• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 15
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 44
  • 17
  • 15
  • 15
  • 11
  • 11
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Étude de la mobilité des porteurs dans des transistors MOS intégrant un oxyde de grille de forte permittivité et une grille métallique

Thévenod, Laurent 09 July 2009 (has links) (PDF)
Afin de satisfaire aux exigences de plus en plus contraignantes imposées par la Roadmap ITRS, l'industrie microélectronique doit aujourd'hui envisager un certain nombre de révolutions dans ses procédés de fabrication des composants. En effet, la seule miniaturisation des dimensions du transistor à effet de champ Métal-Oxyde-Semiconducteur (MOSFET) ne suffit plus à améliorer les performances des dispositifs électroniques et de nouvelles approches doivent être imaginées. Parmi les solutions envisagées, l'une des plus prometteuses consiste à remplacer l'isolant de grille «historique» en oxyde de silicium (SiO2) et la grille en polysilicium par un couple constitué d'une grille métallique et d'un matériau isolant possédant une plus forte permittivité diélectrique. Ce travail présente ainsi les effets du couple grille TiN/dioxyde d'hafnium HfO2 sur les performances électriques d'un MOSFET en étudiant un paramètre caractéristique du transport électrique dans le canal de conduction, à savoir la mobilité des porteurs libres en régime d'inversion. Pour ce faire, une étude théorique des différentes interactions limitant la mobilité des porteurs dans ces nouvelles architectures a d'une part été réalisée. D'autre part, des techniques expérimentales innovantes d'extraction de la mobilité ont été développées (magnétorésistance, split C-V pulsé) pour caractériser finement nos dispositifs. La conjonction de ces deux approches a ainsi permis de déterminer avec précision les interactions prédominantes dans la réduction de mobilité des porteurs liées à l'utilisation d'une grille métallique TiN et d'un oxyde de grille de forte permittivité HfO2.
32

Employing Metal Iodides and Oxygen in ALD and CVD of Functional Metal Oxides

Sundqvist, Jonas January 2003 (has links)
<p>Many materials exhibit interesting and novel properties when prepared as thin films. Thin film metal oxides have had an impact on the technological progress of the microelectronics mainly due to their electrical and optical properties. Since the future goes towards the nanometre scale there is an increasing demand for thin film deposition processes that can produce high quality metal oxide films in this scale with high accuracy.</p><p>This thesis describes atomic layer deposition of Ta<sub>2</sub>O<sub>5</sub>, HfO<sub>2</sub> and SnO<sub>2</sub> thin films and chemical vapour deposition of SnO<sub>2</sub> thin films. The films have been deposited by employing metal iodides and oxygen as precursors. All these processes have been characterised with regards to important processing parameters. The films themselves have been characterised by standard thin film analysing techniques such as x-ray diffraction, scanning electron microscopy, atomic force microscopy and transmission electron microscopy. The chemical and physical properties have been coupled to critical deposition parameters. Furthermore, additional data in the form of electrical and gas sensing properties important to future applications in the field of microelectronics have been examined.</p><p>The results from the investigated processes have shown the power of the metal iodide based atomic layer deposition (ALD) and chemical vapour deposition (CVD) processes in producing high quality metal oxide thin films. Generally no precursor contaminations have been observed. In contrast to metal chloride based processes the metal iodide processes produces films with a higher degree of crystalline quality when it comes to phase purity, roughness and epitaxy. The use of oxygen as oxidising precursor allowed depositions at higher temperatures than normally employed in water based ALD processes and hence a higher growth rate for epitaxial growth was possible.</p>
33

Élaboration et caractérisation large bande de matériaux "high-k" en structure "MIM"

Bertaud, Thomas 09 November 2010 (has links) (PDF)
Afin d'améliorer les performances électriques des circuits intégrés (densité d'intégration, vitesse et fiabilité), des matériaux à permittivité élevée sont introduits dans les composants passifs, notamment les capacités " Métal-Isolant-Métal " (MIM). De nombreux diélectriques, allant d'une permittivité moyenne (SixNy, Ta2O5, HfO2, ZrO2) à très élevée (les pérovskites SrTiO3 et BaTiO3) en passant par les alliages de plusieurs éléments (HfTiO, TiTaO ou Pb(ZrxTi1-x)O3) sont largement étudiés comme candidats prometteurs. Ces composants et ces matériaux ont pour vocation de fonctionner à des fréquences de plus en plus élevées, jusqu'à plusieurs gigahertz. La permittivité complexe Er (permittivité réelle E'r et pertes E''r) des diélectriques peut varier avec la fréquence : des phénomènes de relaxation et de résonance peuvent apparaître. La caractérisation de ces matériaux et l'évaluation des performances des composants intégrant ces diélectriques deviennent nécessaires sur une très large bande de fréquence. Ce travail de thèse a pour objectifs d'obtenir les caractéristiques électriques des diélectriques sur une très large bande de fréquences, du continu à plusieurs dizaines de gigahertz, en configuration in-situ, c'est-à-dire en films minces et avec les mêmes procédés d'intégration que dans le composant MIM final. Pour cela, un outil générique, allant du développement de la technologie nécessaire à la réalisation des structures de test et aux procédures d'extraction des propriétés à hautes fréquences, a été développé, validé grâce au SixNy puis appliqué à différents diélectriques : AlN [1], TiTaO [2], HfO2 et ZrO2 [3,4]. [1] T. Bertaud et al., Microelectron. Eng. 88, 564 (2011). [2] T. Bertaud et al., J. Appl. Phys. 110, 044110 (2011). [3] T. Bertaud et al., IEEE Electr. Device L. 31 (2), 114 (2010). [4] T. Bertaud et al., IEEE T. Compon. Pack. 2 (3), 502 (2012).
34

