301 |
Development of Flexural Plate-wave Device with Silicon Trench Reflective Grating StructureHsu, Li-Han 30 July 2012 (has links)
Abstract
Compared with the other micro acoustic wave devices, the flexural plate-wave (FPW) device is more suitable for being used in liquid-sensing applications due to its higher mass sensitivity, lower phase velocity and lower operation frequency. However, conventional FPW devices usually present a high insertion loss and low fabrication yield.
To reduce the insertion loss and enhance the fabrication yield of FPW device, a 1.5 £gm-thick silicon-trench reflective grating structure (RGS), a high electromechanical coupling coefficient ZnO thin-film and a 5 £gm-thick silicon oxide membrane substrate are adopted in this research. The influences of the amount of silicon trench and the distance between inter-digital transducer (IDT) and RGS on the insertion loss and quality factor of FPW device are investigated. The main fabrication technology adopted in the study is bulk micromachining technology and the main fabrication steps include six thin-film deposition and five photolithography processes.
Under the optimized conditions of the sputtering deposition processes (200¢J substrate temperature, 200 W radio-frequency power and 75% gas flow ratio), a high C-axis (002) orientation ZnO piezoelectric thin-film with 31.33% electromechanical coupling coefficient can be demonstrated. The peak of XRD intensity of the standard ZnO film occurs at diffraction angle 2£c = 34.422¢X, which matches well with our results (2£c = 34.282¢X). By controlling the thickness of ZnO/Au/Cr/SiO2/Si3N4 sensing membrane less than 6.5 £gm-thick, the fabrication yield of FPW device can be improved and a low operation frequency (6.286 MHz) and high mass sensitivity (-113.63 cm2 / g) can be achieved. In addition, as the implemented FPW device with four silicon trenches RGS and 37.5 £gm distance between IDT and RGS, a low insertion loss (-40.854 dB) and very high quality factor (Q=206) can be obtained.
Keywords¡Gflexural plate-wave; silicon-trench reflective grating structure; electromechanical coupling coefficient; ZnO; bulk micromachining technology
|
302 |
Design and fabrication of new 3D energy harvester with nano-ZnO rodsLi, Cheng-chi 21 August 2012 (has links)
This study presents a new way for new 3D energy harvesting energy with vertically aligned nanorods arrays. ZnO nanoparticles array on Au/Cr/Si substrate are directly patterned by electrospray. First, gel solutions with zinc acetate, monoethanolamine and 2-methoxyethanol as the precursor by sol-gel technology were formulated. Then, the solutions were stirred to become clear and homogeneous liquid. Second, the precursor solutions were prepared by electrospray, where a Taylor cone was formed to produce ZnO nanoparticles. Then the ZnO nanoparticles were annealed as seed layers for nanorods. By varying the property of the ZnO solution, needle with collector distance, applied voltage, annealing temperature and molar ratio were discussed. After annealing, the orientation of the ZnO nanorods depend on the crystalline orientation of ZnO nanoparticles. The ZnO nanorods were obtained at a temperature of 90 ¢XC by aqueous solution method. The experimental parameters of lengths, diameters, and pH level of the reaction medium of the Zno nanorod were observed and controlled. The physical structures of ZnO were characterized by X-ray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) analyses. The results show that the ZnO nanoparticles become more intensity with increasing in annealing temperature. The SEM analysis reveals that the ZnO nanorods have diameters about 100-400 nm and length about 200-1200 nm. Finally, Pt electrode atop as Schottky contacts were packed to fabricate nanogenerator with ZnO nanorods. Then the nanogenerator was driven by ultrasonic wave vibration. The wave drives the electrode up and down to vibrate the nanorods, and its voltage and current were also characterized. The measurement results show the maximum power is 0.004х10-8 W during the operation frequency of 42 kHz.
|
303 |
Design and Fabrication of Flexible Piezoelectric Harvesters Based on ZnO Thin Films and PVDF NanofibersLiu, Zong-hsin 13 December 2012 (has links)
Vibration energy harvesters, or energy scavengers, recover mechanical energy from their surrounding environment and convert it into useable electricity as sustainable self-sufficient power sources to drive micro-to milli-Watt scale power electronics in small, autonomous, wireless devices and sensors. Using semiconducting, organic piezoelectric nanomaterials are attractive in low-cost, high resistance to fatigue, and environmentally friendly applications. Significantly, the deposition processes of sputtering ZnO (zinc oxide) thin films with high c-axis preferred orientation and electrospun PVDF (polyvinylidene fluoride) nanofibers with high piezoelectric £]-phase crystallisation are controlled at room temperature. Thus they don¡¦t have the necessity of post-annealed and electrical repoling process to obtain an excellent piezoelectricity, and are suitable for all flexible substrates such as PET (polyethylene terephthalate) and PI (polyimide). These works are divided into two parts.
