Spelling suggestions: "subject:"array photoemission"" "subject:"spray photoemission""
1 |
New Materials for Spintronics : Electronic structure and magnetismKnut, Ronny January 2012 (has links)
Materials exhibiting new functionalities due to interdependent electric (e.g. conductivity) and magnetic properties are potentially interesting for spintronics applications. We have investigated electronic and magnetic properties by means of x-ray spectroscopies and SQUID magnetometry in several magnetic materials, often in the form of thin films, which have shown promising properties for applications. One of the main subjects has been studies of inter-diffusion between layers in multilayer structures, which is an important factor for spin-dependent transport and magnetic properties. These studies have been performed by high kinetic (HIKE) photoemission spectroscopy where high photon energies increase the bulk sensitivity in comparison to soft x-ray photoemission spectroscopy. Cu/Ni multilayers were studied mainly as a model system and revealed a diffusion process that was dependent on layer thicknesses and capping materials. CoFeB/MgO/CoFeB, which is used as a magnetic field sensor in hard drives, has recently been shown to exhibit a perpendicular magnetic anisotropy (PMA) switchable by electric fields. We have studied both the interface quality and magnetic properties of thin CoFeB layers exhibiting PMA. Layered structures of full Heusler alloys Co2MnGe/Rh2CuSn have been proposed as a promising candidate for current-perpendicular-to-plane giant magneto-resistance sensors. Using HIKE,we have shown that diffusion of atoms, mainly Mn, occurs at temperatures lower than what is used in device fabrication, which likely contributes to the limited magneto-resistance values obtained. Lately, a large body of research has been performed on semiconductors doped with transition metal elements with the hope to find a ferromagnetic semiconductor at room temperature, a foundation for new devices combining spin and charge in their functionality. We have investigated Co and Fe doping in ZnO for different concentrations of the dopants and different annealing temperatures. The Co and Fe atoms are shown to forms clusters for which antiferromagnetic interactions are dominating.
|
2 |
Thin Cr2O3 (0001) Films and Co (0001) Films Fabrication for SpintronicsCao, Yuan (Chemistry researcher) 12 1900 (has links)
The growth of Co (0001) films and Cr2O3 (0001)/Co (0001) has been investigated using surface analysis methods. Such films are of potential importance for a variety of spintronics applications. Co films were directly deposited on commercial Al2O3 (0001) substrates by magnetron sputter deposition or by molecular beam epitaxy (MBE), with thicknesses of ~1000Å or 30Å, respectively. Low Energy Electron Diffraction (LEED) shows hexagonal (1x1) pattern for expected epitaxial films grown at 800 K to ensure the hexagonally close-packed structure. X-ray photoemission spectroscopy (XPS) indicates the metallic cobalt binding energy for Co (2p3/2) peak, which is at 778.1eV. Atomic force microscopy (AFM) indicates the root mean square (rms) roughness of Co films has been dramatically reduced from 10 nm to 0.6 nm by optimization of experiment parameters, especially Ar pressure during plasma deposition. Ultrathin Cr2O3 films (10 to 25 Å) have been successfully fabricated on 1000Å Co (0001) films by MBE. LEED data indicate Cr2O3 has C6v symmetry and bifurcated spots from Co to Cr2O3 with Cr2O3 thickness less than 6 Å. XPS indicates the binding energy of Cr 2p(3/2) is at 576.6eV which is metallic oxide peak. XPS also shows the growth of Cr2O3 on Co (0001) form a thin Cobalt oxide interface, which is stable after exposure to ambient and 1000K UHV anneal.
