014 (has links) (PDF)
HCV genome is a positive sense single-stranded RNA containing a single open reading frame (ORF) flanked by untranslated regions (UTRs), 5’UTR and 3’UTR.Initiation of HCV RNA translation is mediated by internal ribosome entry site (IRES) present in 5’ UTR and this process is independent of cap-structure and requires only a small subset of canonical initiation factors. Hence, HCV IRES-mediated translation initiation mechanism is quite different from canonical cellular mRNA translation initiation. The IRES is organized into highly structured domains, namely domain II, III and IV. High affinity interactions between structured RNA elements present in the IRES and 40S ribosomal proteins mediate 40S recruitment to HCV IRES. However, details of the RNA elements and region of ribosomal proteins involved in these interactions are poorly understood. In recent days, RNA-based molecules like siRNAs, antisense RNAs and RNA decoys have become promising candidates for antiviral molecules. So designing short RNA molecules that target unique HCV translation initiation mechanism might help in developing novel anti-HCV molecules. HCV 3’UTR and antisense-5’ UTRs serve as sites for replication initiation to synthesize negative and positive strand and this process is catalyzed by NS5B protein (RNA-dependent RNA polymerase). Hence, host proteins binding to both 3’UTR and antisense-5’UTR might play important role in HCV replication. This puts the study of HCV RNA–host protein interactions and its role in viral translation and replication in perspective. Studying the HCV IRES-ribosomal protein S5 interactions and its role in HCV IRES function Previous studies from our laboratory have demonstrated that binding of La protein to GCAC close to initiator AUG enhances ribosomal protein S5 (RPS5) binding with HCV IRES and stimulates HCV translation. However in-detail study on HCV IRES–RPS5 interactions and its implication on HCV translation initiation were lacking. In present study computational modelling suggested that domain II and IV interact majorly with the beta hairpin structure and C-terminal helix of RPS5. Filter-binding and UV cross-linking studies with peptides derived from predicated RNA-binding region of RPS5 and mutational studies with RPS5 demonstrated that beta hairpin structure present in RPS5 is critical for IRES–RPS5 interaction. In parallel, we have studied RNA elements involved in the IRES–RPS5 interactions using deletions and substitution mutations, which we had generated on the basis of the computational model. Direct and competition UV cross-linking experiments performed with these IRES mutants and 40S subunits as a source of RPS5 suggested that structure and sequence of both domain II and IV play crucial role in IRES–RPS5 interactions. We further investigated the effect of these mutations on IRES activity by in vitro translation assay and found that all the mutants that were compromised in binding to RPS5 showed reduced IRES activity. Moreover, ribosome assembly experiments on HCV IRES demonstrated that mutations affecting IRES–RPS5 interactions result in reduction of 80S peak and slight increase of 48S peak. Since the 40S subunit had been previously reported to bind with HCV 3’UTR, we explored the possible interaction of RPS5 with HCV 3’UTR. From direct and competition UV cross-linking assays, we found that RPS5 does not bind to 3’UTR and the interaction is unique to IRES (5’UTR). Interestingly, partial silencing of RPS5 preferentially inhibited HCV translation with marginal effect on cap-dependent translation. Recently, reduction in 40S subunit abundance was reported to preferentially inhibit HCV translation. So, we investigated the abundance of free 40S subunit upon silencing RPS5 and results showed reduction in free 40S subunit level. So, we hypothesize that silencing of RPS5 reduces free 40S abundance to inhibit HCV translation. Taken together, results identified specific RNA elements present in HCV IRES that are critical for IRES–RPS5 interactions and demonstrated the role of these interactions in HCV translation initiation. Targeting ribosome assembly on HCV IRES using short RNAs Stem-loops (SL) IIIe and IIIf of HCV IRES are known to play an important role in stable IRES–40S complex formation. However interaction of these stem-loops with 40S subunit in isolation, independent of other regions of HCV