Spelling suggestions: "subject:"viscous flow"" "subject:"discous flow""
201 |
Analysis of differential diffusion phenomena in high enthalpy flows, with application to thermal protection material testing in ICP facilitiesRini, Pietro 16 March 2006 (has links)
This thesis presents the derivation of the theory leading to the determination of the governing equations of chemically reacting flows under local thermodynamic equilibrium, which rigorously takes into account effects of elemental (de)mixing. As a result, new transport coefficients appear in the equations allowing a quantitative predictions and helping to gain deeper insight into the physics of chemically reacting flows at and near local equilibrium. These transport coefficients have been computed for both air and carbon dioxide mixtures allowing the application of this theory to both Earth and Mars entry problems in the framework of the methodology for the determination of the catalytic activity of Thermal Protections Systems (TPS) materials.<p>Firstly, we analyze the influence of elemental fraction variations on the computation of thermochemical equilibrium flows for both air and carbon dioxide mixtures. To this end, the equilibrium computations are compared with several chemical regimes to better analyze the influence of chemistry on wall heat flux and to observe the elemental fractions behavior along a stagnation line. The results of several computations are presented to highlight the effects of elemental demixing on the stagnation point heat flux and chemical equilibrium composition for air and carbon dioxide mixtures. Moreover, in the chemical nonequilibrium computations, the characteristic time of chemistry is artificially decreased and in the limit the chemical equilibrium regime, with variable elemental fractions, is achieved. Then, we apply the closed form of the equations governing the behavior of local thermodynamic equilibrium flows, accounting for the variation in local elemental concentrations in a rigorous manner, to simulate heat and mass transfer in CO2/N2 mixtures. This allows for the analysis of the boundary layer near the stagnation point of a hypersonic vehicle entering the true Martian atmosphere. The results obtained using this formulation are compared with those obtained using a previous form of the equations where the diffusive fluxes of elements are computed as a linear combination of the species diffusive fluxes. This not only validates the new formulation but also highlights its advantages with respect to the previous one :by using and analyzing the full set of equilibrium transport coefficients we arrive at a deep understanding of the mass and heat transfer for a CO2/N2 mixture.<p>Secondly, we present and analyze detailed numerical simulations of high-pressure inductively coupled air plasma flows both in the torch and in the test chamber using two different mathematical formulations: an extended chemical non-equilibrium formalism including finite rate chemistry and a form of the equations valid in the limit of local thermodynamic equilibrium and accounting for the demixing of chemical elements. Simulations at various operating pressures indicate that significant demixing of oxygen and nitrogen occurs, regardless of the degree of nonequilibrium in the plasma. As the operating pressure is increased, chemistry becomes increasingly fast and the nonequilibrium results correctly approach the results obtained assuming local thermodynamic equilibrium, supporting the validity of the proposed local equilibrium formulation. A similar analysis is conducted for CO2 plasma flows, showing the importance of elemental diffusion on the plasma behavior in the VKI plasmatron torch.<p>Thirdly, the extension of numerical tools developed at the von Karman Institute, required within the methodology for the determination of catalycity properties for thermal protection system materials, has been completed for CO2 flows. Non equilibrium stagnation line computations have been performed for several outer edge conditions in order to analyze the influence of the chemical models for bulk reactions. Moreover, wall surface reactions have been examined, and the importance of several recombination processes has been discussed. This analysis has revealed the limits of the model currently used, leading to the proposal of an alternative approach for the description of the flow-surface interaction. Finally the effects of outer edge elemental fractions on the heat flux map is analyzed, showing the need to add them to the list of parameters of the methodology currently used to determine catalycity properties of thermal protection materials. / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished
|
202 |
Clustered Grids And Mesh-Independence In Numerical Simulation Of 2-D Lid-Driven Cavity FlowsSundaresan, Sundaram 05 1900 (has links) (PDF)
No description available.
