• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 132
  • 94
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 244
  • 211
  • 142
  • 134
  • 94
  • 64
  • 54
  • 54
  • 54
  • 53
  • 34
  • 23
  • 22
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Erkennung apoptotischer Neurone durch Mikrogliazellen in vitro

Witting, Anke 21 November 2000 (has links)
Mikrogliazellen stellen die professionellen Phagozyten des zentralen Nervensystems dar und sind maßgeblich bei der Entfernung apoptotischer Neurone aus dem Gewebe beteiligt. Die Erkennungsmechanismen, die zu einer Erkennung und Phagozytose apoptotischer Neurone durch Mikrogliazellen führen, sind bisher unbekannt. In dieser Arbeit wurde mit Hilfe eines Kokulturmodells die Erkennungsmechanismen zwischen primären Mikrogliazellen und apoptotischen Kleinhirnneuronen untersucht. Der apoptotische Zelltod, charakterisiert durch Schrumpfung und Fragmentation der Neuron, durch Kondensation des Chromatins, durch Fragmentation der DNA und durch Präsentation von Phosphatidylserin auf der extrazellulären Seite der Plasmamembran, wurde in den Kleinhirnneuronen durch eine Behandlung mit 100 µM S-Nitrosocystein induziert. Es konnte gezeigt werden, daß apoptotische Neurone keine löslichen Substanzen sekretierten, die chemotaktisch auf Mikrogliazellen wirken. Dies zeigt, daß die Erkennung apoptotischer Neurone über Zell-Zell-Kontakte erfolgt. Zur Untersuchung der beteiligten Erkennungsmechanismen wurden Mikrogliazellen zwei Stunden nach der Induktion des apoptotischen Zelltods zu den Neuronen gegeben und für sechs Stunden in Gegenwart oder Abwesenheit von Liganden kultiviert, die mögliche Rezeptoren zur Erkennung von apoptotischen Neuronen inhibieren. Die Bindung/Phagozytose der apoptotischen Kleinhirnneurone durch Mikrogliazellen wurde mit einer kombinierten DAPI/Propidiumjodid (für apoptotische/nekrotische Zellen) und einer Lektin Färbung (für Mikrogliazellen) durch Auszählung bestimmt. Die Aufnahme apoptotischer Neurone durch Mikrogliazellen wurde durch Galaktose und N-Acetylglukosamin reduziert, was auf eine Erkennung apoptotischer Zellen durch Lektine hindeutet. Weiterhin weist der inhibitorische Effekt von RGDS-Peptiden auf die Bindung/Phagozytose von apoptotischen Neuronen durch Mikrogliazellen auf eine Erkennung durch ein Vitronektinrezeptor hin. Da Mikrogliazellen spezifisch Lipidvesikel, die mit Phosphatidylserin angereichert waren, binden und O-Phospho-L-Serin die Aufnahme von apoptotischen Neuronen durch Mikrogliazellen deutlich inhibierte, erfolgte die Erkennung apoptotischer Neurone hauptsächlich durch einen Phosphatidylserin Rezeptor. Die Expression des PS-Rezeptors auf Mikrogliazellen ist unabhängig vom Aktivierungszustand der Mikrogliazellen in vitro. Die Bindung von PS ist mit einem Anstieg der intrazellulären Kalziumkonzentration in der Mikrogliazelle verbunden und führt nicht zu einer sekretorischen Aktivierung der Mikrogliazelle. Da Astrozyten ebenfalls einen PS-Rezeptor exprimieren, könnten sie als semiprofessionelle Phagozyten ebenfalls eine Bedeutung bei der Aufnahme apoptotischer Neurone einnehmen. Diese Ergebnisse zeigen, daß apoptotische Neurone ein komplexes Oberflächenmuster exprimieren, welches durch unterschiedliche Rezeptorsysteme der Mikrogliazelle erkannt werden kann. Die Erkennung von PS auf apoptotischen Neuronen durch Mikroglia scheint bei diesen untersuchten Rezeptorsystemen die wichtigste Rolle zu spielen. / Microglia are the professional phagocytes of the central nervous system and play a crucial role in removal of apoptotic neurons out offrom the tissue. The recognition mechanisms leading to the recognition and phagocytosis of these apoptotic neurons by microglia are not yet characterized. Here IIn the present work established a co-culture model was established to examine the receptor systems involved in the recognition of apoptotic cerebellar neurons by primary microglia. Treatment with 100 µM S-nitrosocysteine induced apoptosis of cerebellar neurons as indicated by condensation and fragmentation of the neurons, condensation of the chromatin, fragmentation of the DNA and phosphatidylserine exposure to the exoplasmic leaflet of the plasma membrane. It was shown that apoptotic neurons do not release soluble signals that serve to attract microglia. Consequently, contact-dependent interaction between the microglial cell and the apoptotic neuron is required for recognition. For the examination of the receptor systems involved in recognition, microglial cells were added to neurons 2 h after induction of apoptosis induction and co-cultured for 6 h in the presence of ligands that inhibit recognition by binding to their respective receptors. Binding/phagocytosis was determined after combined DAPI/propidium iodide (for apoptotic/necrotic neurons) and lectin staining (for microglia). Uptake of neurons was reduced by galactose or N-acetylglucosamine, suggesting that recognition involves lectins. Furthermore, the inhibition of microglial binding/uptake of apoptotic neurons by RGDS peptide suggesteds a rolethe involvement of a microglial vitronectin receptor. The selective Binding of phosphatidylserine-enriched lipid vesicles on microglial cells and the strong interference of O-phospho-L-serine with the uptake of apoptotic neurons was indicative of an important role for the phosphatidylserine receptor (PS-receptor)As microglia selectively bind lipid vesicles enriches in phosphatidylserine and O-phospho-L-serine interfered in a strong way with the uptake of apoptotic neurons, the recognition of apoptotic neurons is manly dependent on a phosphatidylserine receptor. The expression of the PS-receptor is independent of the activation state of the microglial cell in vitro. The bindigbinding of PS induces an elevation of the intracellular calcium concentration in the microglia but doesid not induce an activationsectretion of (Liste der getesteten Zytokine einsetzen) of the microglial cell in an secretory way. Because of the expression of a PS-receptor, Astrocytes could also play a role in the uptake of apoptotic neurons as semiprofessional phagocytes. In summaryCollectively, these results suggest that apoptotic neurons generate a complex surface signal recognized by different receptor systems on microglia. The recognition of PS on the surface of apoptotic neurons by microglial cells seems to play a major role in the recognition of these apoptotic neuronscells..
62