Employing Metal Iodides and Oxygen in ALD and CVD of Functional Metal Oxides

Sundqvist, Jonas January 2003 (has links)
Many materials exhibit interesting and novel properties when prepared as thin films. Thin film metal oxides have had an impact on the technological progress of the microelectronics mainly due to their electrical and optical properties. Since the future goes towards the nanometre scale there is an increasing demand for thin film deposition processes that can produce high quality metal oxide films in this scale with high accuracy. This thesis describes atomic layer deposition of Ta2O5, HfO2 and SnO2 thin films and chemical vapour deposition of SnO2 thin films. The films have been deposited by employing metal iodides and oxygen as precursors. All these processes have been characterised with regards to important processing parameters. The films themselves have been characterised by standard thin film analysing techniques such as x-ray diffraction, scanning electron microscopy, atomic force microscopy and transmission electron microscopy. The chemical and physical properties have been coupled to critical deposition parameters. Furthermore, additional data in the form of electrical and gas sensing properties important to future applications in the field of microelectronics have been examined. The results from the investigated processes have shown the power of the metal iodide based atomic layer deposition (ALD) and chemical vapour deposition (CVD) processes in producing high quality metal oxide thin films. Generally no precursor contaminations have been observed. In contrast to metal chloride based processes the metal iodide processes produces films with a higher degree of crystalline quality when it comes to phase purity, roughness and epitaxy. The use of oxygen as oxidising precursor allowed depositions at higher temperatures than normally employed in water based ALD processes and hence a higher growth rate for epitaxial growth was possible.
35

Development And Synthesis Of Metalorganic Complexes Of Zr, Hf, And Cr For Application To The CVD And Sol-Gel Synthesis Of Oxide Thin Films

Dharmaprakash, M S 07 1900 (has links) (PDF)
No description available.
36

Ion Assisted Deposition Of HfO2 Thin Films For CMOS Gate Dielectric Applications

Jajala, Bujjamma 09 1900 (has links) (PDF)
The scaling down of Complementary Metal Oxide Semiconductor (CMOS) transistors to sub-100nm requires replacement of conventional Silicon dioxide layer with high dielectric constant (K) material for gate dielectric. Among the various high-K dielectrics that have been studied, HfO2 is found to be a promising candidate because of its high dielectric constant (~25), large band gap (5.68 eV), thermodynamic stability and good interface with Si. The HfO2 films have already been deposited using different growth techniques such as Atomic layer Deposition (ALD), Metalorgonic Chemical Vapor Deposition (MOCVD) and Pulsed Laser Deposition (PLD). Ion Assisted Deposition (IAD) is a novel technique that has been successfully employed to produce optical coatings of required quality. This growth technique presents many advantages over the other techniques such as formation from solid oxide sources, low growth temperatures (25-3000C) and film densification by ion bombardment. Hence this technique has been used to prepare HfO2 films in the present investigations. This thesis presents the structural, optical and electrical properties of HfO2 thin films prepared by Ion assisted deposition (IAD). The suitability of Ion assisted deposition process and the importance of investigations on the influence of process parameters on the film characteristics have been brought out in the process parameters-structure-composition and properties correlation presented in this thesis. The aim of this work is to process and characterize HfO2 films and investigate the influence of process parameters on the structure, composition and properties of the films to identify their suitability for CMOS gate applications. HfO2 films were deposited on p-type Si (100) wafers by Ion assisted deposition in an electron beam evaporation (Leybold,L-560) system. Pre-bombardment of the substrates with Argon ions has been done to remove any native oxide layer formation on Silicon by using a hallow cathode ion source (DENTON VACUUM CC103). During the film deposition a collimated oxygen ion beam, generated from the ion source is directed towards the substrate. The oxygen ion current is controlled by adjusting the voltage applied to the ion source and the oxygen flow through the ion source. The oxygen ions bombard the film as it grows and in that process improves its packing density as well as its stoichiometry. Keeping the deposition rate and thickness constant, HfO2 films have been deposited by varying Ion Current, Ion energy and substrate temperature. MOS capacitors were fabricated with Aluminum as gate electrode deposited by thermal evaporation. Ellipsometry techniques have been used to measure the optical thickness of the films. The interfacial layer (IL) formed at the HfO2/ Si interface was investigated by using Fourier transform Infrared spectroscopy (FT-IR). The structural characterization was carried out by X-ray diffraction technique. The high frequency capacitance-voltage and DC leakage current characteristics were measured to analyze the electrical characteristics of MOS capacitors. The effect of post deposition annealing (PDA) of the films at 600°C and 700ºC in Forming Gas (15%H2+85%N2) ambient and Post metallization annealing (PMA) at 400ºC in the same ambient was also investigated to observe the changes in electrical characteristics. The initial step of this work was to compare the characteristics of the films deposited by reactive evaporation and Ion assisted deposition which confirmed the superiority of the quality of IAD coatings and justified the need to proceed further with a more detailed study on the influence of various parameters on the properties of IAD coatings. HfO2 films deposited on substrates maintained at 1000C exhibited better structural, Optical and Electrical properties. The leakage current in these films were lower which has been attributed to silicate free interface as confirmed by XRD studies. Investigations on films deposited with oxygen ion beams of different currents in the range 20 to 40mA indicated that the films deposited at 20mA ion current showed better electrical properties. Better stoichiometry of these films as indicated by FT IR studies was one of the reasons for their improved performance. Annealing of these films at 6000C and 7000C in FGA medium resulted in creation of silicates and silicides at the interface thereby increasing the leakage currents and degraded the film properties. The films deposited with oxygen ion beams generated with a driving voltage 265V showed better structural and optical properties with silicate free interface compared with low and high driving voltages. Among all the films, the maximum dielectric constant of about 21.9 with a minimum EOT of 5.5 nm corresponding to a film deposited at ion current 20mA with PMA 400°C in FG ambient for 20minites is achieved. The lowest value of interface charge density achieved is 2.7 x1012 per cm-2 eV-1 corresponding to the sample deposited at substrate temperature 100°C with deposition rate of 0.5Å/sec followed by post metallization annealing at 400°C in forming gas for 20minutes. The range of Dit values that were obtained are varying from 2.7x 1012 – 16.7x1012 cm-2eV-1.It was also found that, the samples deposited at higher ion currents show lower Dit values than the samples deposited at lower ion currents. From the I−V analysis, the leakage current density is found to be comparatively less in IAD than in reactive evaporation. Leakage current increases with increase in substrate temperature and the same trend is observed with annealed films also. The lowest leakage current density of 1.05x10–8 A/cm2 at a gate bias of 1V was observed in the films deposited at substrate temperature 1000C. The present thesis focused on the suitability of the Ion Assisted deposition process for the preparation of HfO2 films for high-K gate dielectric application and the importance of investigations on the influence of process parameters on the film characteristics.
37