Part 1: Flexible piezoelectric harvesters based on ZnO thin films for self-powering and broad bandwidth applications. A new design of Al (aluminum)/PET-based flexible energy harvester was proposed. It consists of flexible Al/PET conductive substrate, piezoelectric ZnO thin film, selectively deposited UV (ultraviolet)-curable resin lump structures and Cu (copper) foil electrode. The design and simulation of a piezoelectric cantilever plate was described by using commercial software ANSYS FEA (finite element analysis) to determine the optimum thickness of PET substrate, internal stress distribution, operation frequency and electric potential. With the optimum thickness predicted by developed accurate analytical formula analysis, the one-way mechanical strain that is efficient to enhance the induced electric potential can be controlled within the piezoelectric ZnO layer. In addition, the relationship among the model solution of piezoelectric cantilever plate equation, vibration induced electric potential and electric power was realized. ZnO thin film of high (002) c-axis preferred orientation with an excellent piezoelectricity was deposited on the Al/PET by RF (radio-frequency) magnetron sputtering in room temperature. Al was sputtered on the PET substrate as the bottom electrode because of its low sheet resistance, superior adhesion with PET, and lattice constants matching with ZnO thin film. The selectively deposited UV-curable resin lump structures as proof mass were directly constructed on flexible piezoelectric plate using electrospinning with a stereolithography technique. One individual harvester achieves a maximum OCV (open-circuit voltage) up to 4V with power density of 1.247 £gW/cm2. This self-powered storage system can drive the warning signal of the LED (light emitting diode) module in both resonant and non-resonant conditions. We also succeeded in accomplishing a broad bandwidth harvesting system with operating frequency range within 100 Hz to 400 Hz to enhance powering efficiency. This system comprises four units of individual ZnO piezoelectric harvester in the form of a cantilever structure connected in parallel, and rectifying circuit with storage module. In addition, a modified design of a flexible piezoelectric energy-harvesting system with a serial bimorph of ZnO piezoelectric thin film was presented to enhance significantly higher power generation. This high-output system was examined at 15 Hz. The maximum DC (direct current) voltage output voltage with loading was 3.18 V, and the maximum DC power remained at 2.89 £gW/cm2.
Furthermore, in order to examine the deformation between interfaces and the adhesion mechanism of multi-layer flexible electronics composites (e.g., ITO (indium tin oxide)/PET, Al/PET, ZnO/ITO/PET, and ZnO/Al/PET), nanoscratching and nano-indention testing (nanoindenter XP system) were conducted to analyze the adhesion before and after the vibration test. The plastic deformation between the ductile Al film and PET substrate is observed using SEM (scanning electron microscopy). Delamination between the ZnO and Al/PET substrate was not observed. This indicates that Al film provides excellent adhesion between the ZnO thin film and PET substrate.
Part 2: Pre-strained piezoelectric PVDF nanofiber array fabricated by near-field electrospining on cylindrical process for flexible energy conversion. In various methodologies of energy harvesting from ambient sources, one-dimensional nanoharvesters have been gaining more attention recently. However, these nanofibers fabricated by micro-forming technologies may not easily control their structural diameter and length. This study originally presented the HCNFES (hollow cylindrical near-field electrospining) process to fabricate permanent piezoelectricity of PVDF piezoelectric nanofibers. Under high in-situ electric poling and strong mechanical stretching effect during HCNFES process, large PVDF nanofiber array with high piezoelectric £]-phase crystallisation was demonstrated. These pre-strained piezoelectric PVDF nanofibers fabricated by HCNFES with high process flexibility at low cost, availability in ultra-long lengths, various thicknesses and shapes can be applied at power scavenge, sensing and actuation. Firstly, PVDF nanofibers lay on a PET substrate, silver paste was applied at both ends of fibers to fix their two ends tightly on a Cu foil electrode pair. The entire structure was packaged inside a thin flexible polymer to maintain its physical stability. Repeatedly stretching and releasing the nanoharvester (NH 1) with a strain of 0.05% at 5 Hz vibration created a maximum peak voltage and current of -50 mV and -10 nA in forward connection, respectively. Secondly, a total of 44 parallel nanofibers have been fabricated and transferred onto an IDT (interdigital) electrode with 64 electrode pairs as a nanohavester (NH 2) to amplify current outputs under repeated mechanical vibration and impact tests. Under a repeated maximum strain of 0.14% at 6 Hz vibration, a peak current of 39 nA and peak voltage of 20.2 mV have been measured. Impact testing at 15 Hz, peak current of 130 nA has been collected with a voltage of 24.4 mV. Finally, the single PVDF fiber as nanoharvester (NH 3) with a strain of 0.05-0.1% at 5 Hz vibration created a maximum peak voltage and current of -45 mV and -3.9 nA, respectively. The maximum power remained at 18.45 pW/cm2 with a load resistor of 6.8 M£[.