|
203 |
Shocks, Shock-Boundary Layer Interaction, And Transonic FlutterKarnick, Pradeepa Tumkur January 2014 (has links) (PDF)
Transonic utter is an aeroelastic instability characterized by part-chord shocks over an airfoil and single mode oscillations leading to a drop in the utter boundary. We present a numerical study that examines the influence of shocks, shock-boundary layer interactions, and three-dimensional flow features on the transonic utter boundary. Using energy concepts we show that shocks and shock-boundary layer interactions have a profound influence on the stability of an aeroelastic system. Viscosity stabilizes the aeroelastic system through thickness effects up-to the bottom of the transonic dip. Beyond, shock induced separation not only stalls the aeroelastic system, but also makes it oscillate about a new equilibrium position. In this region, where viscous effects are dominant, the inviscid utter boundary shows multiple utter points. Modal contributions to the response of the aeroelastic systems |viscous and inviscid | indicate that viscosity restricts higher mode participation. Restriction of higher modes by viscosity is responsible for the elimination of multiple utter points that are present in the inviscid case. Multiple forcing frequencies are observed in those regions of the utter boundary where viscous effects are dominant. Further, the shock dynamics exhibit shock-reversal where-in the shock motion predicted by the viscous simulation is 180_ out of phase relative to that of the inviscid case. At Mach numbers beyond the shock-stall region the shock moves close to the trailing edge of the airfoil, and inviscid and viscous simulations predict almost a similar utter boundary. Three-dimensional transonic flow structures on a finite-span wing aeroelastic model de-stabilizes it relative to an equivalent two-dimensional model.
|
204 |
Estudo de uma bomba centrífuga submersa (BCS) como medidor de vazão / Study of a centrifugal pump (ESP) utilized as flow rate measurerVaron, Mauricio Pardo, 1984- 22 August 2018 (has links)
Orientador: Antonio Carlos Bannwart / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica e Instituto de Geociências / Made available in DSpace on 2018-08-22T09:14:58Z (GMT). No. of bitstreams: 1
Varon_MauricioPardo_M.pdf: 5247609 bytes, checksum: ddfee289e17057b479b10f2913e86805 (MD5)
Previous issue date: 2013 / Resumo: O Bombeio Centrífugo Submerso (BCS) é um dos métodos mais importantes de elevação artificial de petróleo, no Brasil e no mundo. A bomba de BCS é acionada por um motor elétrico acoplado diretamente ao eixo da bomba. Comumente, possui também um conjunto de sensores que fazem o monitoramento da operação do motor, além de outras variáveis próprias como, por exemplo, o ganho de pressão gerado pela BCS. Por outro lado, a operação remota do motor na superfície se dá através de um inversor de frequência que fornece, além da rotação, o consumo elétrico da BCS. A medição da vazão de líquido produzida por cada poço é tradicionalmente realizada com instrumentação especializada de alto custo. Dado que o sensor do motor da BCS e o inversor de frequência que a opera já fornecem informações utilizadas para o monitoramento do equipamento e para o gerenciamento do poço, a vazão de líquido local na BCS poderia ser determinada com base em curvas de desempenho previamente levantadas nas condições de operação esperadas. O ganho de pressão gerado pela BCS e a potência elétrica consumida pelo motor que a aciona são as variáveis de desempenho consideradas neste estudo para avaliar a incerteza da vazão de líquido local estimada através da bomba em diversas condições de operação (incluindo escoamento bifásico e viscoso). A avaliação é feita com base na norma API RP 11S2, que estabelece as práticas recomendadas para testes de BCS / Abstract: ESP (Electrical Submersible Pump) is one the most important artificial lift methods for oil in Brazil and worldwide. The centrifugal pump is driven by an electric motor directly coupled to the pump shaft. Commonly, also has a set of sensors that monitor the electric motor operation, and other variables themselves, for example, the pressure gain generated by the ESP. Moreover, the remote operation of the equipment at the surface is performed via a frequency inverter that provides, in addition to the rotation, the power consumption of the ESP. Measurement of liquid flow rate produced by each well is traditionally performed with specialized instrumentation costly. As the motor sensor and the frequency inverter that drives the ESP already provide information used for monitoring equipment and for managing the well, the local liquid flow rate in the ESP could be determined based on correlations with these data. The pressure gain generated by the ESP and electrical power consumed by the motor are the considered variables for this study to correlate with the flow rate of fluid produced and to assess the quality of the results by analyzing uncertainties. To achieve this, a series of performance curves are obtained at different operating conditions (including two-phase flow and viscous) to observe how the uncertainty of the results are affected by correlated variables. The assessment is based on the standard API RP 11S2, which establishes best practices for testing BCS / Mestrado / Explotação / Mestre em Ciências e Engenharia de Petróleo
|
205 |
Structures actives dans un fluide visqueux : modélisation, analyse mathématique et simulations numériques / Active structures in a viscous fluid : model, mathematical analysis and numerical simulationsVergnet, Fabien 03 July 2019 (has links)