Etude de la commutation résistive d'oxydes binaires (HfO2, TiO2) élaborés par dépôt par jets moléculaires et intégrés dans des dispositifs de type memristifs métal-oxyde-métal : effets du dopage et de l'implantation / Resistive switching study of binary oxides (HfO2, TiO2) deposited by molecular beam epitaxy and integrated in metal/oxide/metal memristive type devices : effect of doping and implantation

Minvielle, Marie 14 June 2017 (has links)
A l’ère du « big data » et de l’intelligence artificielle, les recherches pour trouver de nouvelles façons de stocker et traiter l’information se multiplient. Dans le domaine des mémoires non volatiles, cette émulation a conduit à l’émergence de nouveaux composants, dont les OxRAM (oxide-based resistive random access memories) auxquels nous nous sommes intéressés dans cette thèse. Il s’agit d’un empilement métal-oxyde-métal où la couche d’oxyde commute entre au moins deux états de résistance stables lorsqu’une tension est appliquée. Nos travaux ont porté sur l'étude électrique de dispositifs en croix, de dimensions submicroniques (500 x 500 nm2 ou 100 x 100 nm2) avec, comme oxyde diélectrique, le dioxyde d’hafnium HfO2 ou le dioxyde de titane TiO2. Pour l'élaboration des oxydes, nous avons mis en oeuvre le dépôt par jets moléculaires (ou MBE pour molecular beam epitaxy), technique très peu utilisée jusqu’ici dans la communauté des OxRAM. Cette technique d'ultravide permet d'obtenir des films très purs alors qu'avec l’ALD (pour atomic layer deposition), le précurseur employé induit une contamination en carbone, azote ou chlore. L'une des clés de l’optimisation des propriétés électriques se trouve dans le contrôle de la quantité et de la distribution des lacunes d’oxygène. A cet effet, nous avons exploré l’incorporation de divers éléments aux couches de HfO2 et TiO2. La microstructure et la composition des films d'oxyde ainsi dopés ont été analysées, puis les dispositifs OxRAM ont été fabriqués et leurs caractéristiques électriques (courant-tension) ont été étudiées. Pour les OxRAM à base de HfO2 (mettant en jeu un mécanisme filamentaire), nous avons tout d'abord optimisé l'élaboration de HfO2 par MBE. Nous avons obtenu des dispositifs dont les propriétés électriques se situent au niveau de l'état de l'art international, notamment pour la fenêtre mémoire. Grâce à la croissance par MBE, nous obtenons une plus petite tension de forming et une plus grande fenêtre mémoire que pour des composants similaires, que nous avons fabriqués à partir de films préparés par ALD. Nous suggérons un lien entre contaminants carbonés et largeur de la fenêtre mémoire. Par rapport à l'état de l'art, nos objectifs étaient d’abaisser les courants de fonctionnement et d’atténuer la variabilité entre nombreux cycles ainsi qu'entre composants. Nous avons pour cela examiné les effets de l'ajout dans HfO2 des éléments Al, La ou Ti (de quelques % jusqu'à 30 %), par co-dépôt avec Hf. Grâce à ces additions, nous parvenons à réduire le courant de reset, la tension de forming et la variabilité du courant de reset. De plus, les mesures XPS (pour X-ray photoelectron spectroscopy) montrent une augmentation du taux de lacunes dans les couches La-HfO2, Ti-HfO2 et Al-HfO2. Concernant les composants à base de TiO2 (impliquant des mécanismes de type interfacial à l'une des deux interfaces avec les électrodes, dite active), nos objectifs étaient de diminuer les courants de fonctionnement et d’augmenter le nombre d’états de résistance accessibles stables. A cette fin, nous avons privilégié, là aussi, des stratégies matériaux. Nous avons modifié l'interface active du dispositif en y incorporant des hétéroéléments (Ne, N et B) par implantation ionique. La teneur en lacunes d’oxygène a été analysée par XPS tandis que la mobilité des lacunes a été quantifiée via leur énergie d’activation de diffusion Ea. Afin de déterminer Ea, nous avons mis au point un protocole expérimental original. Ainsi, nous avons établi que l'azote, dopant de type p dans TiO2, accroît la mobilité des lacunes tandis que le bore, dopant de type n, l’entrave et le néon, inerte, n'a pas d'incidence. L'énergie d'activation est minimale (0,4 eV) pour une implantation en azote de 1018 ions/cm3. La mobilité des lacunes n'est cependant pas le seul paramètre à améliorer : le transport des électrons à travers la barrière Schottky TiO2/Pt joue également un rôle crucial. [...] / In the age of big data and artificial intelligence, researches to find new ways to process and store the information multiply. In the field of non-volatile memories, this emulation has led to the emergence of new components, such as OxRAM (for oxide-based