The role of neuron navigator 1 in vascular development

Kunert, Stefan 30 June 2014 (has links)
Die Blutgefäßentwicklung ist ein mehrstufiger Prozess, der durch verschiedenste Signalwege und Zellmechanismen bestimmt wird. Murale Zellen sind mit dem Endothel assoziiert und wichtig für die Stabilisierung von Blutgefäßen. Ein essentieller Faktor für die Blutgefäßentwicklung ist die Bestimmung der Zellmigrationsrichtung durch verschiedene Faktoren. Einige dieser Faktoren wurden ursprünglich für die neurale Entwicklung beschrieben. Die Proteinfamilie der Neuron Navigators (NAV) sind neue Akteure, die die Migration von Zellen während des Neuronenwachstums beeinflussen. Ein möglicher Einfluss auf die Blutgefäßentwicklung ist bisher unbekannt. Wir nehmen an, dass das Protein NAV1 in Zellmigrationsprozessen während der Angiogenese eine Rolle spielt und verwendeten zur Aufklärung der Funktion von NAV1 Modelle in der Maus und im Zebrafisch. Das Blutgefäßnetzwerk in der Retina von neonatalen NAV1-/--Mäusen, als auch in einem aortic ring assay zeigte Defekte der Gefäßremodellierung durch eine verringerte Anzahl an Verzweigungspunkten der Blutgefäße auf. Es konnte erstmals eine Expression von NAV1 in muralen Zellen gezeigt werden. Die NAV1-defizienten Mäuse zeigten eine verringerte Anzahl von muralen Zellen auf Blutgefäßen auf. Dieser Defekt ging mit einer verstärkten Regression von Blutgefäßen einher, welche für die geringere Verzweigung dieser verantwortlich sein kann. In vitro Experimente mit primären muralen Zellen deuten auf einen zellautonomen Einfluss von NAV1 auf die Bewegung von Zellen in Abhängigkeit von Netrin-1 und der extrazelluären Matrixkomponente Kollagen I hin. Nav1-depletierte Zebrafische wiesen eine verringerte Komplexität von bestimmten zerebralen Blutgefäßen auf. Dies deutet darauf hin, dass der Einfluss von Nav1 auf die Blutgefäßausbildung konserviert ist. Wir konnten NAV1 als einen neuen zelleigenen Faktor der Motilität von muralen Zellen identifizieren, der in Folge als positiver Modulator zur Regulation der Gefäßstrukturierung beiträgt. / Vessel development is a multistep process orchestrated by different cellular and signaling mechanisms. Mural cells are associated with the endothelium and thought to be important for vessel stabilization. Cell guidance is an essential factor during vascular development, accomplished by different attractive and repulsive factors. Some of these were originally described in neural development. The Neuron Navigator (NAV) protein family is a novel player in regulating cell migration events during neuron growth, but their potential impact in vessel development is unknown. We hypothesized that the family member NAV1 plays a role in cell migration events during angiogenesis and examined the function of NAV1 in vascular development using loss-of-function models in mouse and zebrafish. Analysis of the vessel network phenotype in neonatal retina and an aortic ring assay of NAV1-/--mice revealed defective vessel remodeling in the absence of NAV1, indicated by reduced branch point numbers of vessels. Characterization of cellular expression domains point to a prominent, so far unknown, NAV1 expression in mural cells and NAV1-knockout mice exhibited reduced mural cell numbers on vessels. Decreased mural cell recruitment accompanies with increased vessel regression in the retina that may be attributable for the vascular phenotype. In vitro data of primary mural cells indicate a cell-autonomous influence of NAV1 on cell locomotion in response to Netrin-1 and/or the extracellular matrix component Collagen I. Analysis of Nav1 depleted zebrafish embryos revealed less complex vessel networks of specific cerebral vessels, the central arteries, suggesting that the impact of Nav1 on vessel development is conserved in vertebrates.
63

