51 |
Regional Stormwater Management Facility System at the School of Veterinary Medicine, Blacksburg, VirginiaWolter, Matthias 12 March 1996 (has links)
Continuing development of the Virginia Tech campus is increasing downstream flooding and water quality problems. To address these problems, the University has proposed the construction of a stormwater management facility to control the quantity and quality of stormwater releases to Strouble Creek, a tributary of the New River.
The overall goal of this project is to design a stormwater management facility proposed for the Virginia-Maryland College of Veterinary Medicine at Virginia Tech in Blacksburg, Virginia that will reduce present and anticipated downstream flooding and water quality problems.
Specific objectives of the project are:
* control of flooding in lower areas by reducing the peak discharge while disturbing existing wetlands as little as possible,
* address removal of major NPS pollutants such as total phosphorus (TP), total nitrogen (TN), metals, organic compounds related to petroleum and gasoline, and suspended sediment (SS) from stormwater runoff, and
* design of a dam system that is able to withstand all driving forces and constructed in accordance with governing regulations.
The design requirement to limit wetland disturbance below one acre was maintained. The requirement set by officials of Virginia Tech is based on the Nationwide Permit 26 of the Wetland Regulations. An individual permit process is thus avoided. Considering this demand, however, the freedom of the stormwater management facility design was significantly restricted. Resulting from the previous restrictions mentioned, the facility will include two ponds in series - a lower, dry pond and an upper, wet pond. The stormwater management system is designed to reduce the peak discharge. The dry pond is designed to detain water only for a short period of time, as opposed to the wet pond which is designed to retain water, thereby maintaining a permanent pool of water, and to change the characteristics of runoff.
The wet pond was chosen to be of an Extended Detention wetland type. Aspects such as the availability of suitable area and detention volume governed the decision to make use of this type of stormwater wetland. The constraint on a maximum possible water surface elevation due to the Veterinary School1s road embankment, which crest elevation is at 2023 ft, was considered in the design.
The stormwater management facility was designed to meet water quantity control requirements and to address water quality benefits. Storm water management regulations intending to mitigate the adverse effects of land development to streams and waterways were met. Requirements to limit peak discharges from 2-year and 10-year events to existing discharge levels were achieved.
Several outlet structures for each of the ponds were investigated. The structures proposed are a perforated riser/broad-crested weir for the wet pond and a proportional weir for the dry pond. They were chosen as a result of analyses on hydraulic performance, maximum water surface elevations, drawdown times, peak discharge rates, and pollutant removal capabilities.
The average pollutant removal capability of 75% of TSS, 45% TP, and 25% TN for an extended stormwater wetland, as found in the literature, is expected to be lower for the proposed facility, since the wetland-to-watershed-area ratio is considerably smaller (0.22%) than the required minimum ratio of 1%. However, other suggested desirable parameter for extended detention wetland systems such as required treatment volume, effective flow path length, and dry weather water balance will be maintained.
The structural design of the dams was based on experience and research data. The dams are designed to consist of two zones, shell and core. The core extends as a cutoff trench 4 feet below the ground surface. Additionally, toe drain trenches and anti-seep collars along the pipe where penetrating the dam will be placed to collect and reduce seepage, respectively. Special considerations toward seepage problems were taken into account for both dams by placing a cutoff trench and a toe drain trench.
Note: The appendix of this project report contains four AutoCAD files, that can only be viewed using AutoCAD. / Master of Engineering
|
52 |
Space-Time Codes for High Data Rate Wireless CommunicationsGozali, Ran 26 April 2002 (has links)
Space-time codes (STC) are a class of signaling techniques, offering coding and diversity gains along with improved spectral efficiency. These codes exploit both the spatial and the temporal diversity of the wireless link by combining the design of the error correction code, modulation scheme and array processing. STC are well suited for improving the downlink performance, which is the bottleneck in asymmetric applications such as downstream Internet.