Based on the mechanism of converes piezoelectric effect, ANSYS software with coupled field analysis was used to realize piezoelectric actuation behavior of the PVDF fibers. From the observation of actuation property, a fixed-fixed single nanofiber was tested under different DC voltage supply. Comparing the polarized fiber with non-polarized fibers, the measurement of the center displacements as a function of electric field was conducted and characterized.
|
304 |
A Parametric Study On Hydrothermal Synthesis Of Zinc Oxide Nanowires With Various Zinc SaltsAkgun, Mehmet Can 01 March 2012 (has links) (PDF)
ZnO is a promising semiconducting material for manufacturing optoelectronic
devices. Its most important properties are its wide and direct band gap and its high
electron-hole binding energy. Synthesis of ZnO in bulk and thin film form has been
investigated intensively over recent decades. Likewise, nanomaterials have been in
the point of focus for their different properties compared to their bulk form. The
vastly increased ratio of surface area to volume and change in electronic properties
with great reduction in particle size enable improved performance in conventional
applications where their bulk counterparts have been used for decades. As a result of
this trend, research on synthesis of ZnO nanowires and their incorporation in
prototype optoelectronic devices has been intensive in recent years. Therefore,
synthesis of ZnO nanowires in a cost effective way and understanding the factors
influencing the ZnO nanowire growth is essential for contribution to ongoing
research.
V
In this thesis, hydrothermal synthesis of ZnO nanowires, which is a solution based
method enabling vertically aligned ZnO nanowire array fabrication over large areas,
is investigated. In the first part of this thesis, the effect of using various zinc salts as
zinc sources on ZnO nanowires is investigated by monitoring pH, temperature and
light transmittance of growth solutions. In the second part, a detailed parametric
study on the use of zinc acetate dihydrate salt is provided with regard to the existence
of its unique properties compared to other two zinc salts. The effect of growth time,
temperature, ratio of concentration of precursor chemicals and precursor chemical
concentrations is investigated. The results show that hydrothermal synthesis method
could replace the conventional ZnO nanowire fabrication methods. It was shown that
specific nanowire lengths for any application can be obtained simply by adjusting the
parameters of hydrothermal growth system.
|
305 |
Development of FPW-based Mass Sensing Device with Reflection Grating Electrode DesignLai, Yu-zheng 31 August 2009 (has links)
The conventional medical immunoassays (ELISA/CLIA/FPIA) are not only costly (>10,000 USD), large in size (>10,000 cm3), but also require a vast number of sampling (25 £gL/well ¡Ñ 12 well) and long detection time (1~2.5 hr). To develop a biomedical microsensor for the application of portable detecting microsystem, this thesis proposes a flexural plate wave (FPW) microsensor with a novel reflection grating electrode (RGE) microstructure. Comparing to the conventional acoustic microsensors, the FPW based device has higher mass sensitivity, lower operation frequency but higher noise level. To overcome this disadvantages, this study added the RGE microstructure into the design of FPW sensor and investigated its influences on the reduction of insertion loss and noise level.
By using the surface and bulk micromachining technologies, this thesis designed and fabricated FPW-based mass-sensing device with a small volume of 0.189 cm3 and a novel RGE microstructure. The main processing steps adopted in this research include six photolithoghaphies and nine thin-film depositions. In this work, a high figure-of-merit C-axial orientation ZnO piezoelectric thin-film was deposited by a commercial magnetic radio-frequency (RF) sputter system. On the other hand, the gold/chrome interdigital transducer (IDT) and RGE aluminum electrode were deposited utilizing a commercial E-beam evaporator system. For the optimization of design specifications of the FPW devices, the space of input and output IDTs, pair number of IDT, length of delay line gap and with/without RGE design were varied and investigated.