|
3 |
Fotoemissão no Modelo de Anderson para compostos de terras-raras com valência flutuante. / Photoemission in the Anderson model for rare-earth compounds with valence fluctuating.Frota, Hidembergue Ordozgoith da 22 February 1985 (has links)
Calcula-se o espectro de foto emissão (XPS) no modelo de Anderson com degenerescência de spin. Baseado na técnica do grupo de renormalização, introduzindo originalmente por Wilson para calcular a suscetibilidade magnética do modelo de Kondo, o cálculo numérico tem precisão uniforme sobre todo o espaço paramétrico do modelo de Anderson; para qualquer energia foto eletrônica estima-se um erro máximo de 4% para a corrente de foto emissão calculada. O espectro calculado apresenta dois picos, associados com as duas possíveis transições induzidas pelo raios-X entre as ocupações do orbital <nf>= 0,1 ou 2: um primeiro pico de ionização correspondente à transição nf=2 → nf=1 e um segundo pico de ionização correspondente à transição nf=1 → nf=0. Para o caso em que a configuração nf=2 do orbital f tem a mais baixa energia, o primeiro pico é dominante. A medida que a energia da configuração duplamente ocupada cresce em relação à da configuração nf=1 (de maneira que o valor de nf no estafo fundamental diminui) o segundo pico de ionização cresce em relação ao primeiro. Finalmente quando nf 1 no estado fundamental, o segundo pico praticamente domina toda a intensidade espectral integrada; nesse caso (1) o primeiro pico torna-se estreito (com largura da ordem da temperatura de Kondo) centrado no nível de Fermi e (2) próximo ao nível de Fermi a corrente de foto emissão é representada por uma função universal da energia foto eletrônica escalada pela temperatura de Kondo. / X-ray photoemission spectra (XPS) are calculated for the spin-degenerate Anderson modelo f Valence fluctuation compounds. Based on the renormalization group technique originally introduced by Wilson to calculate the magnetic susceptibility for the Kondo model, the numerical calculation has uniform accurancy over the entire parameter space of the Anderson model; at any given photo-electron energy, a maximum error of 4% is estimated for the calculated photoemission current. The calculated spectra display two peaks associated with the two possible x-ray induced transitions between the nf= 0,1 or 2 occupations of the f-orbital: a first ionization peak corresponding to the nf=2 → nf=1 transition and a second ionization peak due to the nf=1 → nf=0 transition. For the case in which the nf=2 configuration of the f-orbital has the lowest energy, the former peak is dominant. As the energy of the doubly occupied configuration increases relative to the nf=1 configuration, (so that decreases in the ground state) the second ionization peak grows relative to the first one. Finally, as → 1 in the ground state the second ionization peak covers mosto f the integrated spectral density; in this case (1) the first ionization peak becomes a Spike (width of the order of the Kondo temperature) centered at the Fermi level and (2) in the vicinity of the Fermi level the photoemission current is described by a universal function of the photoelectron energy scaled by the Kondo temperature.
|
4 |
Soft x-ray photoemission study of the Heusler-type Fe_2VAl_1-zGe_z alloysMIYAZAKI, Hidetoshi, SODA, Kazuo, KATO, Masahiko, YAGI, Shinya January 2007 (has links)
No description available.
|
5 |
Fotoemissão no Modelo de Anderson para compostos de terras-raras com valência flutuante. / Photoemission in the Anderson model for rare-earth compounds with valence fluctuating.Hidembergue Ordozgoith da Frota 22 February 1985 (has links)
Calcula-se o espectro de foto emissão (XPS) no modelo de Anderson com degenerescência de spin. Baseado na técnica do grupo de renormalização, introduzindo originalmente por Wilson para calcular a suscetibilidade magnética do modelo de Kondo, o cálculo numérico tem precisão uniforme sobre todo o espaço paramétrico do modelo de Anderson; para qualquer energia foto eletrônica estima-se um erro máximo de 4% para a corrente de foto emissão calculada. O espectro calculado apresenta dois picos, associados com as duas possíveis transições induzidas pelo raios-X entre as ocupações do orbital <nf>= 0,1 ou 2: um primeiro pico de ionização correspondente à transição nf=2 → nf=1 e um segundo pico de ionização correspondente à transição nf=1 → nf=0. Para o caso em que a configuração nf=2 do orbital f tem a mais baixa energia, o primeiro pico é dominante. A medida que a energia da configuração duplamente ocupada cresce em relação à da configuração nf=1 (de maneira que o valor