51 |
Nitrogen-doped DLC deposition by hot filament and inductively coupled plasma sputtering for biomedical applications2013 September 1900 (has links)
The heart is one of the most important organs of the human body and cardiovascular diseases remain the biggest cause of deaths worldwide. Today, due to the aging of the population and the growing demand for cardiovascular implants, improving the performance of artificial surfaces of vascular prostheses is highly desired. The common material for fabricating prostheses, such as stents used to remedy narrow and weak arteries, is Fluorocarbon polymers or expanded Polytetrafluoroethylene (ePTFE, Gore-tex). Although these polymers are well known for chemical inertness, thermal stability and low friction, they can cause early thrombosis (forming clot) and coagulation in blood vessels and require periodic replacement. Modifying the surface properties of Polytetrafluoroethylene (PTFE) by coating with carbon-based materials may improve its blood compatibility. Carbon-based coatings have properties similar to biomedical components, such as low friction, bioinertness, high wear resistance and exceptional hardness. Plasma processing methods are commonly used for coating thin films on various materials including carbon-based components. Plasma-based processes are also widely used in the aerospace, automotive, steel and biomedical industries. For example, extending the lifetime of surgically implanted hip joints and cutting tools are biomedical and industrial applications of plasma-based material processing respectively. Plasma-assisted deposition techniques are commonly used for carbon-based coating including nitrogen-doped amorphous carbon (a-C) films. In this thesis, PTFE samples with different thickness and roughness characteristics are used as substrates and diamond-like carbon (DLC) is deposited on them by simultaneous plasma-assisted sputtering and chemical vapour deposition (CVD). Hot filament plasma and ICP (Inductively coupling plasma) are used to coat DLC on PTFE and silicon (Si) substrates under various plasma conditions. The latter is the first report on the techniques to coat DLC by ICP plasma sputtering. This new technique (ICP-sputtering) is developed to improve low deposition rate and high temperature deposition of previous method (Hot filament plasma sputtering). Advantageous of this new developed method (ICP-sputtering) are discussed and compared with the previous method in this thesis. Various amount of nitrogen is introduced to the plasma chambers and the effect of nitrogen dopant is also studied using different characterization techniques for chemical, electronic and morphological properties of coated films. sp2 and sp3 contents were also estimated in amorphous carbon (a-C) and nitrogenated amorphous carbon (a-CN) films. Characterization techniques used for in this thesis are including SEM (scanning electron microscopy), AFM (atomic force microscopy), Raman spectroscopy, XAS (x-ray absorption spectroscopy), XES (x-ray emission spectroscopy), XPS (x-ray photoelectron spectroscopy) and XRD (x-ray diffraction).
|
52 |
Magnetic and Structural Investigation of Manganese Doped SnO_2 and In_2 O_3 NanocrystalsSabergharesou, Tahereh January 2013 (has links)
Diluted magnetic semiconductor oxides (DMSOs) have received great attention recently due to their outstanding applications in optoelectronic and spintronic devices. Ever since the initial observation of ferromagnetism at room temperature in cobalt-doped titania, extensive effort is concentrated on preparation of transition metal doped wide band gap semiconductors, especially Mn- doped ZnO. Compared to Mn-doped ZnO, magnetic interactions in SnO! and In!O! semiconductors have been underexplored. SnO! and In!O! semiconductors have many applications, owing to their high charge carrier density and mobility as well as high optical transparency.
Investigation on electronic structure changes induced by dopants during the synthesis procedure can effectively influence magnetic interactions between charge carriers. In this work, a combination of structural and spectroscopic methods was used to probe as-synthesized SnO! and In!O! nanocrystals doped with Mn!! and Mn!! as precursors. X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy are powerful techniques to explore formal oxidation state of manganese dopant, electronic environment, number of nearest neighbors around the absorbent, and bond lengths to the neighboring atoms. Analysis reveals the presence of multiple oxidation states in the doped nanocrystals, and establishes a relation between
!"!! ratio and expansion or contraction of lattice parameters. !"!!