Le transport de micro-organismes et de fluides biologiques au moyen de cils et flagelles est un phénomène universel que l’on retrouve chez presque tous les êtres vivants. Le but de cette thèse est la modélisation, l’analyse mathématique et la simulation numérique de problèmes d’interaction fluide-structure qui font intervenir des structures actives, capables de se déformer d’elles-mêmes grâce à des contraintes internes, et un fluide à faible nombre de Reynolds, modélisé par les équations de Stokes. Le Chapitre 2 traite de la modélisation de ces structures actives en considérant la loi de Saint Venant-Kirchhoff dans les équations de l’élasticité et en ajoutant un terme d’activité au second tenseur de contraintes de Piola-Kirchhoff. Les équations fluide et structures sont couplées à l’interface fluide-structure et l’étude mathématique d’un problème linéarisé et discrétisé en temps est ensuite réalisée. Une reformulation sous forme d’un problème point-selle est proposée et utilisée pour la simulation numérique du problème. Le Chapitre 3 s’intéresse à l’analyse du problème d’interaction fluide-structure quasi-statique avec une structure active, pour lequel nous montrons l’existence et l’unicité, pour des données petites, d’une solution forte localement en temps. Le Chapitre 4 présente une nouvelle méthode de type domaine fictif (la méthode de prolongement régulier ) pour la résolution numérique de problèmes de transmission. La méthode est d’abord développée pour un problème de transmission de Laplace, puis étendue aux problèmes de transmission de Stokes et d’interaction fluide-structure. / The transport of microorganisms and biological fluids by means of cilia and flagella is an universal phenomenon found in almost all living beings. The aim of this thesis is to model, analyze and simulate mathematical fluid-structure interaction problems involving active structures, capable of deforming themselves through internal stresses, and a low Reynolds number fluid, modeled by Stokes equations. In Chapter 2, these active structures are modeled as elastic materials satisfying Saint Venant-Kirchhoff law for elasticity whose activity comes from the addition of an activity term to the second Piola-Kirchhoff stress tensor. Elasticity and Stokes equations are coupled on the fluid-structure interface and the mathematical study of the linearized problem discretized in time is realized. Then, the problem is formulated as a saddle-point problem which isused for numerical simulations. Chapter 3 focuses on the analysis of a quasi-static fluid-structure with an active structure, for which we show existence and uniqueness, for small data, of a strong solution locally in time. Chapter 4 presents a new fictitious domain method (the smooth extension method) for the numerical resolution of transmission problems. The method is first developed for a Laplace transmission problem and further extended to Stokes transmission and fluid-structure interaction problems.
|
206 |
Numerical simulation of the unsteady aerodynamics of flapping airfoilsYoung, John, Aerospace, Civil & Mechanical Engineering, Australian Defence Force Academy, UNSW January 2005 (has links)
There is currently a great deal of interest within the aviation community in the design of small, slow-flying but manoeuvrable uninhabited vehicles for reconnaissance, surveillance, and search and rescue operations in urban environments. Inspired by observation of birds, insects, fish and cetaceans, flapping wings are being actively studied in the hope that they may provide greater propulsive efficiencies than propellers and rotors at low Reynolds numbers for such Micro-Air Vehicles (MAVs). Researchers have posited the Strouhal number (combining flapping frequency, amplitude and forward speed) as the parameter controlling flapping wing aerodynamics in cruising flight, although there is conflicting evidence. This thesis explores the effect of flapping frequency and amplitude on forces and wake structures, as well as physical mechanisms leading to optimum propulsive efficiency. Two-dimensional rigid airfoils are considered at Reynolds number 2,000 ??? 40,000. A compressible Navier-Stokes simulation is combined with numerical and analytical potential flow techniques to isolate and evaluate the effect of viscosity, leading and trailing edge vortex separation, and wake vortex dynamics. The wake structures of a plunging airfoil are shown to be sensitive to the flapping frequency independent of the Strouhal number. For a given frequency, the wake of the airfoil exhibits ???vortex lock-in??? as the amplitude of motion is increased, in a manner analogous to an oscillating circular cylinder. This is caused by interaction between the flapping frequency and the ???bluff-body??? vortex shedding frequency apparent even for streamlined airfoils at low Reynolds number. The thrust and propulsive efficiency of a plunging airfoil are also shown to be sensitive to the flapping frequency independent of Strouhal number. This dependence is the result of vortex shedding from the leading edge, and an interaction between the flapping frequency and the time for vortex formation, separation and convection over the airfoil surface. The observed propulsive efficiency peak for a pitching and plunging airfoil is shown to be the result of leading edge vortex shedding at low flapping frequencies (low Strouhal numbers), and high power requirements at large flapping amplitudes (high Strouhal numbers). The efficiency peak is governed by flapping frequency and amplitude separately, rather than the Strouhal number directly.