Hippocampal correlation coding / phase procession and temporal patterns in CA3 and CA1

Schmidt, Robert 26 May 2010 (has links)
Korrelationskodierung im Hippokampus bildet möglicherweise die neuronale Basis für episodisches Gedächtnis. In dieser Arbeit untersuchen wir zwei Phänomene der Korrelationskodierung: Phasenpräzession und Sequenzwiederholungen. Phasenpräzession bezeichnet die Abnahme der Phase des Aktionspotentials einer Ortszelle relativ zur Theta-Oszillation. Sequenzwiederholung beschreibt die Aktivität von Ortszellen in Ruhephasen; dabei werden vorangegangene Orts- Sequenzen in umgekehrter Reihenfolge wiederholt. Wir untersuchen Phasenpräzession in einzelnen Versuchsdurchläufen. In bisherigen Studien wurden Daten zur Phasenpräzession in vielen Versuchsdurchläufen zusammengelegt. Wir zeigen, dass dies zu einer verzerrten Schätzung von grundlegenden Eigenschaften der Phasenpräzession führen kann. Weiterhin demonstrieren wir eine starke Variabilität der Phasenpräzession zwischen verschiedenen Versuchsdurchläufen. Daher ist Phasenpräzession besser geeignet zeitlich strukturierte Sequenzen zu lernen, als man aufgrund der zusammengelegten Daten vermutet hatte. Desweiteren untersuchen wir die Beziehung von Phasenpräzession in unterschiedlichen Teilen des Hippokampus. Wir zeigen, dass die extrazellulären Theta- Oszillationen in CA3 und CA1 außer Phase sind. Dennoch geschieht Phasenpräzession in beiden Regionen fast gleichzeitig, und CA3 Zellen feuern oft kurz vor CA1 Zellen. Diese zeitliche Beziehung ist im Einklang mit einer Vererbung von Phasenpräzession von CA3 nach CA1. Wir entwickeln ein mechanistisches Modell für Sequenzwiederholungen in umgekehrter Reihenfolge basierend auf Kurzzeitfazilitierung. Mit Hilfe des Tempotrons beweisen wir, dass die entstehenden zeitlichen Muster geeignet sind, um von nachgeschalteten Strukturen ausgelesen zu werden. Das Modell sagt voraus, dass im Gyrus Dentatus synchrone Zellaktivität kurz vor einer Sequenzwiederholung in CA3 zu sehen ist, und es zeigt, dass Sequenzwiederholungen zum Lernen von zeitlichen Mustern genutzt werden können. / Hippocampal correlation coding is a putative neural mechanism underlying episodic memory. Here, we look at two related phenomena: phase precession and reverse replay of sequences. Phase precession refers to the decrease of the firing phase of a place cell with respect to the local theta rhythm during the crossing of the place field. Reverse replay refers to reactivation of previously experienced place field sequences in reverse order during awake resting periods. First, we study properties of phase precession in single trials. Usually, phase precession is studied on the basis of data in which many place field traversals are pooled together. We find that single-trial and pooled-trial phase precession are different with respect to phase-position correlation, phase-time correlation, and phase range. We demonstrate that phase precession exhibits a large trial-to-trial variability and that pooling trials changes basic measures of phase precession. These findings indicate that single trials may be better suited for encoding temporally structured events than is suggested by the pooled data. Second, we examine the coordination of phase precession among subregions of the hippocampus. We find that the local theta rhythms in CA3 and CA1 are almost antiphasic. Still, phase precession in the two regions occurs with only a small phase shift, and CA3 cells tend to fire a few milliseconds before CA1 cells. These results suggest that phase precession in CA1 might be inherited from CA3. Finally, we present a model of reverse replay based on short-term facilitation. The model compresses temporal patterns from a behavioral time scale of seconds to shorter time scales relevant for synaptic plasticity. We demonstrate that the compressed patterns can be learned by the tempotron learning rule. The model provides testable predictions (synchronous activation of dentate gyrus during sharp wave-ripples) and functional interpretations of hippocampal activity (temporal pattern learning).
64