Although doping semiconductors are crucial for manipulating the functional properties, the influence of dopants on nanocrystals structure is not well understood. Nanocrystalline films prepared from colloidal Mn-doped SnO! and In!O! nanocrystals through spin coating process exhibit ferromagnetic behavior in temperatures ranging from 5 K to 300 K. Magnetic transformation from paramagnetic in free-standing Mn-doped nanocrystals to strong ferromagnetic ordering in nanocrystalline films is attributed to the formation of extended structural defects, e.g., oxygen vacancies at the nanocrystals interface. Magnetic circular dichroism (MCD) studies clearly show that Mn!! occupies different symmetry sites in indium oxide, when bixbyite and rhombohedral In!O! nanocrystals (NCs) are compared.
|
53 |
Mécanismes de rétention du cuivre dans les sols : évaluation statistique des approches macroscopiques et spectroscopiquesLenoir, Thomas 03 October 2011 (has links) (PDF)
Le cuivre est un élément chimique, nocif pour la matière vivante, qui peut s'associer sous de nombreuses formes aux constituants organiques et inorganiques des sols. A une échelle macroscopique, les modélisations thermodynamiques, souvent surparamétrées, sont insuffisantes pour conclure sur la nature des formes présentes. La spectroscopie d'absorption X (XAS) réalisée avec des rayons focalisés sur quelques micro-m² permet d'accéder à cette information. A cette échelle micrométrique, la variabilité spécifique des formes du cuivre d'un point d'analyse à un autre se traduit par un changement du signal mesuré en micro-XAS. L'analyse en Composantes Principales (ACP) permet alors en théorie de dénombrer les espèces pures. Ces techniques ont été utilisées pour caractériser les formes cuprifères d'une part dans des rizières contaminées par une exploitation minière (MAMUT, MALAISIE) et d'autre part dans un bassin d'infiltration d'eaux de ruissellement (CHASSIEU, FRANCE). Les présences de cuivre associé avec la matière organique et sous formes métallique, de chalcopyrite et de cristaux localement spécifiques ont été mises en évidence. Néanmoins, en raison de la faible fiabilité des indicateurs existants, le nombre total des espèces cuprifères n'a pu être que majoré par ACP. Ce problème a été surmonté par la mise au point d'un nouvel indicateur évalué statistiquement sur des mélanges de composition connue et dont la précision sur le nombre d'espèces est de ± 1 dans les cas les plus défavorables.
|
54 |
Propriedades eletrônicas e estruturais do Cu/ZrO2 aplicadas à reação do etanolSato, André Gustavo 22 June 2012 (has links)
Made available in DSpace on 2016-06-02T19:55:32Z (GMT). No. of bitstreams: 1
4525.pdf: 16386951 bytes, checksum: 926ea82b7597b00a9c7a5c90054798d1 (MD5)
Previous issue date: 2012-06-22 / Universidade Federal de Sao Carlos / Copper is a typical catalyst for dehydrogenation of ethanol to acetaldehyde. However, copper supported on ZrO2 was found to be extremely active and selective to convert ethanol directly to ethyl acetate. Several reports in the literature have been made attempting to explain the catalytic properties of the solid Cu/ZrO2. Nevertheless, the nature of active sites, the role of copper, ZrO2 and their interface require further study with the use of more accurate techniques. Since the precise identification of the active sites for the occurrence of this reaction is the first step to propose mechanisms that help to understand it. In this work, we conducted a study using copper supported on three different polymorphs of ZrO2: monoclinic (m-ZrO2), tetragonal (t-ZrO2) and amorphous (am-ZrO2). Thus, the interaction of copper phase with ZrO2 would be limited to changes in textural, structural and electronic properties intrinsic to each polymorph, and not to the chemical composition in the case of we chose other support oxide. With an innovative and challenging proposal, this thesis developed by itself conducting in advanced characterizations of the structure and electronic state of the Cu/ZrO2 activated in H2. The analytical approach adopted for the characterization of the Cu/ZrO2 was performed by monitoring its in situ activation by the