Three original contributions to the area of STC are presented in this dissertation. First, the development of analytic tools that determine the fundamental limits on the performance of STC in a variety of channel conditions. For trellis-type STC, transfer function based techniques are applied to derive performance bounds over Rayleigh, Rician and correlated fading environments. For block-type STC, an analytic framework that supports various complex orthogonal designs with arbitrary signal cardinalities and array configurations is developed. In the second part of the dissertation, the Virginia Tech Space-Time Advanced Radio (VT-STAR) is designed, introducing a multi-antenna hardware laboratory test bed, which facilitates characterization of the multiple-input multiple-output (MIMO) channel and validation of various space-time approaches. In the third part of the dissertation, two novel space-time architectures paired with iterative processing principles are proposed. The first extends the suitability of STC to outdoor wireless communications by employing iterative equalization/decoding for time dispersive channels and the second employs iterative interference cancellation/decoding to solve the error propagation problem of Bell-Labs Layered Space-Time Architecture (BLAST). Results show that remarkable energy and spectral efficiencies are achievable by combining concepts drawn from space-time coding, multiuser detection, array processing and iterative decoding. / Ph. D.
|
53 |
Modeling Diesel Bus Fuel Consumption and Dynamically Optimizing Bus Scheduling EfficiencyEdwardes, William Andrew 11 August 2014 (has links)
There are currently very few models that estimate diesel and hybrid bus fuel consumption levels. Those that are available either require significant dynamometer data gathering to calibrate the model parameters and also produce a bang-bang control system (optimum control entails maximum throttle and braking input). This thesis extends the Virginia Tech Comprehensive Power-Based Fuel Consumption Model (VT-CPFM) to model diesel buses and develops an application for it. A procedure is developed to calibrate the bus parameters using publicly available data from the Altoona Bus Research and Testing Center. In addition, calibration is also made using in-field bus fuel consumption data. The research presented in this thesis calibrates model parameters for a total of 10 standard diesel buses and 3 hybrid buses from Altoona and 10 buses from Blacksburg Transit. In the case of the Altoona data, the VT-CPFM estimated fuel consumption levels on the Orange County bus cycle dynamometer test produce an average error of 4.7%. The estimation error is less than 6% for all but two buses with a maximum error of 10.66% for one hybrid bus. The VT-CPFM is also validated using on-road fuel consumption measurements that are derived by creating drive cycles from acceleration information producing an average estimation error of 22%. These higher errors are attributed to the errors associated with constructing the in-field drive cycles given that they are not available. In the case of the Blacksburg Transit buses, the calibrated parameters produce a low sum of mean squared error, less than 0.002, and a coefficient of determination greater than 0.93. Finally an application of the VT-CPFM is presented in the form of a dynamic bus scheduling algorithm. / Master of Science
|
54 |
Predicting Phase Equilibria Using COSMO-Based Thermodynamic Models and the VT-2004 Sigma-ProfileOldland, Richard Justin 07 December 2004 (has links)
Solvation-thermodynamics models based on computational quantum mechanics, such as the conductor-like screening model (COSMO), provide a good alternative to traditional group-contribution methods for predicting thermodynamic phase behavior. Two COSMO-based thermodynamic models are COSMO-RS (real solvents) and COSMO-SAC (segment activity coefficient). The main molecule-specific input for these models is the sigma profile, or the probability distribution of a molecular surface segment having a specific charge density. Generating the sigma profiles represents the most time-consuming and computationally expensive aspect of using COSMO-based methods. A growing number of scientists and engineers are interested in the COSMO-based thermodynamic models, but are intimidated by the complexity of generating the sigma profiles. This thesis presents the first free, open-literature database of 1,513 self-consistent sigma profiles, together with two validation examples. The offer of these profiles will enable interested scientists and engineers to use the quantum-mechanics-based, COSMO methods without having to do quantum mechanics. This thesis summarizes the application experiences reported up to October 2004 to guide the use of the COSMO-based methods. Finally, this thesis also provides a FORTRAN program and a procedure to generate additional sigma profiles consistent with those presented here, as well as a FORTRAN program to generate binary phase-equilibrium predictions using the COSMO-SAC model. / Master of Science