random access memories) in which we have been interested in during this PhD. It is a metal-oxide-metal stack where the oxide layer is able to switch between at least two stable resistance states under an applied voltage. In this work, we have studied sub-micrometer cross-point devices (500 x 500 nm2 or 100 x 100 nm2) with hafnium dioxide (HfO2) or titanium dioxide (TiO2) as dielectric oxide. The oxides have been deposited by molecular beam epitaxy (MBE), a technique that has rarely been used so far in the OxRAM community. With this ultra-vide technique, we can obtain very pure films whereas with atomic layer deposition (ALD), precursors induce carbon, nitrogen or chlorine contaminations. For the electrical properties optimization, one of the keys is the concentration and distribution control of oxygen vacancies. Regarding that, we have explored the incorporation of various elements in HfO2 and TiO2 layers. The microstructure and the composition of these doped films have been analyzed, afterward OxRAM devices have been fabricated and their electrical characteristics (current-voltage) have been studied. For HfO2-based OxRAM (involving a filamentary mechanism), we have firstly optimized the MBE HfO2 deposition. The devices then obtained have electrical properties which are as good as those of the state-of-the-art components, in particular for the memory window. Moreover, these MBE deposited devices have a smaller forming voltage and a larger memory window than equivalent components that we have fabricated with ALD grown layers. So, we suggest a link between carbon impurities and memory width. In light of the state of the art, our objectives were to lower working currents and to reduce the variability between numerous cycles and between components too. To this end, we have examined the effects of adding Al, La or Ti elements in HfO2 (from few % to 30 %), by co-deposition with Hf. Thanks to these additions, we manage to decrease the reset current, the forming voltage and the variability of the reset current. Furthermore, X-ray photoelectron spectroscopy (XPS) measurements show an increase of vacancies amount in La-HfO2, Ti-HfO2 and Al-HfO2 layers. Concerning TiO2-based components (for which the mechanism is interfacial and takes place at one of the two electrode interfaces, said active), our goals were to diminish working currents and to augment the number of accessible stable resistance states. For this purpose, we have also focused on material strategies. We have modified the active interface by heteroelements ion implantation (Ne, N and B). The oxygen vacancies content has been analyzed by XPS while the vacancies mobility has been quantified via their activation energy diffusion Ea. In order to determine Ea, we have developed an original experimental protocol. In this way, we establish that nitrogen, which is a p-type dopant in TiO2, heightens the oxygen vacancies mobility, whereas boron, which is a n-dopant, hinders it and the neon, inert, does not have any effect on vacancies mobility. The activation energy is minimal (0.4 eV) for a nitrogen dose of 1018 ions/cm3. However, the oxygen vacancies mobility is not the only parameter that we have to improve: the electronic transport through the TiO2/Pt Schottky barrier plays also a crucial role. The results achieved during this PhD attest to the pertinence of the MBE utilization and of an analysis that combines ionic and electronic aspects in order to improve the resistive switching phenomenon understanding and the OxRAM performances.
38

Atomic Structure of Domain and Interphase Boundaries in Ferroelectric HfO₂

Grimley, Everett D., Schenk, Tony, Mikolajick, Thomas, Schroeder, Uwe, LeBeau, James M. 26 August 2022 (has links)
Though ferroelectric HfO₂ thin films are now well characterized, little is currently known about their grain substructure. In particular, the formation of domain and phase boundaries requires investigation to better understand phase stabilization, switching, and phase interconversion. Here, scanning transmission electron microscopy is applied to investigate the atomic structure of boundaries in these materials. It is found that orthorhombic/orthorhombic domain walls and coherent orthorhombic/monoclinic interphase boundaries form throughout individual grains. The results inform how interphase boundaries can impose strain conditions that may be key to phase stabilization. Moreover, the atomic structure near interphase boundary walls suggests potential for their mobility under bias, which has been speculated to occur in perovskite morphotropic phase boundary systems by mechanisms similar to domain boundary motion.
39