temperature programmed reduction in H2 with technique using synchrotron radiation like X-ray Absorption spectroscopy. Although reactions in heterogeneous catalysis proceed on the surface of an active catalyst, the properties of the surface can be influenced or determined by the bulk of the catalyst. X-ray photoelectron spectroscopy and diffuse reflectance infrared Fourier transform spectroscopy of adsorbed CO were used for Cu/ZrO2 active surface characterization. Catalytic tests show that the direct and efficient formation of ethyl acetate from ethanol depends on the chemical interface between Cu-ZrO2. However, it was found that higher performance of these catalysts to ethyl acetate does not occur at any interface. The property of Cu-ZrO2 interface varies according to the ZrO2 polymorphism, with the best performance in the ethyl acetate formation observed in the catalyst Cu/m-ZrO2. The premature loss in ethyl acetate selectivity observed at temperatures above 250 °C in Cu/m-ZrO2 revealed that the origin of its interface property can be associated with the oxygen mobility and lability from the bulk of the catalyst. Through the redox mechanism promoted by oxygen vacancies in am-ZrO2 and in m-ZrO2, an electron transfer between support and Cu surface would be established as to form highly active species to ethyl acetate. / O cobre é um catalisador típico para desidrogenação do etanol a acetaldeído. Entretanto, o cobre suportado na ZrO2 revelou ser um catalisador extremamente ativo e seletivo para transformar o etanol diretamente em acetato de etila. Diversos relatos na literatura têm sido feitos na tentativa de explicar a propriedade catalítica do sólido Cu/ZrO2. Contudo, a natureza dos sítios ativos, o papel do cobre, da ZrO2 e de sua interface necessitam de estudos mais aprofundados com o emprego de técnicas mais precisas. Pois, a identificação precisa dos sítios ativos para a ocorrência desta reação é o primeiro passo para a proposição de mecanismos que ajudem a compreendê-la. Neste trabalho estudamos o cobre suportado em três diferentes polimorfos puros da ZrO2: monoclínica (m-ZrO2), tetragonal (t-ZrO2) e amorfa (am-ZrO2). Dessa forma, a interação da fase cobre com a ZrO2 estaria limitada às variações nas propriedades texturais, estruturais e eletrônicas intrínsecas de cada polimorfo, e não de composição química caso optássemos por outros suportes óxidos. Com uma proposta inovadora e desafiadora, o presente trabalho se desenvolveu pelo uso de técnicas de caracterizações avançadas da estrutura e do estado eletrônico do Cu/ZrO2 ativado em H2. A abordagem analítica adotada para a caracterização do Cu/ZrO2 foi centrada no monitoramento de sua ativação in situ durante redução à temperatura programada em H2 por meio da técnica Síncrotron - Absorção de raios X. Apesar das reações em catálise heterogênea procederem sobre a superfície do sólido ativo, as propriedades de superfície podem ser influenciadas ou determinadas pelo seu volume mássico interno (bulk). Espectroscopia de fotoelétrons excitados por raios X e espectroscopia de refletância difusa na região do infravermelho com transformada de Fourier do CO adsorvido foram utilizadas para caracterização superficial dos catalisadores Cu/ZrO2 ativos. Testes catalíticos mostram que a formação direta e eficiente de acetato de etila a partir do etanol depende de uma interface química entre Cu-ZrO2, contudo constatou-se que não seria qualquer interface que levaria ao alto desempenho ao acetato de etila nesses catalisadores. A propriedade de interface Cu-ZrO2 varia conforme o tipo polimórfico da ZrO2, sendo o melhor desempenho na formação do acetato de etila observado no catalisador Cu/m-ZrO2. A perda precoce em seletividade ao acetato de etila observada em temperaturas superiores a 250 oC no Cu/m-ZrO2 revelou que a origem da propriedade dessa interface pode estar associada com a mobilidade e labilidade do oxigênio do bulk do catalisador. Por meio do mecanismo redox promovido pelas vacâncias oxigênio no am-ZrO2 e no m-ZrO2, uma transferência eletrônica entre suporte e Cu superficial seria estabelecida a ponto de formar espécies altamente ativas ao acetato de etila.