de nf no estafo fundamental diminui) o segundo pico de ionização cresce em relação ao primeiro. Finalmente quando nf 1 no estado fundamental, o segundo pico praticamente domina toda a intensidade espectral integrada; nesse caso (1) o primeiro pico torna-se estreito (com largura da ordem da temperatura de Kondo) centrado no nível de Fermi e (2) próximo ao nível de Fermi a corrente de foto emissão é representada por uma função universal da energia foto eletrônica escalada pela temperatura de Kondo. / X-ray photoemission spectra (XPS) are calculated for the spin-degenerate Anderson modelo f Valence fluctuation compounds. Based on the renormalization group technique originally introduced by Wilson to calculate the magnetic susceptibility for the Kondo model, the numerical calculation has uniform accurancy over the entire parameter space of the Anderson model; at any given photo-electron energy, a maximum error of 4% is estimated for the calculated photoemission current. The calculated spectra display two peaks associated with the two possible x-ray induced transitions between the nf= 0,1 or 2 occupations of the f-orbital: a first ionization peak corresponding to the nf=2 → nf=1 transition and a second ionization peak due to the nf=1 → nf=0 transition. For the case in which the nf=2 configuration of the f-orbital has the lowest energy, the former peak is dominant. As the energy of the doubly occupied configuration increases relative to the nf=1 configuration, (so that decreases in the ground state) the second ionization peak grows relative to the first one. Finally, as → 1 in the ground state the second ionization peak covers mosto f the integrated spectral density; in this case (1) the first ionization peak becomes a Spike (width of the order of the Kondo temperature) centered at the Fermi level and (2) in the vicinity of the Fermi level the photoemission current is described by a universal function of the photoelectron energy scaled by the Kondo temperature.
|
6 |
X-ray spectroscopy of electronic band structure in vanadium oxide nanoparticlesAnquillare, Emma L. B. 25 September 2021 (has links)
In order to elucidate the effects of nanostructuring on electron behavior in vanadium oxides, a suite of x-ray spectroscopy techniques was employed to comprehensively characterize the electronic structures of V2O5 and VO2 nanoparticles and compare them to their bulk counterparts. V2O5 and VO2 nanoparticle powders were characterized via PXRD, TEM, and HR-TEM to confirm size, purity, and crystallinity. Additionally, DSC and temperature-varied PXRD measurements on both VO2 samples confirmed the structural aspect of the monoclinic to rutile metal-insulator phase transition, and UV-Vis measurements allowed for Kubelka-Munk analysis on the V2O5 samples. XAS measurements enable the comparison of unoccupied conduction band states, while XES and RIXS measurements reveal occupied valence band states and the individual vanadium and oxygen PDOS below the Fermi level. XPS measurements of both core and valence band states both confirmed the valence band structure revealed by XES and also provide information on core-state energy levels. In the case of V2O5, the valence band O 2p states are upshifted in the nanoparticle sample, while the lowest V 3d conduction band states are unshifting but provide more available unoccupied states for excitation. These changes produce a shrunken bandgap in the V2O5 nanoparticles that is in line with much previous computational work, but unexpected from previous experimental results and defies the Moss-Burstein effect usually observed in V2O5. The resulting changes in band structure are attributed to a higher concentration of oxygen vacancy defects in the nanoparticle sample. Additionally, electron correlation effects in V2O5 nanoparticles are found to be enhanced relative to the bulk, likely due to added electron presence in the V 3d split-off band. In the case of VO2, dramatic changes in both the valence band and conduction band states are observed both below and above the structural phase transition temperature. These changes (lowered unoccupied conduction band states coupled with broadened and upshifted occupied valence band states) also lead to nanoparticle bandgap reduction and enhanced metallicity. The enhanced metallic nature of the VO2 nanoparticles is again attributed to the increased presence of surface oxygen vacancy defects, as well as a V2O3-like surface reconstruction. Additionally, electron correlation effects are found to be reduced in the VO2 nanoparticle samples relative to the bulk, unlike in the case of V2O5.