Turnover and localization of the actin-binding protein Drebrin in neurons

Puente, Eugenia Rojas 31 August 2016 (has links)
Die vorliegende Arbeit erforscht die Regulation der Expression von Drebrin; DBN (Developmentally Regulated Brain Protein) in Neuronen. DBN ist ein Protein das Actin bindet und Actin-Filamente bündeln kann. Änderungen der Morphologie der Spines verändern die synaptische Aktivität und Plastizität – wichtigen Prozessen bei der Gedächtnisbildung und Alterung des Gehirns, sowie bei geistigen Störungen bzw. Behinderungen. DBN-Expression im Alter und in einigen neurodegenerativen Krankheiten reduziert ist. Eine schwächere Expression von DBN in Spines geht außerdem mit einem Verlust an synaptischen Verbindungen einher, einem gemeinsamen Merkmal von Alterung und neurologischen Störungen wie der Alzheimer Krankheit. Diese Befunde bildeten die Motivation und Grundlage für meine Erforschung der Produktion und Lokalisierung von DBN. In meinem Projekt, habe ich den Effekt der sequenzspezifischen S647-Phosphorylierung von DBN untersucht. Die Arbeit zeigt, dass diese post-translatorische Modifikation die Stabilität von DBN reguliert. Ich habe FUNCAT-PLA und Puro-PLA für die Visualisierung von de novo synthetisierten Proteinen in situ benutzt. Mittels hochauflösender Fluoreszenz-Hybridisierung konnte ich zeigen, dass DBN nicht nur im Zellkörper sondern auch lokal in den Spines translatiert wird. Meine Resultate bieten eine Grundlage für das Verständnis der Regulierung de DBN-Konzentration in Zellen und ermöglichen die weitere Erforschung der Rolle der S647-Phosphorylierung von DBN für die Morphologie von Spines. Die Arbeit bildet außerdem eine experimentelle Plattform für weitere Studien der Rolle von DBN für Spines, sowohl in Bezug auf Stabilität als auch der synaptischen Funktion und Stabilität. / This thesis studies the abundance of the protein Drebrin; DBN (Developmentally Regulated Brain Protein) in neurons, which is an actin-binding protein capable of bundling actin filaments. Synapses in the mammalian brain are formed on tiny protrusions, called dendritic spines. Changes in spine morphology affect synaptic activity and plasticity, which are processes underlying memory formation. DBN abundance plays an important role in regulating dendritic spine morphology. Cognitive decline and neurodegenerative conditions have been shown to be linked with a decrease in DBN levels. A weakening in the expression of this protein in spines is associated with the loss of synaptic connections, a common feature of ageing and neurological disorders such as Alzheimer''s disease. This evidence was the underlying motivation for studying the localization and turnover of DBN. I studied the effect of the site-specific S647 phosphorylation of DBN and found that such post-translational modification regulates protein stability. For the project, I established several novel techniques in our laboratory, including state-of-the-art methods such as FUNCAT-PLA and Puro-PLA for the visualization of de novo synthesized proteins in situ. My results show that DBN translation occurs not only in somata but also locally in the dendrites and spines. The same observation is true for DBN transcripts, which are present both in the soma and dendrites of neurons. These observations suggest that DBN could play an important role during synaptic plasticity. My results allow the future investigation of the potential role of site-specific phosphorylation of DBN in spine morphology. This PhD thesis represents a contribution to better understanding the regulation of DBN abundance. It also provides an experimental platform for additional investigation about the role of DBN in spine morphology, regarding its stability and its correlation with synaptic maintenance and function.
65

Gemeinsames Vorkommen von VGLUT und VGAT auf synaptischen Vesikeln und in inhibitorischen und exzitatorischen Nervenendigungen