|
55 |
Crescimento e caracterização de heteroestruturas tensionadas de InxGa1-x-As/GaAs / Growth and characterization of stressed heterostructures of InxGa1-x-As/GaAsArtemis Marti Ceschin 17 December 1992 (has links)
Utilizando a técnica de epitaxia por feixe molecular (MBE), crescemos heteroestruturas tensionadas de InxGa1-xAs sobre substratos de GaAs (100). A composição de In, a espessura para a transição 2D-3D e a espessura crítica (hc) foram determinadas através da análise \"in situ\" pelo RHEED. Os valores da hc e da espessura para a transição 2D- 3D foram observadas ser funções da composição do In e da temperatura do substrato. Um estudo do efeito da desorientação do substrato de GaAs (100) de alguns graus sobre as qualidades ópticas (PL) de poços quânticos simples e múltiplos de InxGa1-xAs/GaAs também foi realizado. Microscopia eletrônica por transmissão (TEM) foi utilizada para a verificação da qualidade das interfaces dos poços quânticos de InxGa1-x/GaAs. Algumas estruturas de dupla barreira (AlGaAs/GaAs/InAs/GaAs/AlGaAs) foram crescidas e caracterizadas opticamente (PL) / InxGa1-xAs strained heterostructures were grown on GaAs (100) by Molecular Beam Epitaxy (MBE). Indium concentration (x), 2D-3D growth mode transition thickness and critical thickness (hc) were determined by \"in situ\" RHEED analysis. Hc and 2D-3D growth mode transition thickness values were verified to depend on In concentration and substrate temperature. The dependence of the InxGa1-xAs /GaAs simple and multiple quantum wells (SQW and MQW) PL optical quality on the GaAs (100) substrate misorientation was also studied. The SQW interfaces were investigated by Transmission Eletronic Microscopy (TEM). Some double-barrier structures (AlGaAs/GaAs/InAs/GaAs/AlGaAs was also grown and optically characterized
|
56 |
Photomagnetic Cobalt hexacyanidoferrate(III) Prussian Blue Analogues probed by X-ray Magnetic Circular Dichroism (XMCD) / Photomagnétisme d'hexacyanidoferrate(III) de cobalt, analogues de bleu de Prusse, sondé par dichroïsme magnétique circulaire des rayons X (XMCD)Fatima, Sadaf 28 September 2016 (has links)
Les analogues du bleu de Prusse contenant du Fe et du Co (Fe/Co PBA) sont des complexes moléculaires qui présentent des propriétés physiques bistables. Par conséquent, ils sont considérés comme des candidats potentiels pour le stockage d'informations à base de molécules. Cette thèse vise à étudier la structure électronique et magnétique de Fe/Co PBA en utilisant des techniques expérimentales et théoriques avancées. Les techniques X-ray Absorption Spectroscopy (XAS) et X-ray magnetic circular dichroism (XMCD) combinées avec la théorie des multiplets en champ de ligands (LFM) sonde le changement dans les propriétés magnétiques macroscopiques de Fe/Co PBA et peuvent donner des informations locales sur les centres métalliques des complexes. Le composé tridimensionnel RbCoFe PBA, deux complexes de dinucléaire photomagnétiques et les précurseurs de Fe sont étudiés. L'étude de XMCD combinée avec la LFM a révélé une grande valeur du moment magnétique d'orbite du précurseur FeTp. Une étude détaillée a été effectuée pour vérifier les règles de somme d'orbite et de spin dans le cas des ions de Fe(III) bas spin et il a été constaté que la règle spin somme n'était pas valide à cause de l'entremélange des seuils L2 et L3. L'enquête XMCD des complexes dinucléaires photomagnétiques a confirmé le transfert d'électrons métal-métal. Cette enquête XMCD de la plus petite unité de la famille Fe / Co PBA est utile pour comprendre les propriétés magnétiques de la famille de Fe / Co PBA. L'étude XMCD sur aux seuils K du Fe et du Co d'un composé tridimensionnel RbCoFe PBA a prouvé l'existence d'une interaction antiferromagnétique entre les ions métalliques de Fe et de Co dans l'état photoinduit. / The Fe/Co Prussian Blue Analogues (PBA) are molecular complexes that exhibit externally controlled bistable physical properties. Thus, they are considered as potential candidates for photoswitchable molecule-based information storage. This thesis aims to investigate the electronic and magnetic structure of Fe/Co PBA using advanced experimental and theoretical techniques. X-ray Absorption Spectroscopy (XAS) and X-ray Magnetic Circular Dichroism (XMCD) techniques combined with Ligand Field Multiplet (LFM) theory probe the change in the macroscopic magnetic properties of PBA and can give local information about the metal centers existing in the complexes. The XAS and XMCD spectra at Fe and Co L2,3 edges are simulated using Ligand Field Multiplet (LFM) Calculations. The tridimensional RbCoFe PBA, two photomagnetic dinculear complexes and the building blocks Fe-bearing precursors are investigated. The XMCD study combined with LFM investigation revealed a large value of orbital magnetic moment in FeTp precursor of the dinuclear complex. A detailed study has been performed to check for the orbit and spin sum rules in the case of low spin FeIII ions and it was found that the spin sum rule does not hold because of intermixing between L2 and L3 edges. The XMCD investigation of the photomagnetic dinuclear complexes confirmed the metal-to-metal electron transfer. This XMCD investigation of the smallest unit of Fe/Co PBA family is helpful to understand the magnetic properties of the family of Fe/Co PBA. The XMCD study at Fe and Co K edges of a tridimensional RbCoFe PBA proved the existence of an antiferromagnetic interaction between Fe and Co metal ions in the photoinduced state.