|
7 |
Plasma Interactions on Organosilicate Glass Dielectric Films and Emerging Amorphous Materials- Approach to Pore Sealing and Chemical ModificationsKazi, Haseeb 05 1900 (has links)
In-situ x-ray photoemission (XPS) and ex-situ FTIR studies of nanoporous organosilicate glass (OSG) films point to the separate roles of radicals vs. VUV photons in the carbon abstraction. The studies indicate that reaction with O2 in presence of VUV photons (~123 nm) result in significant carbon abstraction within the bulk and that the kinetics of this process is diffusion-limited. In contrast, OSG exposed to atomic O (no VUV) results in Si-C bond scission and Si-O bond formation, but this process is self-limiting after formation of ~1 nm thick SiO2 surface layer that inhibits further diffusion. Therefore, the diffusion-dominated kinetics of carbon abstraction observed for OSG exposed to O2 plasma is definitively attributed to the diffusion of O2 down OSG nanopores, reacting at photo-activated sites, rather than to the diffusion of atomic O. Pretreatment of OSG by 900 eV Ar+ ion bombardment also results in formation of 1 nm thick SiO2-like surface overlayer that inhibits O2 diffusion, inhibiting VUV+O2 and O2 plasma-induced reactions, and that the effectiveness of this treatment increases with ion kinetic energy. On the contrary, organosilicate glass (OSG) films with backbone carbon (-Si-R-Si-) exhibit significantly enhanced resistance to carbon loss upon exposure to O2 plasma, radicals and VUV+O2 compared to films with terminal methyl groups (Si-CH3). Films incorporating backbone carbon chains (-Si-R-Si-) were deposited from 1,2 bis (triethoxysilyl) ethane (BTESE) precursor by ebeam or plasma cross-linking. The radical effects on BTESE film indicates negligible carbon loss or Si oxidation, combined with C-O bond formation, under conditions where OSG films with terminal methyl groups exhibit > 80% carbon loss within the surface region of the film. C-O bond formation is never observed for terminal CH3 groups. Further, backbone carbon (-Si-R-Si-) films exposed to VUV+O2 exhibit self-limiting, minimal net carbon loss. This indicates that plasma-induced Si-C bond rupture still occurs in the linking unit, but with a low probability of simultaneous rupture of both Si-C bonds required for abstraction of an in-line methylene bridging group. The data thus demonstrate that OSG films containing backbone carbon groups exhibit greatly reduced rates of carbon loss in the presence of O2 plasma, radicals or VUV+O2 compared to films with terminal carbon groups due to fundamentally different patterns of Si-C bond scission. The results demonstrate the potential of backbone carbon low-k films to resist plasma induced damage.
|
8 |
Electronic and photocatalytic properties of transition metal decorated molybdenum disulfideShi, X. (Xinying) 30 August 2018 (has links)
Abstract
This thesis is dedicated to realizations and physical understanding of electronic and photocatalytic properties after decorating transition metals to the semiconducting molybdenum disulfide. Synthesized via facile wet chemical methods, the MoS₂-Au, MoS₂-Au-Ni and MoS₂-Ag-Ni composites were formed as binary or ternary compounds. The Au nanoparticles are stably joined to the MoS₂ matrix without deteriorating layered structures of the host. After introducing the Au nanoglue as a common buffer, a metallic contact is reached between Ni and MoS₂, and attributed to new electron migration channel via MoS₂ edge contact. Adapting the Ag as the buffer element can attach the Ni to the basal plane of the MoS₂ beside edge contact. The Ni-Ag-MoS₂ composite effectively splits water under visible light irradiation and produce hydrogen. The excellent photocatalytic activity is attributed to effective charge migration through dangling bonds at the MoS2-Ag-Ni alloy interface and the activation of MoS₂ basal planes. / Original papers
The original publications are not included in the electronic version of the dissertation.
