• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 13
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 69
  • 69
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

The "Fasting Hour" Test for Thiamine Using College Women for Subjects

Whitley, Annie Doris January 1945 (has links)
The purpose of this study is to determine the thiamine values of college women using Najjar and Holt's "fasting hour test."
62

Caracterização bioquímica da biossíntese de tiamina (vitamina B1) em Plasmodium falciparum . / Biochemical characterization of the biosynthesis of thiamine (Vitamin B1) in Plasmodium falciparum.

Fabiana Morandi Jordão 18 September 2007 (has links)
Nesta dissertação, foi caracterizada a via de biossíntese de tiamina (Vitamina B1) nas três formas intraeritrocitárias de P. falciparum. Foram realizadas marcações metabólicas, utilizando diferentes precursores radioativos envolvidos na biossíntese de tiamina, já descritos para outros organismos. A utilização do precursor [1-14C] acetato de sódio demonstrou que a via de biossíntese de tiamina encontra-se ativa em todos os estágios intraeritrocitários de P. falciparum. Investigamos os precursores que poderiam estar envolvidos na biossíntese do intermediário tiazol, e nossos dados sugerem que a cistéina é a doadora do enxofre presente na molécula de tiamina; que o aminoácido tirosina pode ser o precursor da biossíntese de tiamina, e nicotinamida não é utilizada como precursor em P. falciparum. Também se avaliou o efeito da fosmidomicina e 3ClDHP e foi demonstrado que ambos propiciaram uma inibição no crescimento dos parasitas. Estes dados sugerem que a via de biossíntese de tiamina, pode ser explorada como alvo para drogas antimaláricas, devido ausência em humanos. / In the present work we have demonstrated the biosynthesis of thiamin (vitamin B1) in the intraerytrocytic stages of P. falciparum. We have demonstrated active biosynthesis of thiamine in the three parasite stages metabolically labeled with [1-14C] sodium acetate. We also investigated which precursors could be involved in the biosynthesis of the thiazole intermediate, by metabolic labelling with different precursors. Our data suggest that the sulphur present in the thiamine molecule is formed from cysteine white that tyrosine can be the precursor of thiamine biosynthesis. Nicotinamide is not utilized as a precursor in P.falciparum. We also investigated the effect of fosmidomycin (an inhibitor of the DOXP reductoisomerase in the MEP pathway) and 3CIDHP (an analogue of bacimethrin) in vitro cultures and both showed an inhibitory effect on parasite growth. These data suggest that the biosynthesis of thiamine can be an attractive target for the development of antimalarial drugs since this pathway is absent in humans.
63

The effects of thiamin deficiency and thiamin antagonists on cardiac function in the rat

Sutherland, D. James B. 01 April 1973 (has links)
A study was made to determine what biochemical changes were involved in the slowing of the rat heart rate during thiamin deprivation, pyrithiamin or oxythiamin treatment. The appearance of bradycardia during progressive thiamin deficiency was shown to be related to the reduction in myocardial enzymatic activity of pyruvate (PDH) and 2-ketoglutarate (2-KGDH) dehydrogenase, and not due to inanition alone since pair-fed control rats did not show bradycardia until the agonal stage. Bradycardia was not the result of reduced energy since CP, ATP, ADP, and AMP levels remained normal even though PDH and 2-KGDH activity dropped to 20% of normal by the fourth week of thiamin deficiency. Pyrithiamin treatment resulted in a 46% increase in CP. The in vivo bradycardia persisted in the in vitro isolated perfused heart and was not the result of elevated blood pyruvate, lactate or H+. Abnormalities of the ECG of thiamin deficient rats did not occur until two weeks after the appearance of bradycardia, suggesting a sinus origin for the slower heart rate.
64

Sensory and nutritional quality of boneless turkey rolls as affected by thermal processing conditions for foodservice usage

Digiorgio, Angela Marie. January 1986 (has links)
Call number: LD2668 .T4 1986 D53 / Master of Science / Human Nutrition
65

Early Feeding In Lake Trout Fry (salvelinus Namaycush) As A Mechanism For Ameliorating Thiamine Deficiency Complex