|
57 |
Nanofils ferromagnétiques en matrice de CeO2 et de SrTiO3 : de la compréhension de la structure locale aux propriétés magnétiques / Ferromagnetic nanowires embedded in CeO2 : from the understanding of the local structure to individual magnetic and transport propertiesNovikova, Anastasiia 10 July 2015 (has links)
Cette thèse est consacrée à l’étude de la structure et des propriétés magnétiques de nanofils ferromagnétiques de diamètre entre 2 et 7 nm, formés par auto-assemblage dans des couches minces de CeO2 ou SrTiO3 déposées sur substrat SrTiO3(001).Grâce à la Spectroscopie d’Absorption des rayons X (XAS) ainsi que la Magnétométrie à l’échantillon Vibrant (VSM) nous avons étudié des nanofils de Co, Ni et CoNi. Cette étude montre qu’à température ambiante et à pression atmosphérique les nanofils de Co peuvent exister dans les phases hcp et/ou fcc alors que l’ajout de Ni stabilise la structure fcc.Nous présentons aussi la stabilité de la structure et des propriétés magnétiques en fonction de la température et nous décrivons en particulier les effets d’une procédure de recuit oxydant, suivi d’un recuit sous vide comme un possible outil de modulation de la structure et des propriétés des nanofils.Les études XAS mettent en évidence l’existence de dichroïsme linéaire pour des nanofils de Co et CoNi avec des diamètres extrêmement faibles (moins de 2nm). Nous en discutons les possibles origines de ce dichroïsme : effets d’étirement et de taille finie.In fine, une tentative de croissance auto-organisée de couches minces de CeO2 ou SrxBayTiO3 dopées au fer est présentée. Dans la matrice CeO2 la microscopie électronique à transmission ne détecte pas de nanofils et le XAS montre une grande variété d’oxydes de fer différents, malgré des conditions de croissance très proches. La formation de nanofils en matrice SrxBayTiO3 est suggérée par les propriétés magnétiques (hystérèse et anisotropie) et la composition des nanofils déterminée par le XAS met en évidence les phases α-Fe et FeO. / This PhD thesis is dedicated to the structural and magnetic studies of self-assembled ferromagnetic nanowires with diameters of 2-7 nm embedded in CeO2 (or SrTiO3) thin films grown on SrTiO3 (001) substrates.By means of X-rays Absorption Spectroscopy (XAS) and Vibrating Sample Magnetometry (VSM) Co, Ni and CoNi nanowires are studied. This study shows that at ambient temperature and pressure cobalt nanowires may contain Co-hcp or Co-fcc phase, while adding Ni stabilizes the fcc.This study also discusses structural and magnetic stability as a function of temperature under different thermal treatments. We describe in particular the effects of oxidative treatment followed by high vacuum annealing as a tool to tune the structure and magnetic properties of cobalt nanowires. XAS evidences linear dichroism in Ni and CoNi embedded nanowires of extremely small diameter (less than 2nm). We discuss possible origins of these phenomena considering the effects of strain and finite size of the objects.Finally, an essay of growing CeO2 or SrxBayTiO3 thin films doped by Fe is presented. It shows that within the CeO2 matrix no nanowires are evidenced by TEM, while XAS shows a large variety of different iron oxides even if the growth conditions are not drastically modified from one sample to another. As it is suggested by the magnetic measurements (hysteresis and anisotropy), formation of nanowires in SrxBayTiO3 matrix is very likely and the nanowires composition determined by XAS evidences a mixture of αFe and FeO phases.