Stabilisierung der ferroelektrischen Phase in Hafniumdioxid

Mittmann, Terence 27 June 2024 (has links)
Die Digitalisierung ist in vollem Gange. Viele Geräte werden intelligent, das heißt sie bekommen ein eigenes Rechenwerk und werden mit permanentem Internetzugang ausgestattet. Da viele dieser neuen intelligenten Geräte möglichst mobil sein sollen, werden neue energieeffiziente nichtflüchtige Halbleiterspeicher notwendig. Das hat zur Folge, dass großer Forschungsaufwand in die Entwicklung neuer Speicherkonzepte und der dafür notwendigen Materialien gesteckt wird. Daraus ergibt sich ein breites Forschungsfeld für zukünftige Speicherkonzepte. Hierfür wird versucht auf Grundlage von ferroelektrischen, magnetischen oder resistiven Materialeigenschaften neue Speicherbauelemente zu entwickeln und zur Anwendung zu bringen. Daraus folgten bereits Konzepte wie der magnetische RAM, der resistive RAM und der ferroelektrische RAM. Neue ferroelektrische Speicherkonzepte basierend auf Materialien mit Perowskitstruktur zeigten zwar viele positive Eigenschaften, konnten aber mangels ausreichender Skalierbarkeit keinen breiten Marktzugang finden. Die Entdeckung von Ferroelektrizität in dünnen dotierten HfO2-Schichten kann dieses Problem überwinden und ist dadurch für die weitere Entwicklung neuer Speicherkonzepte von großer Bedeutung. Das Mischoxid Hafniumdioxid-Zirkondioxid hat sich als eines der geeignetsten auf Hafniumdioxid basierenden ferroelektrischen Materialsysteme erwiesen. Gemein haben alle ferroelektrischen hafniumbasierten Schichten, dass die polare orthorhombische Kristallphase der Ursprung des ferroelektrischen Verhaltens ist. Das Verständnis der Phasenübergänge und der Phasenstabilisierung in dotiertem, ferroelektrischem HfO2 ist somit von entscheidender Bedeutung für zukünftige ferroelektrische Speicheranwendungen. In dieser Arbeit wird der Einfluss der Sauerstoffkonzentration auf die Stabilisierung der monoklinen, orthorhombischen und tetragonalen Kristallphasen und deren Auswirkung auf die ferroelektrischen Eigenschaften untersucht. Dafür werden detaillierte elektrische und strukturelle Untersuchungen an gesputterten und mit Atomlagenabscheidung hergestellten, dünnen HfO2- und Hf(1-x)Zr(x)O2-Schichten vorgenommen. Die Sauerstoffkonzentration wurde entweder direkt über die Prozessparameter während der Abscheidung oder nachträglich durch Änderung der Elektrodenstöchiometrie beeinflusst. Dadurch konnten Parameter gefunden werden, die die Stabilisierung der ferroelektrischen orthorhombischen Kristallphase positiv beeinflussen. Temperaturabhängige Untersuchungen erlaubten zusätzlich die nähere Betrachtung welcher Klasse von Ferroelektrika ferroelektrisches Hafniumdioxid zugeordnet werden kann. Für den orthorhombisch-tetragonalen Phasenübergang konnte ein Phasenübergang erster Ordnung mit kleiner Temperaturhysterese und einem Peak in der relativen Permittivität, in Übereinstimmung mit dem Curie-Weiss-Verhalten, beobachtet werden. Mit diesen und weiteren Beobachtungen kann HfO2 sehr wahrscheinlich der Klasse der echten Ferroelektrika zugeordnet werden. Die Ergebnisse dieser Arbeit schließen eine weitere Lücke im Verständnis der Ferroelektrizität in HfO2 und können ein weiterer Schritt auf dem Weg zur Anwendung auf dem Massenmarkt sein.:Index I 1 Einleitung 1 2 Theoretische Grundlagen 3 2.1 Ferroelektrizität . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Thermodynamische Betrachtungen der Ferroelektrizität . . . . . . . . . . . . . . 6 2.1.2 Preisach-Modell und das Auftreten ferroelektrischer Domänen . . . . . . . . . . 11 2.1.3 Reales ferroelektrisches Verhalten . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Ferroelektrizität in HfO 2 -basierten Materialien . . . . . . . . . . . . . . . . . . . 13 2.2.1 Ursachen der Ferroelektrizität in Hafniumdioxid . . . . . . . . . . . . . . . . . . 16 2.2.2 Ferroelektrisches Verhalten dünner HfO 2 -Schichten . . . . . . . . . . . . . . . . . 21 2.3 Anwendungsmöglichkeiten ferroelektrischer Materialien . . . . . . . . . . . . . . 29 2.3.1 Speicheranwendungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.2 Weitere Anwendungsfelder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3 Probenherstellung und deren elektrische und strukturelle Charakterisierung 36 3.1 Prozessfluss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1.1 Atomlagenabscheidung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.1.2 Sputterabscheidung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2 Strukturelle Charakterisierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3 Chemische Charakterisierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.4 Elektrische Charakterisierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4 Stabilisierung der ferroelektrischen Phase in HfO 2 und der Einfluss der Sau- erstoffkonzentration 49 4.1 Undotiertes gesputtertes HfO 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.1.1 Eigenschaften undotierter gesputterter HfO 2 -Schichten . . . . . . . . . . . . . . . 51 4.1.2 Einfluss der Sauerstoffkonzentration während der Abscheidung auf die orthorhom- bische Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2 Zusammenspiel von Sauerstoffkonzentration und ZrO 2 -Konzentration . . . . . . 72 4.3 Einfluss von IrO 2 -Metalloxidelektroden auf die orthorhombische Phase der HfO 2 - Schichten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5 Temperaturstabilität der ferroelektrischen Schichten 97 5.1 Einfluss der Ozondosiszeit auf mit Atomlagenabscheidung hergestellte Hf 0,5 Zr 0,5 O 2 - Schichten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.2 Temperaturabhängige Phasentransformation . . . . . . . . . . . . . . . . . . . . 102 5.3 Klassifizierung von ferroelektrischem HfO 2 . . . . . . . . . . . . . . . . . . . . . 120 5.4 Temperaturstabilität des Konditionierungseffekts . . . . . . . . . . . . . . . . . . 