Kozel, Carrie L. 01 January 2017 (has links)
Recruitment failure of lake trout (Salvelinus namaycush) in the Great Lakes has been attributed in part to the consumption of alewife (Alosa pseudoharengus) by adult lake trout, leading to Thiamine Deficiency Complex (TDC) and early mortality in fry. The current understanding of thiamine deficiency in lake trout fry is based on information from culture and hatchery settings, which do not represent conditions fry experience in the wild and may influence the occurrence of TDC. In the wild, lake trout fry have access to zooplankton immediately following hatching; previous studies found that wild fry begin feeding before complete yolk-sac absorption. However, hatchery-raised fry are not provided with food until after yolk-sac absorption, long after the development of TDC. Zooplankton are a potential source of dietary thiamine for wild fry in the early life stages that has not previously been considered in the occurrence of thiamine deficiency. We postulated that wild-hatched fry could mitigate thiamine deficiency through early feeding on natural prey. Specifically, we hypothesized 1) feeding should increase thiamine concentrations relative to unfed fry and 2) feeding should increase survival relative to unfed fry. Feeding experiments were conducted on lake trout fry reared from eggs collected from Lake Champlain in 2014 and Cayuga Lake in 2015. A fully crossed experimental design was used to determine the effect of early feeding by lake trout fry in thiamine replete and thiamine deplete treatments before and after feeding. Overall, thiamine concentrations and survival did not significantly differ between fed and unfed fry. Thiamine concentrations increased from egg stage to hatching in both years, suggesting a potential source of thiamine, which had not previously been considered, was available to the lake trout eggs during development.
66

Cholinergic cortical dysfunction in an animal model of diencephalic amnesia

Anzalone, Steven J. January 2009 (has links)
Thesis (M.S.)--State University of New York at Binghamton, Department of Psychology, 2009. / Includes bibliographical references.
67

Investigating Stability in Amorphous Solid Dispersions: A Study of the Physical and Chemical Stability of Two Salt Forms of Thiamine and the Physical Stability of Citric Acid

Seda Tuncil (5930339) 03 January 2019 (has links)
The majority of water soluble vitamin and organic acid food additives are distributed in their crystalline forms. However, when they are combined with water and other food ingredients and then exposed to a variety of unit operations, there is potential to solidify these initially crystalline ingredients in the amorphous state. Amorphous solids are generally less chemically and physically stable than their crystalline counterparts. To ensure nutrient delivery to the consumer and fulfill labeling laws, deterioration of nutrients due to unintentional amorphization is undesirable. Additionally, the potential for recrystallization of an amorphous ingredient may alter texture and redistribute water. Hence, solid state form is a critical factor dictating the stability of food formulations. Building on earlier work from my M.S. degree that demonstrated thiamine chloride hydrochloride could solidify in the amorphous state in the presence of a variety of polymers (Arioglu-Tuncil et al., 2017), a major goal of this study was to develop a comprehensive understanding of the physical and chemical stability of amorphous forms of two thiamine salts, thiamine chloride hydrochloride (TClHCl) and thiamine mononitrate (TMN), in comparison to their crystalline counterparts and each other. The objectives for this part of the work were to investigate amorphization/recrystallization tendencies of TMN and TClHCl in solid dispersions, as well as chemical stability of thiamine in the solid dispersions to understand the impact of vitamin form, physical state (amorphous vs. crystalline), polymer type and features (Tg, hygroscopicity, and ability for intermolecular interactions), storage conditions, proportion of vitamin to polymer,and pre-lyophilized solution pHs on thiamine degradation and the physical stability of dispersions. Thiamine degraded more when in the amorphous form compared to in the crystalline state. Additionally, polymer type and vitamin proportion influenced thiamine degradation, where thiamine degraded more when it was present in lower concentrations (in dispersions that had higher Tgs), and it was chemically more stable when a polymer with greater intermolecular interactions with the vitamin was used. As storage RH increased, variably hygroscopicities of the polymers resulted in different thiamine degradation rates. The pre-lyophilization pHs of the solutions had a significant impact on thiamine stability in the solid dispersions. Similar to thiamine salts, citric acid is a commonly used food ingredient with a high crystallization tendency. Following similar experimental designs for documenting the recrystallization tendencies of citric acid in amorphous solid dispersions to those used in the thiamine studies, hydrogen bonding and/or ionic interactions between polymer and citric acid were found to be the main stabilizing factor for delaying recrystallization, more than polymer Tg and hygroscopicity. The findings of this dissertation provide a powerful prediction approach to physically and chemically stabilize the small compounds in the complex food matrices for the production of high quality food products and ensuring nutrient delivery to target populations.<br>
68