|
207 |
Thermomechanical Manufacturing of Polymer Microstructures and NanostructuresRowland, Harry Dwight 04 April 2007 (has links)
Molding is a simple manufacturing process whereby fluid fills a master tool and then solidifies in the shape of the tool cavity. The precise nature of material flow during molding has long allowed fabrication of plastic components with sizes 1 mm 1 m. Polymer molding with precise critical dimension control could enable scalable, inexpensive production of micro- and nanostructures for functional or lithographic use.
This dissertation reports experiments and simulations on molding of polymer micro- and nanostructures at length scales 1 nm 1 mm. The research investigates two main areas: 1) mass transport during micromolding and 2) polymer mechanical properties during nanomolding at length scales 100 nm. Measurements and simulations of molding features of size 100 nm 1 mm show local mold geometry modulates location and rate of polymer shear and determines fill time. Dimensionless ratios of mold geometry, polymer thickness, and bulk material and process properties can predict flow by viscous or capillary forces, shape of polymer deformation, and mold fill time. Measurements and simulations of molding at length scales 100 nm show the importance of nanoscale physical processes distinct from bulk during mechanical processing. Continuum simulations of atomic force microscope nanoindentation accurately model sub-continuum polymer mechanical response but highlight the need for nanoscale material property measurements to accurately model deformation shape. The development of temperature-controlled nanoindentation enables characterization of nanoscale material properties. Nanoscale uniaxial compression and squeeze flow measurements of glassy and viscoelastic polymer show film thickness determines polymer entanglement with cooperative polymer motions distinct from those observed in bulk.
This research allows predictive design of molding processes and highlights the importance of nanoscale mechanical properties that could aid understanding of polymer physics.
|
208 |
On Viscous Flux Discretization Procedures For Finite Volume And Meshless SolversMunikrishna, N 06 1900 (has links)
This work deals with discretizing viscous fluxes in the context of unstructured data based finite volume and meshless solvers, two competing methodologies for simulating viscous flows past complex industrial geometries. The two important requirements of a viscous discretization procedure are consistency and positivity. While consistency is a fundamental requirement, positivity is linked to the robustness of the solution methodology. The following advancements are made through this work within the finite volume and meshless frameworks.
Finite Volume Method: Several viscous discretization procedures available in the literature are reviewed for: 1. ability to handle general grid elements 2. efficiency, particularly for 3D computations 3. consistency 4. positivity as applied to a model equation 5. global error behavior as applied to a model equation. While some of the popular procedures result in inconsistent formulation, the consistent procedures are observed to be computationally expensive and also have problems associated with robustness. From a systematic global error study, we have observed that even a formally inconsistent scheme exhibits consistency in terms of global error i.e., the global error decreases with grid refinement. This observation is important and also encouraging from the view point of devising a suitable discretization scheme for viscous fluxes. This study suggests that, one can relax the consistency requirement in order to gain in terms of robustness and computational cost, two key ingredients for any industrial flow solver. Some of the procedures are analysed for positivity as applied to a Laplacian and it is found that the two requirements of a viscous discretization procedure, consistency(accuracy) and positivity are essentially conflicting. Based on the review, four representative schemes are selected and used in HIFUN-2D(High resolution Flow Solver on UNstructured Meshes), an unstructured data based cell center finite volume flow solver, to simulate standard laminar and turbulent flow test cases. From the analysis, we can advocate the use of Green Gauss theorem based diamond path procedure which can render high level of robustness to the flow solver for industrial computations.