Zander, Johannes-Friedrich 27 January 2011 (has links)
Synaptische Vesikel (SV) besitzen abhängig vom Neurontyp unterschiedliche Neurotransmittertransporter. In glutamatergen Neuronen kommen die vesikulären Glutamattransporter (VGLUT)1, VGLUT2 und VGLUT3 vor. GABAerge Neurone besitzen den vesikulären GABA-Transporter (VGAT). Die getrennte Glutamat- und GABA-Speicherung in unterschiedlichen Neuronen dient dem exakten Funktionieren neuronaler Netze. Mitunter setzen glutamaterge Neurone auch GABA frei. Einige entscheidende Proteine GABAerger Nervenendigungen wurden auf dem Protein- und mRNA-Niveau nachgewiesen. GABAerge Transmission glutamaterger Neurone wurde elektrophysiologisch gezeigt. Diese Studie untersucht eine mögliche VGLUT/VGAT-Kolokalisation mittels Immunisolierungen (II) von SV (SP), Neurotransmitteraufnahmeversuchen mit aufgereinigten SV, SP und der elektronenmikroskopischen Postembeddingmethode. II aus dem Rattengehirn zeigen, dass die VGLUT1-SP VGLUT2 und die VGLUT2-SP auch VGLUT1 enthält. Beide VGLUT kommen auf dem selben SV vor. Die VGLUT2-SP beinhaltet VGAT- und die VGAT-SP VGLUT2-tragende SV. SP aus frühen Entwicklungsstadien zeigen bereits eine ausgeprägte vesikuläre VGLUT2/VGAT- Kolokalisation. SV der VGAT-SP akkumulieren GABA und Glutamat. Die Hemmung der VGLUT zeigt ihren unterstützenden Einfluss auf die vesikuläre GABA- und Monoaminaufnahme. Damit moduliert die VGLUT-Aktivität die Neurotransmitterspeicherung in nicht glutamatergen Neuronen. Doppelmarkierung im Postembeddingverfahren zeigen die synaptische VGLUT/VGAT- Kolokalisation in glutamatergen hippokampalen und cerebellären Moosfaserendigungen. Dagegen ist VGAT weder in den nur VGLUT1-positiven cerebellären Parallelfaser- noch in den nur VGLUT2-positiven Kletterfaserendigungen detektierbar. Die cerebellären GABAergen Korbzellenendigungen beinhalten auch VGLUT2. Diese Befunde liefern den morphologischen Beweis für die synaptische GABA/Glutamat-Koausschüttung aus speziellen großen glutamatergen und GABAergen präsynaptischen Endigungen. / Synaptic vesicles (SV) are equipped with a common set of proteins. Dependent on the type of nerve cell SV differ in their neurotransmitter transporters, i.e. the vesicular glutamate transporters (VGLUT) 1 and VGLUT2 in types of glutamatergic neurons and the vesicular GABA transporter (VGAT) in types of GABAergic neurons. The strict separation of glutamate and GABA storage generally guarantees the precise function of neuronal networks. However, GABA may be released by glutamatergic neurons under certain conditions as shown by electrophysiological studies. The project aims to analyse a putative vesicular and synaptic co-localisation of VGLUT and VGAT using immunoisolations, neurotransmitter uptake assays, and post-embedding electron microscopy. Immunoisolations from whole brain of adult rats revealed that VGLUT1 immunoisolates (ii) contain VGLUT2 and VGLUT2-ii also have VGLUT1 indicating the vesicular co-localisation of both VGLUT. VGLUT2-ii harbour in addition VGAT and VGAT-ii also contain VGLUT2. Transporter-specific ii from rat brain at different postnatal levels (P5/15/30) show a pronounced vesicular co-localisation of VGLUT2 and VGAT during these early developmental stages. Transmitter uptake studies show GABA and also glutamate concentrating VGAT-ii. Using the specific inhibitor trypan blue we found that VGLUT activity improves GABA as well as monoamine uptake into SV. Thus VGLUT activity modulates transmitter storage in non-glutamatergic neurons. Post-embedding immunogold double labelling indicates a synaptic co-localisation of VGLUT and VGAT in glutamatergic hippocampal and cerebellar mossy fibre terminals while VGAT was not seen in cerebellar parallel fibre (VGLUT1-positive only) and climbing fibre (VGLUT2-positive only) terminals. Remarkably, cerebellar GABAergic basket cell terminals also contain VGLUT2. These findings provide the morphological evidence for a synaptic co-release of GABA and glutamate from some large glutamatergic and GABAergic terminals.
66

Charakterisierung spannungsabhängiger Kaliumkanäle an glialen Vorläuferzellen der Maus