Dynamics of astaxanthin, tocopherol (Vitamin E) and thiamine (Vitamin B1) in the Baltic Sea ecosystem : Bottom-up effects in an aquatic food web

Häubner, Norbert January 2010 (has links)
The thesis combines laboratory experiments and field expeditions to study production, transfer and consumption of non-enzymatic antioxidants and thiamine in an aquatic food web. In particular, I (1) documented spatial and seasonal variation of tocopherols and carotenoids in the Baltic Sea pelagic food web, and (2) examined the effects of abiotic and biotic factors on tocopherol, carotenoid and thiamine concentrations in phytoplankton, zooplankton and fish. Moderate differences in temperature and salinity affected α-tocopherol, β-carotene and thiamine production in microalgae. Furthermore, the results suggest that acute stress favors the expression of non-enzymatic antioxidants rather than enzymatic antioxidants. Because production of α-tocopherol, β-carotene and thiamine differ markedly between microalgae, the availability of non-enzymatic antioxidants and thiamine is likely to be highly variable in the Baltic Sea and is difficult to predict. The transfer of non-enzymatic antioxidants from phytoplankton to zooplankton was biomass dependent. The field expeditions revealed that phytoplankton biomass was negatively associated with α-tocopherol concentration in mesozooplankton. Thus, increased eutrophication of the Baltic Sea followed by an increase in phytoplankton biomass could decrease the transfer of essential biochemicals to higher levels in the pelagic food web. This could lead to deficiency syndromes, of the kind already observed in the Baltic Sea. Astaxanthin is synthesized from precursors provided by the phytoplankton community. Thus biomass dependent transfer of astaxanthin precursors from phytoplankton to zooplankton could be responsible for astaxanthin deficiency in zooplanktivorous herring. Astaxanthin in herring consists mostly of all-Z-isomers, which are characterized by low bioavailability. Therefore, astaxanthin deficiency in salmon could be explained by the low concentration of this substance and its isomeric composition in herring.
69

Computational And Biochemical Studies On The Enzymes Of Type II Fatty Acid Biosynthesis Pathway : Towards Antimalarial And Antibacterial Drug Discovery