Meshless Method: An Upwind-Least Squares Finite Difference(LSFD-U) meshless solver is developed for simulating viscous flows. Different viscous discretization procedures are proposed and analysed for positivity and the procedure which is found to be more positive is employed. Obtaining suitable point distribution, particularly for viscous flow computations happens to be one of the important components for the success of the meshless solvers. In principle, the meshless solvers can operate on any point distribution obtained using structured, unstructured and Cartesian meshes. But, the Cartesian meshing happens to be the most natural candidate for obtaining the point distribution. Therefore, the performance of LSFD-U for simulating viscous flows using point distribution obtained from Cartesian like grids is evaluated. While we have successfully computed laminar viscous flows, there are difficulties in terms of solving turbulent flows. In this context, we have evolved a strategy to generate suitable point distribution for simulating turbulent flows using meshless solver. The strategy involves a hybrid Cartesian point distribution wherein the region of boundary layer is filled with high aspect ratio body-fitted structured mesh and the potential flow region with unit aspect ratio Cartesian mesh. The main advantage of our solver is in terms of handling the structured and Cartesian grid interface. The interface algorithm is considerably simplified compared to the hybrid Cartesian mesh based finite volume methodology by exploiting the advantage accrue out of the use of meshless solver. Cheap, simple and robust discretization procedures are evolved for both inviscid and viscous fluxes, exploiting the basic features exhibited by the hybrid point distribution. These procedures are also subjected to positivity analysis and a systematic global error study. It should be remarked that the viscous discretization procedure employed in structured grid block is positive and in fact, this feature imparts the required robustness to the solver for computing turbulent flows. We have demonstrated the capability of the meshless solver LSFDU to solve turbulent flow past complex aerodynamic configurations by solving flow past a multi element airfoil configuration. In our view, the success shown by this work in computing turbulent flows can be considered as a landmark development in the area of meshless solvers and has great potential in industrial applications.
|
209 |
Numerical simulation of the unsteady aerodynamics of flapping airfoilsYoung, John, Aerospace, Civil & Mechanical Engineering, Australian Defence Force Academy, UNSW January 2005 (has links)
There is currently a great deal of interest within the aviation community in the design of small, slow-flying but manoeuvrable uninhabited vehicles for reconnaissance, surveillance, and search and rescue operations in urban environments. Inspired by observation of birds, insects, fish and cetaceans, flapping wings are being actively studied in the hope that they may provide greater propulsive efficiencies than propellers and rotors at low Reynolds numbers for such Micro-Air Vehicles (MAVs). Researchers have posited the Strouhal number (combining flapping frequency, amplitude and forward speed) as the parameter controlling flapping wing aerodynamics in cruising flight, although there is conflicting evidence. This thesis explores the effect of flapping frequency and amplitude on forces and wake structures, as well as physical mechanisms leading to optimum propulsive efficiency. Two-dimensional rigid airfoils are considered at Reynolds number 2,000 ??? 40,000. A compressible Navier-Stokes simulation is combined with numerical and analytical potential flow techniques to isolate and evaluate the effect of viscosity, leading and trailing edge vortex separation, and wake vortex dynamics. The wake structures of a plunging airfoil are shown to be sensitive to the flapping frequency independent of the Strouhal number. For a given frequency, the wake of the airfoil exhibits ???vortex lock-in??? as the amplitude of motion is increased, in a manner analogous to an oscillating circular cylinder. This is caused by interaction between the flapping frequency and the ???bluff-body??? vortex shedding frequency apparent even for streamlined airfoils at low Reynolds number. The thrust and propulsive efficiency of a plunging airfoil are also shown to be sensitive to the flapping frequency independent of Strouhal number. This dependence is the result of vortex shedding from the leading edge, and an interaction between the flapping frequency and the time for vortex formation, separation and convection over the airfoil surface. The observed propulsive efficiency peak for a pitching and plunging airfoil is shown to be the result of leading edge vortex shedding at low flapping frequencies (low Strouhal numbers), and high power requirements at large flapping amplitudes (high Strouhal numbers). The efficiency peak is governed by flapping frequency and amplitude separately, rather than the Strouhal number directly.