SCHMIDT, KATHRIN 16 October 1998 (has links)
Das Membranstrommuster von Oligodendrozyten verändert sich während der Entwicklung dieser zellen sehr stark. Während die Membranleitfähigkeit von Oligodendrozyten-Vorläuferzellen von auswärts rektifizierenden Kaliumkanälen geprägt ist, exprimieren reife Oligodendrozyten passive, nicht spannungsabhängige Kaliumkanäle. Die Aktivität dieser Kanäle beeinflußt die Proliferation und Differenzierung dieser Zellen. In der vorliegenden Arbeit wurde die Expression von spannungsaktivierbaren Kaliumkanälen des Kv1-Typs (Shaker-Typ) in kultivierten Oligodendrozyten-Vorläuferzellen anhand der Transkriptexpression, der Expression von Kv1-Proteinen und der elektrophysiologischen und pharmakologischen Analyse der Membranströme untersucht. Auf mRNA Ebene wurden unterschiediche Kombinationen von Kv1.1, Kv1.4; Kv1.5 und Kv1.6 Transkripten gefunden. Ebenfalls wurde in einigen Zellen eine signifikante Menge an Kv1.2 und Kv1.3 Transkripten gefunden. Die Heterogenität der Transkriptexpression konnte nicht mit Unterschieden in den elektrophysiologischen Eigenschaften korrelliert werden. Die Expression der Kv1 Proteine wurde mit Hilfe von immunozytochemischen Färbungen mit spezifischen polyklonalen Antikörpern gegen die Kanäle Kv1.1 bis Kv1.6 untersucht. Alle Oligodendrozyten-Vorläuferzellen exprimierten die Kanäle Kv1.4 (85% der Zellen), Kv1.5 (99 %) und Kv1.6 (99 %), Kv1.1 Proteine wurden von 10 % der Zellen gebildet. Um den funktionellen Beitrag der Kv1 Kanäle zum Gesamtzellstrom zu bestimmen, wurde die Stromaktivierung und -inaktivierung sowie die Sensitivität der Ströme gegen die spezifischen Kaliumkanalblocker getestet. Dabei wurden durch TEA (1-100 mM), 4-AP (0,125-1 mM) und Chinidin (5-100 mM) jeweils ein großer Teil der Ströme gehemmt, durch CTX, DTX und MCDP wurde die Kanalaktivität nicht beeinflußt. Um den Beitrag der Kanalproteine Kv1.4 bzw. Kv1.1 zu den elektrophysiologischen Eigenschaften des Gesamtzellstromes zu testen, wurden an einzelnen Oligodendrozyten-Vorläuferzellen kombinierte elektrophysiologische Untersuchungen und immunozytochemische Färbungen durchgeführt. Dabei konnten keine signifikanten Unterschiede zwischen Kv1./Kv1.4 positiven und Kv1.1/Kv1.4 negativen Zellen festgestellt werden. Aus den Untersuchungen ergeben sich folgende Schlußfolgerungen: Oligodendrozyten exprimieren eine Vielzahl unterschiedlicher Kv1 Transkripte.Die überwiegende Mehrzahl der Oligodendrozyten-Vorläuferzellen exprimieren die Kv1 Proteine Kv1.4, Kv1.5 und Kv1.6.Der Gesamtzellstrom kann vorwiegend durch Kv1.5 Kanäle oder durch eine Kombination von Kv1.4/Kv1.6 Kanälen sowie durch Mitglieder anderer Familien spannungsabhängiger Kaliumkanäle getragen werden. Um zu untersuchen, ob spannungsabhängige Kaliumkanäle durch die Aktivierung von inhibitorischen Neurotransmitterrezeptoren beeinflußt werden, wurden kultivierte Körnerzellen als Modellsystem verwendet, da diese eine hohe Dichte an Kv Kanälen sowie an GABA Rezeptoren exprimieren. Im "cell-attached" Modus der Patch-Clamp-Technik wurde die Reaktion von einzelnen auswärts rektifizierenden Kaliumkanälen während der GABA-Antwort untersucht. Mit diesem Ansatz konnte gezeigt werden, daß die Öffnungswahrscheinlichkeit dieser Kanäle während der Reaktion der Zelle auf GABA stark zurückgeht. Da Oligodendrozyten-Vorläuferzellen ebenfalls GABAA-Rezeptoren exprimieren, ist anzunehmen, daß deren Aktivierung über einen analogen Mechanismus zur Blockierung von Kaliumkanälen führt. / The membrane current pattern of oligodendrocytes changes dramatically during cell development. In oligodendrocyte precursor cells the membrane conductance is dominated by outwardly rectifying potassium channels, mature oligodendrocytes on the other hand express passive, not voltage-gated potassium channels. The activity of these channels influences the proliferation and differentiation of the cells. In the present work the expression of outwardly-rectifying potassium channels of the Kv1-type (Shaker-type) was analysed in oligodendrocyte precursor cells in culture. Expression of Kv1 transcripts, Kv1 proteins as well as electrophysiological and pharmacological properties of these channels were tested. Different combinations of Kv1.1, Kv1.4, Kv1.5 and Kv1.6 transcripts were detected at mRNA level. In some cells also a significant amount of Kv1.2 and Kv1.3 transcripts was found. The heterogeneity of transcript expression could not be correlated with differences in electrophysiological properties. The expression of Kv1 channel proteins was analysed using immunocytochemical stainings with specific monoclonal antibodies against the channel molecules Kv1.1 to Kv1.6. All oligodendrocyte precursor cells expressed the channel molecules Kv1.4 (85 % of the cells), Kv1.5 (99 %) and Kv1.6 (99 %), Kv1.1 proteins were detected in 10 % of the cells. To find out the functional contribution of Kv1 channels to the whole-cell current of the cells the activation and inactivation characteristics as well as the sensitivity of the potassium current to different potassium channel specific antagonists was tested. Parts of the current were inhibited by TEA (1-100 mM), 4-AP (0,125-1 mM) and Chinidin (5-100 mM), CTX, DTX and MCDP had no effect on the channel activity. To isolate the contribution of the channel molecules Kv1.1 and Kv1.4 the electrophysiological properties of the whole cell current electrophysiological analysis of single cells using whole-cell patch-clamp technique and immunocytochemical stainings were combined. With this method no significant differences between Kv1.1/Kv1.4-positive and Kv1.1/Kv1.4 negative cells could be detected. From these findings the following conclusions could be drawn: Oligodendrocyte precursors express various different Kv1 transcripts.The majority of oligodendrocyte precursor cells expresses the Kv1 proteins Kv1.4, Kv1.5 and Kv1.6.The total current (whole-cell current) most likely is carried through Kv1.5 channels or a combination of Kv1.4/Kv1.6 channels and probably another type of voltage-gated potassium channels. To find out if voltage-gated potassium channels are related to the activation of inhibitory neurotransmitter receptors a model system of cultured granule cells was used. This cell type was selected because they are known to express a high density of Kv channels as well as GABAA receptors as well. The activity of single outwardly rectifying potassium channels was detected using the cell-attached mode of patch-clamp technique. With this method it could be demonstrated that the open probability of voltage-gated potassium channels is markedly decreased during GABAA response. It could be concluded that the activation of GABAA receptors on oligodendrocyte precursor cells leads to the inhibition of potassium channels in the same way as in cultured granule cells.
67

Regulation der endothelialen NO-Synthase unter Hypoxie und proinflammatorischer Stimulation in pulmonal-arteriellen Endothelzellen