Under the optimized IDT specification, the FPW microstructure presents lower central frequency (2¡ã4 MHz), insertion loss (-11 dB) and noise level (<-30 dB) than that of the FPW based microsensor without RGE microstructure. In addition, as the sampling volume of the testing DI water is equal to 1 £gL, a high mass sensitivity (-48.3 cm2/g) and short responding time (5 min) of the FPW microsensor with RGE design can be achieved in this work. The excellent characteristics mentioned above demonstrated the implemented FPW microsensor is very suitable for the applications of portable biomedical detecting microsystems.
|
306 |
Oxide nanowire arrays for energy sciencesXu, Sheng 11 November 2010 (has links)
Oxide nanowire arrays are playing an important role in energy sciences nowadays, including energy harvesting, energy storage, and power management. By utilizing a wet chemical growth method, we demonstrated the capabilities of synthesizing density controlled vertical ZnO nanowire arrays on a general substrate, optimizing the aspect ratio of the vertical ZnO nanowire arrays guided by a statistical method, epitaxially growing patterned vertical ZnO nanowire arrays on inorganic substrates, epitaxially growing patterned horizontal ZnO nanowire arrays on non-polar ZnO substrates, and the lift-off of the horizontal ZnO nanowire arrays onto general flexible substrates. In addition, single crystalline PbZrxTi1-xO3 (PZT) nanowire arrays were epitaxially grown on conductive and nonconductive substrates by hydrothermal decomposition. Beyond that, based on the as-synthesized ZnO nanowire arrays, we demonstrated multilayered three dimensionally integrated direct current and alternating current nanogenerators. By integrating a ZnO nanowire based nanogenerator with a ZnO nanowire based nanosensor, we demonstrated solely ZnO nanowire based self-powered nanosystems. Also, utilizing a commercial full-wave bridge rectifier, we rectified the alternating output charges of the nanogenerator based on PZT nanowire arrays, and the rectified charges were stored into capacitors, which were later discharged to light up a laser diode (LD). In addition, blue/near-ultraviolet (UV) light emitting diodes (LED) composed of ordered ZnO nanowire arrays on p-GaN wafers were presented.
|
307 |
Organic-Inorganic Hetero Junction White Light Emitting Diode : N-type ZnO and P-type conjugated polymerLubuna Beegum, Shafeek January 2008 (has links)
<p>The purpose of this thesis work is to design and fabricates organic-inorganic hetero junction White Light Emitting Diode (WLED). In this WLED, inorganic material is n- type ZnO and organic material is p-type conjugated polymer. The first task was to synthesise vertically aligned ZnO nano-rods on glass as well as on plastic substrates using aqueous chemical growth method at a low temperature. The second task was to find out the proper p- type organic material that gives cheap and high efficient WLED operation. The proposed polymer shouldn’t create a high barrier potential across the interface and also it should block electrons entering into the polymer. To optimize the efficiency of WLED; charge injection, charge transport and charge recombination must be considered. The hetero junction organic-inorganic structures have to be engineered very carefully in order to obtain the desired light emission. The layered structure is composed of p-polymer/n-ZnO and the recombination has been desired to occur at the ZnO layer in order to obtain white light emission. Electrical characterization of the devices was carried out to test the rectifying properties of the hetero junction diodes.</p><p>iv</p>
|
308 |
Growth of Zinc Oxide Nanoparticles on Top of Polymers and Organic Small Molecules as a Transparent Cathode in Tandem Photovoltaic DeviceAl Kadi Jazairli, Mohamad January 2008 (has links)
<p>Organic solar cells have caught considerable attention in the past few years due to their potential for providing environmentally safe, flexible, lightweight, inexpensive, and roll-to-roll feasible production solar cells. However, the efficiency achieved in current organic solar cells is quite low, yet quick and successive improvements render it as a promising alternative. A hopeful approach to improve the efficiency is by exploiting the tandem concept which consists of stacking two or more organic solar cells in series.</p><p>One important constituent in tandem solar cells is the middle electrode layer which is transparent and functions as a cathode for the first cell and an anode for the second cell. Most studies done so far have employed noble metals such as gold or silver as the middle electrode layer; however, they suffered from several shortcomings especially with respect to reproducibility.</p><p>This thesis focuses on studying a new trend which employs an oxide material based on nano-particles as a transparent cathode (such as Zinc-oxide-nano-particles) along with a transparent anode so as to replace the middle electrode.</p><p>Thus, this work presents a study on solution processable zinc oxide (ZnO) nanostructures, their proper handling techniques, and their potential as a middle electrode material in Tandem solar cells in many different configurations involving both polymer and small molecule materials. Moreover, the ZnO-np potential as a candidate for acceptor material is also investigated.</p>