Kumar, Gyanendra 02 1900 (has links)
Malaria, caused by the parasite Plasmodium, continues to exact high global morbidity and mortality rate next only to tuberculosis. It causes 300-500 million clinical infections out of which more than a million people succumb to death annually. Worst affected are the children below 5 years of age in sub-Saharan Africa. Plasmodium is a protozoan parasite classified under the phylum Apicomplexa that also includes parasites such as Toxoplasma, Lankestrella, Eimeria and Cryptosporidium. Of the four species of Plasmodium affecting man viz., P. falciparum, P. vivax, P. ovale and P. malariae, Plasmodium falciparum is the deadliest as it causes cerebral malaria. The situation has worsened recently with the emergence of drug resistance in the parasite. Therefore, deciphering new pathways in the parasite for developing lead antimalarial compounds is the need of the hour. The discovery of the type II fatty acid biosynthesis pathway in Plasmodium falciparum has opened up new avenues for the design of new antimalarials as this pathway is different from the one in human hosts. Although many biochemical pathways such as the purine, pyrimidine and carbohydrate metabolic pathways, and the phospholipid, folate and heme biosynthetic pathways operate in the malaria parasite and are being investigated for their amenability as antimalarial therapeutic targets, no antimalarial of commercial use based on the direct intervention of these biochemical pathways has emerged so far. This is due to the fact that the structure and function of the targets of these drugs overlaps with that of the human host. A description of the parasite, its metabolic pathways, efforts to use these pathways for antimalarial drug discovery, inhibitors targeting these pathways, introduction to fatty acid biosynthesis pathway, discovery of type II fatty acid biosynthesis pathway in Plasmodium falciparum and prospects of developing lead compounds towards antimalarial drug discovery is given in Chapter 1 of the thesis. In the exploration of newly discovered type II fatty acid biosynthesis pathway of P. falciparum as a drug target for antimalarial drug discovery, one of the enzymes; β-hydroxyacyl- acyl carrier protein dehydratase (PfFabZ) was cloned and being characterized in the lab. The atomic structure of PfFabZ was not known till that point of time. Chapter 2 describes the homology modeled structure of PfFabZ and docking of the discovered inhibitors with this structure to provide a rationale for their inhibitory activity. Despite low sequence identity of ~ 21% with the closest available atomic structure then, E. coli FabA, a good model of PfFabZ could be built. A comparison of the modeled structure with recently determined crystal structure of PfFabZ is provided and design of new potential inhibitors is described. This study provides insights to further improve the inhibition of this enzyme. Enoyl acyl carrier protein reductase (ENR) is the most important enzyme in the type II fatty acid biosynthesis pathway. It has been proved as an important target for antibacterial as well as antimalarial drug discovery. The most effective drug against tuberculosis – Isoniazid targets this enzyme in M. tuberculosis. The well known antibacterial compound – Triclosan, a diphenyl ether, also targets this enzyme in P. falciparum. I designed a number of novel diphenyl ether compounds. Some of these compounds could be synthesized in the laboratory. Chapter 3 describes the design, docking studies and inhibitory activity of these novel diphenyl ether compounds against PfENR and E. coli ENR. Some of these compounds inhibit PfENR in nanomolar concentrations and EcENR in low micromolar concentrations, and many of them inhibit the growth of parasites in culture also. The structure activity relationship of these compounds is discussed that provides important insights into the activity of this class of compounds which is a step towards developing this class of compounds into an antimalarial and antibacterial candidate drugs. Components of the green tea extract and polyphenols are well known for their medicinal properties since ages. Recently they have been shown to inhibit components of the bacterial fatty acid biosynthesis pathway. Some selected tea catechins and polyphenols were tested in the laboratory for their inhibitory activity against PfENR. I conducted docking studies to find their probable binding sites in PfENR. On kinetic analysis of their inhibition, these compounds were found to be competitive with respect to the cofactor NADH. This has an implication that they could potentiate inhibition of PfENR by Triclosan in a fashion similar to that of NADH. As a model case, one of the tea catechins; EGCG ((-) Epigalocatechin gallate) was tested for this property. Indeed, in the presence of EGCG, the inhibition of PfENR improved from nanomolar to picomolar concentration of Triclosan.conducted molecular modeling studies and propose a model for the formation of a ternary complex consisting of EGCG, Triclosan and PfENR. Docking studies of these inhibitors and a model for the ternary complex is described in Chapter 4. Docking simulations show that these compounds indeed occupy NADH binding site. This study provides insights for further improvements in the usage of diphenyl ethers in conjugation or combination with tea catechins as possible antimalarial therapeutics. In search for new lead compounds against deadly diseases, in silico virtual screening and high throughput screening strategies are being adopted worldwide. While virtual screening needs a large amount of computation time and hardware, high throughput screening proves to be quite expensive. I adopted an intermediate approach, a combination of both these strategies and discovered compounds with a 2-thioxothiazolidin-4-one core moiety, commonly known as rhodanines as a novel class of inhibitors of PfENR with antimalarial properties. Chapter 5 describes the discovery of this class of compounds as inhibitors of PfENR. A small but diverse set of 382 compounds from a library of ~2,00,000 compounds was chosen for high throughput screening. The best compound gave an IC50 of 6.0 µM with many more in the higher micromolar range. The compound library was searched again for the compounds similar in structure with this best compound, virtual screening was conducted and 32 new compounds with better binding energies compared to the first lead and reasonable binding modes were tested. As a result, a new compound with an IC50 of 240 nM was discovered. Many more compounds gave IC50 values in 3-15 µM range. The best inhibitor was tested in red blood cell cultures of Plasmodium, it was found to inhibit the growth of the malaria parasite at an IC50 value of 0.75 µM. This study provides a new scaffold and lead compounds for further exploration towards antimalarial drug discovery. The summary of the results and conclusions of studies described in various chapters is given in Chapter 6. This chapter concludes the work described in the thesis. Cloning, over-expression and purification of PanD from M. tuberculosis, FabA and FabZ from E. coli are described in the Appendix.

Page generated in 0.0453 seconds