Borrmann, Steffen 09 October 1998 (has links)
No description available.
68

From Osteocytes to Osseous Pathologies / Bone Evolution in the Fossil Record and its Implications for Bone Metabolism and Development

Haridy, Yara 15 February 2022 (has links)
Wirbeltierskelette stehen seit langem im Fokus vieler wissenschaftlicher Disziplinen sowie kultureller Überlieferungen, und dies hängt wahrscheinlich mit der erstaunlichen Fähigkeit des Skeletts zusammen, den Tod zu überdauern und der Zersetzung zu widerstehen. Es ist diese Widerstandsfähigkeit des Knochens, die es uns ermöglicht, Evolution der Wirbeltiere anhand des Fossilberichts zu analysieren. Knochengewebe macht heute den Großteil der Wirbeltierskelette aus, doch über den evolutionären Ursprung von Knochen ist wenig bekannt, insbesondere was seine zelluläre Zusammensetzung angeht. Das übergreifende Thema dieser Arbeit ist es, die Evolution von mineralisiertem Gewebe mit besonderem Schwerpunkt auf Knochengewebe besser zu verstehen. Dies geschieht durch verschiedene Methoden von der traditionellen externen Morphologie über die Histologie bis hin zur Röntgen-Computertomographie und schließlich durch die Entwicklung der neuartigen fokussierten Ionenstrahl-Tomographie-Technik (FIB-SEM). Mit Hilfe dieser Methoden wird versucht, die Mikrostruktur fossilen Knochens zu verstehen und aus ihr abzuleiten, wie die heute erkennbarenMorphologien und Physiologien des Knochens entstanden sind. Die zweite Hälfte dieser Arbeit befasst sich mit Paläopathologien und wie sie unser Verständnis der normalen Physiologie durch die Dokumentation pathologisch veränderter Fossilien erweitern können. / Vertebrate skeletons have long been the focus of many scientific disciplines as well as cultural lore, and this is likely due to the amazing ability for the skeleton to survive death and decomposition. It is this resiliency of bone that allows us to to analyze the evolution of vertebrate life in the fossil record. Bone tissue makes up the majority of vertebrate skeletons today, yet little is known about its developmental origins, particularly when it comes to the cellular composition. In this thesis the overarching theme is to better understand the evolution of mineralized tissue with a particular emphasis on bone tissue. This is done through several methodologies from traditional external morphology, to histology, to X-ray computer tomography, and finally with a development of a novel focused ion beam (FIB-SEM) tomography technique. These methods are all employed as an attempt to understand the microstructure of fossil bone from early jawless vertebrates to amniotes and thus deduce how the morphologies and physiologies ascribed to bone today have come about. The second half of this thesis deals with osseous paleopathologies and how they can inform our understanding of normal physiology through the documentation of aberrant fossils.
69

Repräsentation und Unterscheidbarkeit amplitudenmodulierter akustischer Signale im Nervensystem von Feldheuschrecken

Wohlgemuth, Sandra 27 May 2009 (has links)
Eine wesentliche Aufgabe auditorischer Systeme besteht in der Erkennung und Klassifikation verhaltensrelevanter Signale. Die akustischen Kommunikationssignale vieler Feldheuschrecken zeichnen sich durch artspezifische Modulationen der Signalamplitude aus, die im Kontext der Partnerwahl zur Erkennung der eigenen Art genutzt werden. Die Kommunikation ist jedoch auch als Basis für sexuelle Selektion von Interesse - einer Abschätzung der Qualität des Senders anhand der akustischen Signale, welche eine Bewertung subtiler Variationen der artspezifischen Musters erfordert. Das Ziel dieser Arbeit bestand darin zu untersuchen, wie amplitudenmodulierte akustische Signale in den Antworten identifizierter auditorischer Interneurone der zweiten und dritten Verarbeitungsstufe repräsentiert werden, insbesondere, wie gut sie anhand dieser Antworten unterscheidbar sind. Dazu wurden (i) sinusförmig amplitudenmodulierte Stimuli genutzt und die Parameter Modulationsfrequenz und Modulationstiefe systematisch variiert, (ii) individuelle Gesänge der gleichen Art, und (iii) im Grundmuster zeitlich reskalierte Gesänge. Lokale Interneurone zeichneten sich aus durch: ein oft sehr hohes zeitliches Auflösungsvermögen, hohe Empfindlichkeit gegenüber Schwankungen der Signalamplitude, sowie gute Unterscheidbarkeit der sinusförmig amplitudenmodulierten Signale und der Gesänge auf der Basis von Spikeantworten. Bei den aufsteigenden Interneuronen nahm die Fähigkeit zur zeitlichen Ankopplung der Spikes an die Amplitudenmodulationen der Stimuli ab, was sich auch in deren reduzierter Unterscheidbarkeit äußerte. Ursächlich hierfür war einerseits die Zunahme der Antwortvariabilität (Jitter der Spikezeitpunkte), aber auch verstärkt auftretende Filtereigenschaften. Auf dieser dritten Verarbeitungsebene kommt es zu einer stärkeren Spezialisierung auf bestimmte zeitliche Aspekte des Stimulus, die als Grundlage einer verhaltensrelevanten Klassifikation von akustischen Signalen interpretiert werden kann. / A central task of auditory systems is the recognition and classification of behaviorally relevant signals. The communication signals of many grasshoppers can be characterized by a species-specific pattern of amplitude modulation, which is mainly used for species recognition in the context of mate finding. Additionally, the communication is also of interest with respect to sexual selection - an evaluation of the signaler''s quality from the signal pattern, which requires the quantification of subtle variations of the common species-specific pattern.The goal of this study was to investigate how amplitude modulated acoustic signals are represented in the responses of identified 2nd and 3rd order auditory interneurons, particularly, how well they can be discriminated on the basis of the responses. For this (i) sinusoidal amplitude modulated stimuli were used and the parameters modulation frequency and modulation depth were systematically varied, (ii) individual songs of the same species and (iii) songs with temporal rescaled basic pattern were presented. Local interneurons can be characterized by: mostly high temporal resolution capacities, high sensitivity to fluctuations of the signal amplitude as well as a good distinguishability of sinusoidal amplitude modulated stimuli and songs on the basis of the spike trains. In ascending interneurons the synchronization to the amplitude modulations decreased, which also appeared in a reduced discrimination performance. This is caused by an increase of response variability (jitter of spike timing) but also by distinctive filter properties of the respective neurons. Neurons on this third processing level exhibit a greater specialization to particular temporal aspects of the stimulus. This can be interpret as a basis of a behaviorally relevant classification of acoustic signals.
70