|
309 |
Synthesis and Optical Properties of ZnO NanostructuresYang, Li-Li January 2008 (has links)
<p>One-dimensional ZnO nanostructures have great potential applications in the fields of optoelectronic and sensor devices. Therefore, it is really important to realize the controllable growth of one-dimensional ZnO nanostructures and investigate their properties. The main points for this thesis are not only to successfully realize the controllable growth of ZnO nonawires, nanorods and quantum dots (QDs), and also investigate the structure and optical properties in detail by the methods of scan electron microscope(SEM), transmission electron microscope(TEM), resonant Raman, photoluminescence(PL) and low-temperature time resolved PL spectrum.</p><p>to grown ZnO nanorod arrays (ZNAs) on Si substrates. Firstly, the effects of ZnO nanoparticles, pH value of chemical solution, angel θ between substrate and beaker bottom on the structures of the samples were symmetrically investigated and the optimized growth condition to grow ZNAs can be concluded as follows: seed layer of ZnO nanoparticles, pH=6 and <em>θ</em>=70°. On the basis of these, the diameter of ZNAs was well controlled from 150nm~40nm through adjusting the diameter and density of the ZnO nanoparticles pretreated on the Si substrates. The experimental results indicated that both diameter and density of ZnO nanoparticles on the substrates determined the diameter of ZNAs. But when the density is higher than the critical value of 2.3×10<sup>8</sup>cm<sup>-2</sup>, the density will become the dominant factor to determine the diameter of ZNAs.</p><p>One the other hand, the optical properties of ZNAs were investigated in detail. The Raman and photoluminescence (PL) results showed that after an annealing treatment around 500oC in air atmosphere, the crystal structure and optical properties became much better due to the decrease of surface defects. The resonant Raman measurements excited by 351.1nm not only revealed that the surface defects play a significant role in the as-grown sample, but also suggested that the strong intensity increase of some Raman scatterings was due to both outgoing resonant Raman scattering effect and deep level defects scattering contribution for ZnO nanorods annealed from 500°C to 700°C. It is the first time to the best of our knowledge that the Raman measurements can be used to monitor the change of surface defects and deep level defects in the CBD grown ZnO nanorods. We have also presented, for the first time, a time resolved PL study in CBD grown ZnO nanorods with different diameters. The results show that the decay time of the excitons in the nanorods strongly depends on the diameter of the nanorods. The altered decay time is mainly due to the surface recombination process. The effective time constant related to the surface recombination velocity was deduced. A thermal treatment under 500°C will suppress the surface recombination channel, resulting in an improvement of the optical quality for the ZnO nanorods.</p><p>This thesis not only provides the effective way to control the size of ZNAs, but also obtains some beneficial results in aspects of their optical properties, which builds theoretical and experimental foundation for much better and broader applications of one-dimensional ZnO nanostructures.</p>
|
310 |
Contributions à l'étude des propriétés optiques non<br />linéaires de nanoparticules en couches minces à base de ZnOSofiani, Zouhair 04 June 2007 (has links) (PDF)
Les semi-conducteurs transparents de type A$^{II}$ B$^{IV}$,<br />continuent à susciter une attention considérable du point de vue<br />fondamental et application, principalement en raison de leurs<br />propriétés très exploitées. Une considération particulière a été<br />portée sur l'oxyde de zinc qui est un semi-conducteur de type n<br />possédant d'excellentes propriétés électriques, catalytiques et<br />optiques, qui lui confèrent la possibilité d'être exploité dans de<br />nombreux domaines tel que l'optoélectronique. Dans cette<br />perspective, nous avons étudié l'influence du dopage, des<br />températures de dépôt et de recuit, la nature du substrat et des<br />techniques de dépôt sur la réponse optique non linéaire du ZnO.<br />Nous avons constaté que la réponse non linéaire dépend énormément<br />de ces paramètres. En particulier, nous avons démontré que la<br />réponse non linéaire dépend de la qualité structurale et optique<br />des couches minces.
|
Page generated in 0.0264 seconds