|
58 |
Advancement of growth and characteristics of ultrathin ferrite filmsRodewald, Jari Michael 12 February 2021 (has links)
Within this thesis, (ultra)thin NiFe2O4 (NFO) and CoFe2O4 (CFO) films are prepared via reactive
molecular beam epitaxy (RMBE) on MgO(001) and SrTiO3(001) substrates and are characterized
in terms of their structural, electronic, and magnetic properties. In a first step, the structural properties of ultrathin off-stoichiometric NixFe(3-x)O4 films (0<x<1.5) deposited via RMBE on MgO(001) are investigated in
situ during film deposition by means of synchrotron radiation-based x-ray diffraction (XRD) and ex situ after film growth by high energy surface x-ray diffraction (HESXRD). In the second major step of this work, a
more extensive study on the dependence of the cationic ratio in NixFe(3-x)O4 thin films (0<x<2.07)
grown on MgO(001) is conducted. The film surface structure and chemical composition is characterized in situ by low energy electron diffraction (LEED) and laboratory-based soft x-ray photoelectron spectroscopy (XPS), respectively. Film thicknesses are determined via analysis of x-ray reflectivity (XRR) data, while the
film structure is analyzed by XRD measurements. Further, chemical properties and the electronic
structure of the NFO films with focus on the cationic valencies of Ni and Fe cations with varying
x is investigated by means of (angle-resolved) hard x-ray photoelectron spectroscopy [(AR-)HAXPES]. Complementary x-ray absorption spectroscopy (XAS) and x-ray magnetic circular
dichroism (XMCD) investigations are conducted to obtain information on the cationic site
occupancies and on the element-specific magnetic moments. The latter are compared to magnetic
properties characterized via superconducting quantum interference device (SQUID) magnetometry. In a third step, the type of substrate is changed to SrTiO3(001) to investigate the influence of a larger strain applied by the substrate to NFO films with varying thicknesses. Structural characterization at the surfaces and in the films is conducted by means of LEED, XRR, and (grazing incidence) XRD, whereas XPS and HAXPES provide information on the chemical composition and electronic structure in the near-surface region and in deeper subsurface layers, respectively. Magnetic properties are characterized by SQUID magnetometry. In a fourth step, an alternative pathway for the formation of ferrite thin films is demonstrated exemplarily for CoFe2O4 films on SrTiO3(001), which are formed by interdiffusion of Fe3O4/CoO bilayers. The interdiffusion process was monitored via XRR, soft XPS and AR-HAXPES to determine the bilayer/film structure, stoichiometry, and chemical properties. Analysis of complementary XAS measurements provides additional information on the occupancies of Fe and Co cations during interdiffusion. Final SQUID magnetometry measurements are performed to gain information on the
magnetic properties before and after complete interdiffusion. Overall, within this thesis, it was demonstrated that NFO and CFO thin films can be prepared in high structural quality with sharp interfaces and surfaces, which is crucial for the applicability in the fields of spintronics and spincaloritronics.
|
59 |
Detailing the Self-Discharge of a Cathode Based on a Prussian Blue AnalogueMusella, Elisa, Mullaliu, Angelo, Ruf, Thomas, Huth, Paula, Tonelli, Domenica, Aquilanti, Giuliana, Denecke, Reinhard, Giorgetti, Marco 18 April 2023 (has links)
Prussian Blue analogues (PBAs) are a promising class of electrode active materials for batteries. Among them, copper nitroprusside, Cu[Fe(CN)5NO], has recently been investigated for its peculiar redox system, which also involves the nitrosyl ligand as a non-innocent ligand, in addition to the electroactivity of the metal sites, Cu and Fe. This paper studies the dynamics of the electrode, employing surface sensitive X-ray Photoelectron spectroscopy (XPS) and bulk sensitive X-ray absorption spectroscopy (XAS) techniques. XPS provided chemical information on the layers formed on electrode surfaces following the self-discharge process of the cathode material in the presence of the electrolyte. These layers consist mainly of electrolyte degradation products, such as LiF, LixPOyFz and LixPFy. Moreover, as evidenced by XAS and XPS, reduction at both metal sites takes place in the bulk and in the surface of the material, clearly evidencing that a self-discharge process is occurring. We observed faster processes and higher amounts of reduced species and decomposition products in the case of samples with a higher amount of coordination water.