123 5.5 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6 Zusammenfassung und Ausblick 127 Literaturverzeichnis XII Abbildungsverzeichnis XLII Tabellenverzeichnis LII A Abkürzungen und Formelzeichen LIII B Publikationsliste LVII C Danksagung LXII D Lebenslauf LXIV / Digitization is in full swing. Many prior offline devices are becoming smart devices with permanent internet access. Since many of these new smart devices are expected to be as mobile as possible, new energy-efficient non-volatile semiconductor memories are needed. As a consequence, a great effort of research is being put into the development of new memory concepts and the materials required for them. This results in the research field of emerging memories, which tries to develop and apply new memory concepts based on ferroelectric, magnetic or resistive material properties. Concepts such as magnetic RAM, resistive RAM and ferroelectric RAM followed. Ferroelectric memory concepts based on perovskite showed many positive properties, but could not find a broad market access due to a lack of sufficient scalability. The discovery of ferroelectricity in doped HfO2 thin films can overcome this problem and is thus of great importance for the further development of new memory concepts. The composition of hafnium dioxide and zirconium dioxide has proven to be one of the most suitable hafnium-based ferroelectric material systems. Common to all ferroelectric hafnium-based films is that the polar orthorhombic crystal phase is the origin of the ferroelectric behavior. Thus, understanding the phase transitions and stabilization in doped ferroelectric HfO2 is crucial for future ferroelectric memory applications. In this work, the influence of oxygen concentration on the stabilization of the monoclinic, orthorhombic and tetragonal crystal phase and its effect on the ferroelectric properties is investigated. For this purpose, detailed electrical and structural studies are performed on sputtered and atomic layer deposition prepared thin HfO2 and Hf(1-x)Zr(x)O2 films. The oxygen concentration was influenced either directly by the process parameters during deposition or subsequently by changing the electrode stoichiometry. Thus, parameters were found to positively influence the stabilization of the ferroelectric orthorhombic crystal phase. Temperature-dependent investigations additionally allowed a closer look at which class of ferroelectrics hafnium oxide-based ferroelectrics can be assigned to. For the orthorhombic-tetragonal phase transition, a first-order phase transition with small temperature hysteresis and a peak in relative permittivity, in agreement with the Curie-Weiss-behavior, could be observed. With these and other observations, HfO2 can most likely be assigned to the class of proper ferroelectrics. The results of this work fill another gap in the understanding of ferroelectricity in HfO2 and may be another step towards mass market applications.:Index I 1 Einleitung 1 2 Theoretische Grundlagen 3 2.1 Ferroelektrizität . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Thermodynamische Betrachtungen der Ferroelektrizität . . . . . . . . . . . . . . 6 2.1.2 Preisach-Modell und das Auftreten ferroelektrischer Domänen . . . . . . . . . . 11 2.1.3 Reales ferroelektrisches Verhalten . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Ferroelektrizität in HfO 2 -basierten Materialien . . . . . . . . . . . . . . . . . . . 13 2.2.1 Ursachen der Ferroelektrizität in Hafniumdioxid . . . . . . . . . . . . . . . . . . 16 2.2.2 Ferroelektrisches Verhalten dünner HfO 2 -Schichten . . . . . . . . . . . . . . . . . 21 2.3 Anwendungsmöglichkeiten ferroelektrischer Materialien . . . . . . . . . . . . . . 29 2.3.1 Speicheranwendungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.2 Weitere Anwendungsfelder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3 Probenherstellung und deren elektrische und strukturelle Charakterisierung 36 3.1 Prozessfluss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1.1 Atomlagenabscheidung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.1.2 Sputterabscheidung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2 Strukturelle Charakterisierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3 Chemische Charakterisierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.4 Elektrische Charakterisierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4 Stabilisierung der ferroelektrischen Phase in HfO 2 und der Einfluss der Sau- erstoffkonzentration 49 4.1 Undotiertes gesputtertes HfO 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.1.1 Eigenschaften undotierter gesputterter HfO 2 -Schichten . . . . . . . . . . . . . . . 51 4.1.2 Einfluss der Sauerstoffkonzentration während der Abscheidung auf die orthorhom- bische Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2 Zusammenspiel von Sauerstoffkonzentration und ZrO 2 -Konzentration . . . . . . 72 4.3 Einfluss von IrO 2 -Metalloxidelektroden auf die orthorhombische Phase der HfO 2 - Schichten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5 Temperaturstabilität der ferroelektrischen Schichten 97 5.1 Einfluss der Ozondosiszeit auf mit Atomlagenabscheidung hergestellte Hf 0,5 Zr 0,5 O 2 - Schichten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.2 Temperaturabhängige Phasentransformation . . . . . . . . . . . . . . . . . . . . 102 5.3 Klassifizierung von ferroelektrischem HfO 2 . . . . . . . . . . . . . . . . . . . . . 120 5.4 Temperaturstabilität des Konditionierungseffekts . . . . . . . . . . . . . . . . . . 123 5.5 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6 Zusammenfassung und Ausblick 127 Literaturverzeichnis XII Abbildungsverzeichnis XLII Tabellenverzeichnis LII A Abkürzungen und Formelzeichen LIII B Publikationsliste LVII C Danksagung LXII D Lebenslauf LXIV
40