|
210 |
Theoretical study of spatiotemporal dynamics resulting from reaction-diffusion-convection processes / Etude théorique de dynamiques spatiotemporelles résultant de processus réaction-diffusion-convectionGérard, Thomas 28 September 2011 (has links)
Dans les réacteurs industriels ou dans la nature, l'écoulement de fluides peut être couplé à des réactions chimiques. Dans de nombreux cas, il en résulte l'apparition de structures complexes dont les propriétés dépendent entre autres de la géométrie du système.<p><p>Dans ce contexte, le but de notre thèse a été d'étudier de manière théorique et sur des modèles réaction-diffusion-convection simples les propriétés de dynamiques spatio-temporelles résultant du couplage chimie-hydrodynamique. <p>Nous nous sommes focalisés sur les instabilités hydrodynamiques de digitation visqueuse et de densité qui apparaissent respectivement lorsqu'un fluide dense est placé au-dessus d'un fluide moins dense dans le champ de gravité et lorsqu'un fluide visqueux est déplacé par un fluide moins visqueux dans un milieu poreux.<p><p>En particulier, nous avons étudié les problèmes suivants:<p>- L'influence d'une réaction chimique de type A + B → C sur la digitation visqueuse. Nous avons montré que les structures formées lors de cette instabilité varient selon que le réactif A est injecté dans le réactif B ou vice-versa si ces réactifs n'ont pas un coefficient de diffusion ou une concentration initiale identiques.<p>- Le rôle de pertes de chaleur par les parois du réacteur dans le cadre de la digitation de densité de fronts autocatalytiques exothermiques. Nous avons caractérisé les conditions de stabilité de fronts en fonction des pertes de chaleur et expliqué l'apparition de zones anormalement chaudes lors de cette instabilité.<p>- L'influence de l'inhomogénéité du milieu sur la digitation de densité de solutions réactives ou non. Nous avons montré que les variations spatiales de perméabilité d'un milieu poreux peuvent figer ou faire osciller la structure de digitation dans certaines conditions.<p>- L'influence d'un champ électrique transverse sur l'instabilité diffusive et la digitation de densité de fronts autocatalytiques. Il a été montré que cette interaction peut donner lieu à des nouvelles structures et changer les propriétés du front.<p><p>En conclusion, nous avons montré que le couplage entre réactions chimiques et mouvements hydrodynamiques est capable de générer de nouvelles structures spatio-temporelles dont les propriétés dépendent entre autres des conditions imposées au système.<p>/<p>In industrial reactors or in nature, fluid flows can be coupled to chemical reactions. In many cases, the result is the emergence of complex structures whose properties depend among others on the geometry of the system.<p>In this context, the purpose of our thesis was to study theoretically using simple models of reaction-diffusion-convection, the properties of dynamics resulting from the coupling between chemistry and hydrodynamics.<p><p>We focused on the hydrodynamic instabilities of viscous and density fingering that occur respectively when a dense fluid is placed above a less dense one in the gravity field and when a viscous fluid is displaced by a less viscous fluid in a porous medium.<p><p>In particular, we studied the following issues:<p>- The influence of a chemical reaction type A + B → C on viscous fingering. We have shown that the fingering patterns observed during this instability depends on whether the reactant A is injected into the reactant B or vice versa if they do not have identical diffusion coefficients or initial concentrations.<p>- The role of heat losses through the reactor walls on the density fingering of exothermic autocatalytic fronts. We have characterized the conditions of stability of fronts depending on heat losses and explained the appearance of unusually hot areas during this instability.<p>- The influence of the inhomogeneity of the medium on the density fingering of reactive solutions or not. We have shown that spatial variations of permeability of a porous medium may freeze or generate oscillating fingering pattern under certain conditions.<p>- The influence of a transverse electric field on the Rayleigh-Taylor and diffusive instabilities of autocatalytic fronts. It was shown that this interaction may lead to new structures and may change the properties of the front.<p><p>In conclusion, we showed that the coupling between chemical reactions and hydrodynamic motions can generate new space-time structures whose properties depend among others, on the conditions imposed on the system. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0626 seconds