Charakterisierung der frühen adaptiven zerebralen Arteriogenese

Hillmeister, Philipp 19 January 2010 (has links)
Arteriogenese bezeichnet das adaptive Wachstum von präexistenten kollateralen Arterien. Im Falle eines Arterienverschlusses ist Arteriogenese der endogen effizienteste Kompensationsmechanismus, um das Hypoperfusionsgebiet mit ausreichend Blut zu versorgen (Biologischer Bypasses). In dieser Arbeit wurde das frühe Wachstum von Kollateralgefäßen im Gehirn im ersten Modell für zerebrale Arteriogenese, dem 3-VO Modell (3-vessel occlusion), in der Ratte charakterisiert. (I) Die Untersuchung am nicht-ischämischen 3-VO Hypoperfusionsmodell zeigten, dass 7 Tage nach 3-VO die Arteria cerebri posterior (PCA) signifikant im Diameter anwächst. Histologische Untersuchungen konnten ein vermehrtes Zellwachstum in der PCA und das Einwandern von Makrophagen in den perivaskulären Bereich (24 Stunden und 3 Tage post 3-VO) darstellen und eine Aktivierung des Endothels 3 Tage nach 3-VO wurde mittels Rasterelektronenmikroskopie identifizieren. (II) Für eine genaue Anaylse des globalen Genexpressionsprofils der zerebralen Arteriogense wurde die wachsende PCA selektiv aus dem Gehirn entnommen und ein Genexpressionsprofil für die frühe zerebrale Arteriogenese erstellt (164 Gene dereguliert). Eine Unteruschung von biologischen und molekularen Prozessen zeigte, dass eine Vielzahl der deregulierten Gene in Zellproliferation und Inflammation involviert sind. Die Expression der Protease-Inhibitoren Kininogen und TIMP-1 wurde als “Marker” der frühen Arteriogenese in der PCA lokalisiert werden. Zusammenfassend zeigt diese Arbeit erstmals eine Übersicht der biologischen Prozesse in der zerebralen Arteriogenese und eröffnet neue Ideen für eine mögliche therapeutische Strategie. / Arteriogenesis, the adaptive outward growth of pre-existing collateral arteries, is the most efficient endogenous rescue mechanisms in vertebrates against the occlusion of a major artery (biological bypass). Here, collateral growth was induced using the first model for cerebral arteriogenesis, the 3-vessel occlusion (3-VO) rat model. (I) 3-VO resulted in a significant diameter increase within 7 days in the posterior cerebral artery (PCA) and posterior communicating artery (Pcom), classifying the region of interest. Immunhistological staining demonstrated proliferative activation and macrophage invasion, already 24h post 3-VO within the PCA, confirming the arteriogenic phenotype. Furthermore, activation of the PCA endothelium was detected within 3 days post 3-VO by scanning electron microscopy. (II) For analysing the molecular mechanism of cerebral arteriogenesis, collateral tissue from the growing PCA was selectively isolated. Here, 24h post 3-VO 164 genes were detected to be significantly deregulated. Analysis of molecular annotations and networks associated with differentially expressed genes revealed that expression patterns contain gene transcripts predominantly involved in proliferation, inflammation, and migration. Early-phase cerebral arteriogenesis is characterized by protease inhibitor expression and showed that protease inhibitors TIMP-1 and kininogen are molecular markers of early-phase cerebral arteriogenesis. In summary, this work characterizes morphological features and genomic profiles of growing collaterals in the brain and develops novel ideas for a therapeutic stimulation of arteriogenesis.

Page generated in 0.0212 seconds