Theoretical Investigation of High-k Gate Stacks in nano-MOSFETs

Nadimi, Ebrahim 19 July 2022 (has links)
Diese Arbeit beschäftigt sich mit der „First-Principles“ atomskaligen Modellierung der HfO2-basierten high-k-Gate-Isolatorschichten der Metalloxid-Halbleiter-Feldeffekttransistoren. Die theoretischen Untersuchungen basieren auf Dichtefunktionaltheorie und Nichtgleichgewicht-Greensche-Funktion-Formalismen. Eine der wichtigsten Eigenschaften eines Gate-Isolators ist der Wert seiner Bandlücke. Die Bandlücke eines gemischten Festkörpers aus SiO2 und ZrO2 oder HfO2 wird auf der Grundlage der „Generalized Quasi-Chemical“ Approximation in Kombination mit dem „Cluster Expansion“ Ansatz berechnet. Zu diesem Zweck wurde Dichtefunktionaltheorie für die Berechnung der Eigenschaften verschiedener Konfigurationen möglicher Elementarzellen durchgeführt. Es wurde ein fast linearer Verlauf für die Bandlücke eines aus SiO2 und HfO2 gemischten Festkörpers berechnet. Im Vergleich zu dem üblichen SiO2 Gate-Isolator, haben die high-k-Gate-Isolatoren eine höhere Defektdichte, die hauptsächlich aus Sauerstoffleerstellen bestehen. Dies führt zu mehreren Problemen, wie zum Beispiel höherer Leckstrom, Schwellenspannungsverschiebung und Degradation des Gateoxids. Daher wurde eine umfassende Untersuchung der verschiedenen Eigenschaften von Sauerstofffehlstellen in HfO2 durchgeführt, indem wichtige Parameter wie zum Beispiel die Formationsenergien und die Lage der Defektniveaus in der Bandlücke berechnet wurden. Es wurde durch die theoretischen Berechnungen gezeigt, dass die schädlichen Auswirkungen von Sauerstofffehlstellen durch die Einführung von Lanthan-Atomen in dem HfO2 Kristallgitter teilweise zu verringern sind. Energetisch gesehen bevorzugen die Lanthan-Atome die Hf-Gitterplätze in der Nachbarschaft einer Sauerstofffehlstelle und führen dadurch zu der Passivierung durch Sauerstoffleerstelle induzierten Defektniveaus. Die high-k-Isolatorschicht in den heutigen Transistoren besteht aus drei Schichten: einem Metallgate, einer HfO2-Schicht als Haupt-Gate-Isolator und einer sehr dünnen SiO2 Übergangsschicht zwischen Gateoxid und Si. Die Einführung eines Metallgates führt zu einigen Problemen bei der Einstellung einer geeigneten Schwellenspannung in den Transistoren. Theoretische Berechnungen in einer komplexen Modellstruktur von der Si/SiO2/HfO2-Grenzfläche zeigen, dass die dotierten Lanthan-Atome energetisch die SiO2/HfO2-Grenzfläche bevorzugen, was wiederum ein Dipolmoment an der Grenzfläche erzeugt. Dieses Dipolmoment kann verwendet werden, um die richtige Schwellenspannung wieder einzustellen. Schließlich wird in den experimentellen Messungen festgestelltes progressives Degradationsverhalten von high-k-Gate-Isolatoren mit einem theoretischen Modell erklärt. Dieses Modell basiert auf ab-initio-Berechnungen und zeigt, wie die Erzeugung geladener Sauerstoffleerstellen und deren Migration unter der angelegten Gatespannung zu einer progressiven Erhöhung des Leckstroms und folglich zu einer Degradation der Isolatorschicht führt.:List of Figures 7 List of Tables 9 List of Symbols 10 List of Abbreviations 11 Chapter 1: Introduction 12 Chapter 2: Theory of Atomic-Scale First-Principles Calculations 15 2.1 Theoretical methods 15 2.2 Density functional theory 17 2.3 Non-equilibrium Green’s function formalism 23 Chapter 3: Calculations for Bulk High-k Materials 27 3.1 Bulk high-k materials 27 3.2 Crystalline insulators 27 3.3 Solid solutions 29 3.3.1 Cluster expansion approach 30 3.3.2 Band gap and bowing parameter 33 3.3.3 Calculation of internal stress 40 3.4 Leakage current 41 Chapter 4: Defects in Bulk High-k Materials 43 4.1 Defects in high-k gate dielectrics 43 4.2 Oxygen vacancies in monoclinic HfO2 44 4.2.1 Neutral oxygen vacancies 44 4.2.2 Charged oxygen vacancies 46 4.3 Hybrid functional 50 4.4 Double oxygen vacancies 56 4.5 Interaction of oxygen vacancies with La-doping 61 4.5.1 La doping in m-HfO2 61 4.5.2 Complex LaHfVO defects 64 Chapter 5: Interface Properties of High-k Gate Stack 72 5.1 high-k gate-stack 72 5.1.1 Atomic-scale model structure for a high-k gate-stack 72 5.1.2 Electronic structure 74 5.1.3 Leakage current 76 5.2 Band offset 80 5.3 Threshold voltage engineering with La doping 84 Chapter 6: Degradation of the High-k Gate Stack 90 6.1 Reliability issues in high-k gate-stack 90 6.2 Calculations and experimental