W. Cao, V. Pankratov, M. Huttula, X. Shi, S. Saukko, Z. Huang, M. Zhang. Gold nanoparticles on MoS2 layered crystal flakes. Materials Chemistry and Physics, 158, 89−95 (2015). DOI: 10.1016/j.matchemphys.2015.03.041
X. Shi, S. Posysaev, M. Huttula, V. Pankratov, J. Hoszowska, J.-Cl. Dousse, F. Zeeshan, Y. Niu, A. Zakharov, T. Li, O. Miroshnichenko, M. Zhang, X. Wang, Z. Huang, S. Saukko, D. L. González, S. van Dijken, M. Alatalo, W. Cao. Metallic contact between MoS₂ and Ni via Au nanoglue. Small, 14, 1704526 (2018). DOI: 10.1002/smll.201704526
http://jultika.oulu.fi/Record/nbnfi-fe2018060525279
X. Shi, M. Huttula, V. Pankratov, J. Hoszowska, J.-Cl. Dousse, F. Zeeshan, Y. Niu, A. Zakharov, Z. Huang, G. Wang, S. Posysaev, O. Miroshnichenko, M. Alatalo, W. Cao. Quantification of bonded Ni atoms for Ni-MoS₂ metallic contact through X-ray photoemission electron microscopy. Microscopy and Microanalysis, 24, 458−459 (2018). DOI: 10.1017/S1431927618014526
http://jultika.oulu.fi/Record/nbnfi-fe2018082834233
X. Shi, M. Zhang, W. Cao, X. Wang, M. Huttula. Efficient photocatalytic hydrogen evolution via activated multilayer MoS₂. Manuscript.
X. Shi, Z. Huang, M. Huttula, T. Li, S. Li, X. Wang, Y. Luo, M. Zhang, W. Cao. Introducing magnetism into 2D nonmagnetic inorganic layered crystals: a brief review from first-principles aspects. Crystals, 8, 24 (2018). DOI: 10.3390/cryst8010024
http://jultika.oulu.fi/Record/nbnfi-fe201802153441
|
9 |
Domains and functionality in multiferroic BiFeO3 filmsWaterfield Price, Noah January 2017 (has links)
For over half a century, the technological promise of spins manipulable by a small voltage has captivated the interest of experimental and theoretical researchers alike. However, if thin-film multiferroics are to be incorporated into future data storage devices, a much greater understanding of their behaviour and how they differ from their bulk counterparts is required. In this thesis, we probe the fundamental multiferroic properties of BiFeO<sub>3</sub> films through a combination of state-of-the-art diffraction and microscopy techniques. We investigate the coupling between magnetic, ferroelectric, and structural order, with a focus on domains, and how the domain structure may be manipulated in order to tailor the multiferroic properties of the material. Using non-resonant magnetic x-ray scattering (NXMS) and neutron diffraction, we study the magnetic and structural properties of (111)<sub>pc</sub>-oriented BiFeO<sub>3</sub> films. Contrary to the general belief that to they grow as a rhombohedral monodomain, we find that they comprise a sub-micron texture of monoclinic domains. The magnetic structure is found to be intimately coupled to the structure, resulting in the propagation vector being locked to the monoclinic b-axis. This magnetoelastic coupling opens up a route to strain-engineer the magnetic domains via epitaxial strain. By growing BiFeO<sub>3</sub> films on a lower-symmetry, TbScO<sub>3</sub> substrate, we are able to engineer a magnetic, structural and ferroelectric monodomain, coherent over the entire film, constituting an increase in the domain size by over five orders of magnitude. We directly demonstrate the coupling between ferroelectric and magnetic order parameters of the cycloidal magnetic structure. Using NXMS polarimetry to measure directly the magnetic polarity, we show that upon switching the ferroelectric polarisation, the magnetic polarity switches accordingly---a major rearrangement of the magnetic structure, with each spin rotating by 90 degrees on average. This goes counter to idea that magnetic and ferroelectric order parameters are only weakly coupled in type-I multiferroics. Finally, using photoemission electron microscopy we are able to directly image the sub-micron magnetostructural domain structure. We further show that there is a strong interfacial coupling between the magnetostructural domains of BiFeO<sub>3</sub> with a ferromagnetic overlayer. The BiFeO<sub>3</sub> domains are found to impose a uniaxial anisotropy in the overlayer, opening up a route to control ferromagnetic domains.
|
10 |
Hybrid systems of molecular ruthenium catalyst anchored on oxide films for water oxidation: Functionality of the interfaceScholz, Julius 26 June 2017 (has links)
No description available.
|
Page generated in 0.1031 seconds