|
60 |
Probing electronic, magnetic and structural heterogeneity in advanced materials and Nanostructures with x-ray imaging, scattering and spectroscopic techniques.Yang, Weibing January 2018 (has links)
In this dissertation, we have used a combination of synchrotron-based x-ray spectroscopic, scattering and imaging techniques to investigate the electronic, magnetic and structural properties of materials and material systems which exhibit natural as well as engineered nanoscale structural distortions. In order to investigate the interplay between the above-mentioned degrees of freedom with spatial and depth resolution, we have utilized non-destructive techniques, such as x-ray absorption spectroscopy (XAS), polarization-dependent photoemission electron microscopy (PEEM), nanoscale scanning x-ray diffraction microscopy (nano-SXDM) and standing-wave x-ray photoemission spectroscopy (SW-XPS). The results were compared to several types of state-of-the-art first-principles theoretical calculations. In the first part of the dissertation, we have investigated the nanoscale magneto-elastic structure of the Fe3Ga magnetic alloy, which was recently reported to exhibit non-volume conserving magnetostriction. As the result of our combined PEEM and nano-SXDM study, we have discovered the structural basis for this phenomenon – periodic long-wavelength (~269 nm) elastic domain walls, with domains (regions of zero-strain) existing as narrow transition regions. Atto-scale elastic gradients and self-strain across the elastic domain walls were quantitatively measured and imaged by nano-SXDM. Our measurements revealed that the gradients inside the elastic walls are accommodated by gradually increasing/decreasing inter-planar spacing resembling a longitudinal wave. Our element-specific polarization-dependent PEEM measurements revealed that the magnetic structure of the crystal modulates with similar periodicity (~255 nm), and the resulting magneto-elastic coupling produces a ‘giant’ field-induced bulk deformation, which is equal to the measured self-strain of the elastic domain wall. In the second part of this dissertation, we utilized a combination of soft x-ray standing-wave photoemission spectroscopy (SW-XPS), hard x-ray photoemission spectroscopy (HAXPES) and scanning transmission electron microscopy (STEM) to probe the depth-dependent and single-unit-cell resolved electronic structure of isovalent manganite superlattices (Eu0.7Sr0.3MnO3/La0.7Sr0.3MnO3)15 wherein the electronic and magnetic properties are intentionally modulated with depth via engineered O octahedral rotations and A-site displacements. Standing-wave-excited spectroscopy of the Mn 2p and O 1s core-levels confirmed the isovalent nature of the Mn ions in the superlattice and revealed significant depth-dependent variations in the local chemical and electronic environment around the O atoms, consistent with the state-of-the-art theoretical calculations. Furthermore, it was shown that a surface relaxation and orbital reconstruction in the several top Eu0.7Sr0.3MnO3 atomic layers produces substantial changes in the observed electronic structure, which, according to the first-principles theoretical calculations, occur due to the establishment of orbital stripe order in the top unit cell. In summary, we have used synchrotron-based x-ray spectroscopic and microscopic techniques, in conjunction with high-resolution electron microscopy, to study the electronic, magnetic and structural properties of advanced functional materials exhibiting strong nanoscale heterogeneity. We discovered a strong coupling between the nanoscale structural and magnetic properties in the non-conventional magnetostrictive Fe3Ga single crystal. Our results suggest that this coupling provides the fundamental basis for the non-conventional magnetostriction phenomenon in this material. We have also discovered that the electronic properties of the Eu0.7Sr0.3MnO3/La0.7Sr0.3MnO3 superlattices can be epitaxially tuned via engineered A-site cation displacement, which is a result of the strong interfacial coupling between the Eu0.7Sr0.3MnO3 and La0.7Sr0.3MnO3 layers. This suggests a new way of tailoring and spatially-confining electronic and ferroic behavior in complex oxide heterostructures and creating novel ordered surface-reconstruction effects. / Physics
|
Page generated in 0.028 seconds