methods 91 6.3 Leakage current 92 6.4 Defect generation 100 6.5 Explaining progressive SILC in high-k dielectrics 102 Chapter 7: Conclusions 104 Bibliography 106 Selbständigkeitserklärung 119 Danksagung 120 Lebenslauf 121 Veröffentlichungen 122 / This thesis deals with the first-principles atomic-scale modeling of the HfO2-based high-k gate-insulator layer of the metal-oxide-semiconductor field-effect transistors. The theoretical investigations are based on density functional theory and non-equilibrium Green's function formalisms. One of the important properties of the gate insulator is the value of its band gap. The band gap of amorphous solid mixtures of SiO2 and ZrO2 or HfO2 is calculated based on generalized quasi-chemical approximation combined with a cluster expansion approach, by performing density functional calculations on different configurations of possible unit cells. An almost linear variation of the band gap is obtained for solid mixtures of SiO2 and HfO2. One drawback of the high-k gate-insulator, comparing to the standard SiO2, is high density of defects, particularly oxygen vacancies, which leads to several problems such as enhancement of the leakage current, threshold voltage instability, and degradation of the gate-oxide. A comprehensive investigation of different properties of oxygen vacancies in HfO2 is conducted by the calculation of formation energies and induced trap levels. It is shown based on theoretical calculations that the harmful effects of oxygen vacancies can be partially healed by introducing lanthanum atoms into the defected HfO2 crystal. Lanthanum atoms energetically prefer to occupy Hf lattice sites close to the oxygen vacancies and passivate the induced defect levels. The state-of-the-art high-k gate-stacks consist of a metal-gate on a HfO2 layer, as the main part of the gate insulator, and a very thin SiO2 intermediate layer between high-k material and Si. The introduction of a metal-gate raises some problem in the adjustment of an appropriate threshold voltage. Theoretical calculations in a complex model structure of the Si/SiO2/HfO2 interface reveals that the lanthanum atoms energetically prefer to stay at the SiO2/HfO2 interface, which in turn results in a dipole moment. This dipole moment can be employed to adjust the threshold voltage in high-k/metal-gate stacks. Finally, a theoretical model, which can quiet well explain the experimental measurements, is introduced for the progressive degradation of the high-k gate-insulators. This model is based on ab-initio calculations and shows how the generation of charged vacancies and their migration under the applied gate voltage leads to the progressive enhancement of the leakage current and consequently to the degradation of the insulator layer.:List of Figures 7 List of Tables 9 List of Symbols 10 List of Abbreviations 11 Chapter 1: Introduction 12 Chapter 2: Theory of Atomic-Scale First-Principles Calculations 15 2.1 Theoretical methods 15 2.2 Density functional theory 17 2.3 Non-equilibrium Green’s function formalism 23 Chapter 3: Calculations for Bulk High-k Materials 27 3.1 Bulk high-k materials 27 3.2 Crystalline insulators 27 3.3 Solid solutions 29 3.3.1 Cluster expansion approach 30 3.3.2 Band gap and bowing parameter 33 3.3.3 Calculation of internal stress 40 3.4 Leakage current 41 Chapter 4: Defects in Bulk High-k Materials 43 4.1 Defects in high-k gate dielectrics 43 4.2 Oxygen vacancies in monoclinic HfO2 44 4.2.1 Neutral oxygen vacancies 44 4.2.2 Charged oxygen vacancies 46 4.3 Hybrid functional 50 4.4 Double oxygen vacancies 56 4.5 Interaction of oxygen vacancies with La-doping 61 4.5.1 La doping in m-HfO2 61 4.5.2 Complex LaHfVO defects 64 Chapter 5: Interface Properties of High-k Gate Stack 72 5.1 high-k gate-stack 72 5.1.1 Atomic-scale model structure for a high-k gate-stack 72 5.1.2 Electronic structure 74 5.1.3 Leakage current 76 5.2 Band offset 80 5.3 Threshold voltage engineering with La doping 84 Chapter 6: Degradation of the High-k Gate Stack 90 6.1 Reliability issues in high-k gate-stack 90 6.2 Calculations and experimental methods 91 6.3 Leakage current 92 6.4 Defect generation 100 6.5 Explaining progressive SILC in high-k dielectrics 102 Chapter 7: Conclusions 104 Bibliography 106 Selbständigkeitserklärung 119 Danksagung 120 Lebenslauf 121 Veröffentlichungen 122

Page generated in 0.0273 seconds