IRES, was not studied. In this study, using electrophoretic mobility shift assay (EMSA) and sucrose gradient centrifugation experiments, we demonstrate that short RNA containing both SLIIIe and SLIIIf together (SLRef RNA) binds to 40S subunit, while short RNAs containing either of the stem-loops (SLRe RNA and SLRf RNA) lose their ability to interact with 40S subunit. Further, SLRef RNA inhibited ribosome assembly on the IRES, whereas SLRe and SLRf RNA failed to inhibit the same. Since SLRef RNA is derived from IRES, we investigated the interaction SLRef RNA with IRES–trans-acting factors (ITAFs). UV cross-linking of radio-labelled HCV IRES with cytoplasmic extract (S10) in presence of unlabelled short RNAs suggested possible interactions of La and RPS5 proteins with SLRef RNA. Studies with recombinant La protein and RPS5 further confirmed their interaction with SLRef RNA. Ex vivo experiments with HCV bicistronic RNA suggested that SLRef RNA specifically inhibits HCV translation. In addition to that SLRef RNA inhibited the HCV RNA synthesis in JFH1 HCV cell culture system. Moreover, specific delivery of pSUPER construct expressing SLRef RNA (pSUPERSLRef) to mice liver along with HCV bicistronic construct using Sendai virosomes demonstrated specific inhibition of HCV IRES activity by SLRef RNA in mice hepotocytes. In summary, short RNA derived from HCV IRES was shown to bind with La protein and RPS5 to inhibit ribosome assembly on HCV IRES. Further, targeted delivery of SLRef RNA into mice liver using Sendai virosome resulted in inhibition of HCV RNA translation in mice hepatocytes. Characterizing the interaction of host proteins with antisense-5’UTR and 3’UTR and its significance in HCV replication Antisense-5’UTR and 3’UTR of HCV RNA are the sites of replication initiation. Hence, host proteins binding to both of these RNA sequences are potential candidates for regulation of HCV replication. In this study, we have investigated host proteins binding with antisense-5’UTR and 3’UTRof HCV RNA by performing UV cross-linking experiments with cytoplasmic extract of Huh7 cells, and found that a protein of ~42kDa protein interacts with both antisense-5’UTR and 3’UTR. Based on earlier report, we predicted that the ~42kDa protein could be hnRNPC1/C2. Results of UV cross-linking followed by immuno pull-down (UV-IP assay) and UV cross-linking experiments with recombinant hnRNPC1 protein confirmed that hnRNPC1 indeed binds to antisense-5’UTR and 3’UTR. Further, filter-binding experiments demonstrated that hnRNPC1 protein binds to 3’UTR with higher affinity compared to antisense-5’UTR. Subsequently, we investigated the regions within 3’UTR and antisense-5’UTR that interact with hnRNPC1protein. Results demonstrated that poly-(U/UC) region of 3’UTR and region containing stem-loops SL-IIIa’, SL-IIIb’, SL-IIIcdef’ and SL-IV’ in antisense-5’UTR were mostly involved in the interaction. Interestingly, studies with confocal microscopy suggested that hnRNPC1/C2 re-localizes from nucleus to cytoplasm upon JFH1 infection, which might in turn influence HCV replication. To investigate the role of hnRNPC1/C2 in HCV replication, partial silencing of hnRNPC1/C2 was performed in HCV cell culture system (JFH1) and results demonstrated that hnRNPC1/C2 is critical for HCV RNA synthesis. However experiments with HCV bicistronic RNA suggested that hnRNPC1/C2 does not play significant role in HCV translation. Taken together, results suggested that hnRNPC1/C2 re-localizes from nucleus to cytoplasm upon JFH1 infection and binds to HCV 3’UTR and antisense- 5’UTR to regulate HCV replication. In summary, this thesis provides novel insights into the interaction of host proteins with HCV RNA and its significance in HCV translation and replication. Inhibition of the ribosome assembly and consequent reduction in HCV translation with mutations interfering with IRES–RPS5 interaction, reported in the present study, unfolds the novel role of this interaction in HCV translation. Further, results obtained in the present study with a small RNA SLRef, derived from HCV IRES, provide proof of concept for using short RNAs to specifically inhibit HCV translation. In addition, studies of interaction of hnRNPC1/C2 with HCV RNA and its re-localization upon HCV infection sheds light on the significance of host–virus interaction in viral RNA replication.

Page generated in 0.0588 seconds