|
55 |
VT-STAR design and implementation of a test bed for differential space-time block coding and MIMO channel measurementsChembil Palat, Ramesh 18 November 2002 (has links)
Next generation wireless communications require transmission of reliable high data rate services. Second generation wireless communications systems use single-input multiple-output (SIMO) channel in the reverse link, meaning one transmit antenna at the user terminal and multiple receive antennas at the base station. Recently, information theoretic research has shown an enormous potential growth in the capacity of wireless systems by using multiple antenna arrays at both ends of the link. Space-time coding exploits the spatial-temporal diversity provided by the multiple input multiple output (MIMO) channels, significantly increasing both system capacity and the reliability of the wireless link. The Virginia Tech Space-Time Advanced Radio (VT-STAR) system presents a test bed to demonstrate the capabilities of space-time coding techniques in real-time. Core algorithms are implemented on Texas Instruments TMS320C67 Evaluation Modules (EVM). The radio frequency subsystem is composed of multi-channel transmitter and receiver chains implemented in hardware for over the air transmission. The capabilities of the MIMO channel are demonstrated in a non-line of sight (NLOS) indoor environment. Also to characterize the capacity gains in an indoor environment this test bed was modified to take channel measurements. This thesis reports the system design of VT-STAR and the channel capacity gains observed in an indoor environment for MIMO channels. / Master of Science
|
56 |
Darstellung und Charakterisierung neuartiger, chiraler, basischer Benzilsäureester mit anticholinerger WirkungSelent, Jana 05 January 2005 (has links)
Basische Benzilsäureester stellen mit ihrer ausgeprägten anticholinergen Wirksamkeit potenzielle Arzneistoffe zur Behandlung der Harninkontinenz, der Ulkuserkrankung und des Morbus Parkinson dar. Von besonderem Interesse sind Benzilsäurevertreter, die neben anticholinergen auch dopaminerge Effekte aufweisen. Wegen ihrer dualistischen Wirkung könnten sie eine neue Klasse von Antiparkinsonica begründen. Aufgrund der vielfältigen Funktionen von Muscarinrezeptoren treten bei wenig selektiv wirksamen Arzneistoffen atropinartige Nebenwirkungen auf. Mit der Entwicklung von Verbindungen, die eine erhöhte muscarinerge Subtypenselektivität besitzen, lassen sich Nebenwirkungen reduzieren. Ziel der Arbeit war eine Wirkungsoptimierung chiraler N-Methyl-4-piperidyl benzilate durch Variation von stereochemischen Parametern und Einführen elektronisch verschiedenartiger Substituenten in die aromatischen Ringe. In Radioligand-Bindungsstudien an M1- bis M3-Rezeptoren wurden die Auswirkungen der sterischen und strukturellen Variationen untersucht. Die Ergebnisse der Bindungsstudien zeigen, dass sich Affinität und Subtypenselektivität durch die absolute Konfiguration des stereogenen Zentrums und die Art der Kernsubstitution modifizieren lassen. Mit Hilfe von Molecular Modelling ist es gelungen, auf Basis der experimentellen Bindungsdaten ein aussagekräftiges Rezeptormodell für N-Methyl-4-piperidyl benzilate zu entwickeln. Sowohl die Affinitätsunterschiede enantiomerer Benzilate als auch die Unterschiede der Rezeptorsubtypenselektivität werden durch das Rezeptormodell umfassend erklärt. / Basic substituted benzilic esters with distinctive anticholinergic effects are potential drugs for the treatment of urinary incontinence, duodenal and gastric ulcers and Parkinson disease. Derivatives of benzilic esters, exhibiting a combination of anticholinergic and dopaminergic effects, are of special interest because, as a consequence of their dualistic effect, they are in a position to form a new class of Antiparkinson drugs. As muscarinic receptor subtypes possess a large variety of functional properties, drugs which show less selectivity on muscarinic receptors exhibit atropine-like side effects. A reduction of these side effects may be achieved by the development of more selective anticholinergic compounds. The objective was to optimise the effect of N-Methyl-4-piperidyl benzilates through a variation of sterical parameters and the introduction of electronically differentiated substituents within the aromatic rings. The effect of sterical and structural variations was investigated in radioligand binding studies on muscarinic receptors (M1 – M3). The results of these binding studies reveal that a modification of affinity and selectivity can be achieved by varying the absolute configuration of the stereogenic center and the properties of the substitution of the aromatic system. The development of a relevant model of the receptor ligand complex for N-Methyl-4-piperidyl benzilates was achieved by molecular modelling on the basis of experimental binding studies. Both the diverse affinity of enantiomeric benzilic esters and the subtype selectivity on muscarinic receptors are comprehensively explained by this model.
|
57 |
Carved from stone? : community life and work in Barre, Vermont, 1900-1922 / Community life and work in Barre, Vermont, 1900-1922McNeil, Charles A. January 1989 (has links)
No description available.
|
58 |
Carved from stone? : community life and work in Barre, Vermont, 1900-1922McNeil, Charles A. January 1989 (has links)
No description available.
|
59 |
Amorphous Silicon Dual Gate Thin Film Transistor & Phase Response Touch Screen Readout Scheme for Handheld Electronics Interactive AMOLED DisplaysKabir, Salman January 2011 (has links)
Interactive handheld electronic displays use hydrogenated amorphous silicon (a-Si:H) thin film transistor (TFT) as a backplane and a Touch Screen Panel (TSP) on top as an input device.
The low mobility and instability of a-Si:H TFT threshold voltage are major two issues for driving constant current as required for Active Matrix Organic Light Emitting Ddiode (AMOLED) displays. Low mobility is compensated by increasing transistor width or resorting to more expensive material TFTs. On the other hand, the ever increasing threshold voltage shift degrades the drain current under electrical operation causing OLED display to dim.
Mutual capacitive TSP, the current cell phone standard, requires two layers of metals and a dielectric to be put in front of the display, further dimming the device and adding to visual noise due to sun reflection, not to mention increased integration cost and decreased yield.
This thesis focuses on the aforementioned technological hurdles of a handheld electronic display by proposing a dual-gate TFT used as an OLED current driving TFT and a novel phase response readout scheme that can be applied to a one metal track TSP.
Our dual-gate TFT has shown on average 20% increase in drive current over a single gate TFT fabricated in the same batch, attributed to the aid of a top channel to the convention bottom channel TFT. Furthermore the dual gate TFT shows three times the Poole-Frenkel current than the single gate TFT attributed to the increase in gate to drain overlap.
The dual-gate TFT shows a 50% improvement in threshold voltage shift over a single gate TFT at room temperature, but only ~8% improvement under 75ºC. This is an important observation as it shows an accelerated threshold voltage shift in the dual-gate. This difference in the rate of threshold voltage change under varying temperature is attributed to the difference in interface states, supporting Libsch and Kanicki’s multi-level temperature dependant dielectric trapping model.
The phase response TSP readout scheme requires IC only on one side of the display. Cadence Spectre simulation results showed that both touch occurrence and touch position can be obtained using only one metal layer.
|
60 |
Retrospektive Analyse von ventrikulären Makroreentrytachykardien bei Patienten nach Korrekturoperation einer Fallot / Retrospective Analysis of Ventricular Macro-Reentrant Tachycardia in Patients after surgical correction of Tetralogy of Fallot with Dynamic Substrate MappingSchill, Manfred Helmut 27 October 2010 (has links)
No description available.
|
Page generated in 0.0357 seconds